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Reinforcement Learning Based Tactile Sensing for
Active point cloud Acquisition, Recognition and
Localization

Kevin Riou, Member, IEEE, Kaiwen Dong, Kevin Subrin, Member, IEEE, Patrick Le Callet, Fellow, IEEE

Abstract—Traditional passive point cloud acquisition systems,
such as lidars or stereo cameras, can be impractical in real-life
and industrial use cases. Firstly, some extreme environments may
preclude the use of these sensors. Secondly, they capture infor-
mation from the entire scene instead of focusing on areas relevant
to the end task, such as object recognition and localization. In
contrast, we propose to train a Reinforcement Learning (RL)
agent with dual objectives: i) control a robot equipped with a
tactile (or laser) sensor to iteratively collect a few relevant points
from the scene, and ii) recognize and localize objects from the
sparse point cloud which has been collected. The iterative point
sampling strategy, referred to as an active sampling strategy,
is jointly trained with the classifier and the pose estimator to
ensure efficient exploration that focuses on areas relevant to the
recognition task. To achive these two objectives, we introduce
three RL reward terms: classification, exploration, and pose
estimation rewards. These rewards serve the purpose of offering
guidance and supervision in their respective domain, allowing us
to delve into their individual impacts and contributions. We com-
pare the proposed framework to both active sampling strategies
and passive hard-coded sampling strategies coupled with state-
of-the-art point cloud classifiers. Furthermore, we evaluate our
framework in realistic scenarios, considering realistic and similar
objects, as well as accounting for uncertainty in the object’s
position in the workspace.

Index Terms—Tactile Perception, Robotics, Extreme Environ-
ments, 3D Objects Recognition, Active Point-clouds Acquisition,
Reinforcement Learning

I. INTRODUCTION

Vision-based 3D sensors, including Lidars and 3D cameras,
enable the scanning of 3D scenes to recover dense 3D point-
clouds from them. With the widespread deployment of such
3D sensors ranging from autonomous vehicles [1], mobile
phones [2] and tablets [3], and industrial scenarios [4], [5], has
led to a remarkable surge in the development of deep learning
models designed for the processing of dense 3D point clouds.
In particular, deep learning models have become increasingly
accurate at localizing, recognizing, and delineating objects
in the 3D scene from dense point clouds. However, extreme
environments might not always permit the use of such vision-
based sensors to acquire point cloud information. Fig 1 high-
lights a typical extreme use case where information is required
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tem aimed at detecting, localizing and classifying underground
objects.

for localizing and recognizing buried objects, e.g., buried
mines, but where traditional vision-based sensors are not
usable. Note that regarding buried mines, Ground Penetrating
Radar (GPR) [6] is a crucial tool for rapid mine sweeping in
conflict zones, however, manual tactile exploration remains the
preferred method for post-conflict terrain cleaning, because of
GPR limitations for certain types of mines or soil conditions
[7]. Other extreme environment that might preclude the use
of traditional vision-based sensors include those with poor
lighting conditions, high levels of dust and troubled waters.
In such scenarios, tactile perception, which is the ability to
perceive objects/scenes through the sense of touch [8], can
substitute for vision-based sensors in recovering point-cloud
information from the target environment. In particular, in this
work, we study how a system similar to the one highlighted in
Fig. 1, can be used to localize and recognize objects in these
kinds of extreme environments.

The system samples one 3D point at a time by driving a
rigid stick in a given direction, until contact with an object
is detected using a contact sensor [9]. A point-cloud can
be further constructed by iteratively sampling points from
the scene. While this system can only generate extremely
sparse point clouds from the environment, it provides the
opportunity to strategically select point sampling locations to
effectively localize and recognize target objects. The strategy
employed to control the iterative 3D point sampling, achieved
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by directing the tactile probe in specific directions, is the
cornerstone of this work. We will refer to this control strategy
as the “exploration strategy”, because it defines how the
environment will be explored. In a preliminary work [10], we
introduced an active point cloud acquisition framework for
3D object recognition. The exploration strategy was denoted
as “active” because each 3D point sampling was adaptively
determined based on the context provided by the 3D points
that had already been collected. This contrasted with “pas-
sive” exploration strategies, where the sequence of 3D points
was always collected following the same sampling routine.
The proposed framework relied on a deep learning model,
that simultaneously learned an exploration strategy to control
the robot and a 3D point cloud classifier, both aimed at
maximizing classification performance. This way, the training
of the exploration strategy was guided by the classification
performance, ensuring that each collected point provided the
most information for the 3D recognition task.

The framework was trained using a Reinforcement Learning
(RL) algorithm, with the objective of maximizing two reward
terms: the classification reward term, and the exploration
reward term. The classification reward term provided a positive
reward in the case of successful object classification. The
exploration reward term was introduced to enhance the training
of the sampling strategy. Its goal was to reduce “Missing
Parts”, which occur when the collected point-cloud doesn’t
uniformly cover the target object, and ”Noisy Points”, two
types of disturbances that have been shown to affect state-
of-the-art point cloud classifiers [11]. The exploration term
encouraged the model to explore target objects broadly to
avoid missing parts, while also ensuring as many samplings
as possible on the object, as a sampling that misses the object
results in a noisy point.

In this work, we build upon the original framework and
propose the following novel contributions. i) We provide a
detailed analysis of the contributions of the different reward
terms (exploration and classification) to the overall frame-
work’s performance. ii) We introduce an additional reward
term that estimates the object’s position on the workspace and
further investigate its impact on the classifier’s performance.
iii) We compare the behavior of hard-coded passive sampling
strategies with the active sampling strategies learned by our
framework under both simplified and more realistic scenarios,
including realistic objects and varying object positions in the
workspace. Our framework demonstrates higher classification
accuracy compared to previous active exploration strategies
and similar or better performance than a hard-coded “Ho-
mogeneous Exploration” strategy that uniformly samples the
workspace. It achieves particularly strong classification results
when all reward terms are used together.

This paper starts by reviewing related works in Section
II. Section III describes our approach in details, as well as
the in-house simulation developed to train and benchmark
our models. Section IV provides experimental setup details
and results. Finally, section V concludes and provides future
related research directions.

II. RELATED WORKS

In this section, we begin by surveying the existing landscape
of solutions for object localization and recognition within
dense fixed point clouds. Subsequently, we explore the realm
of tactile perception solutions, which enable the active recov-
ery of sparse 3D information from a given scene. In this con-
text, we also delve into the integration strategies for training
the previously mentioned object recognition and localization
models within the framework of active exploration.

A. Classifying and Locating objects from point clouds

Deep learning architectures proposed for 3D point cloud
classification and segmentation [12] have exploded during the
last decade. The architectures used for point cloud processing
can be mainly divided into 3 categories [12]: graph-based
methods, convolution-based methods and point-wise Multi-
Layer-Perceptrons (MLP) methods.

Graph-based methods represent the point cloud as a graph,
where each node represents a point, and where edges are gen-
erated based on the points neighborhood. Feature learning can
further happen either in the spatial domain, e.g., using graph-
convolutional neural networks [13], [14] or in the spectral
domain [15].

Convolution-based methods apply convolution kernels to the
point clouds based on the spatial distribution of the points
[16]-[18].

The PointNet architecture [19] introduced the notion of
point-wise MLP methods. PointNet processes point-wise fea-
tures independently using MLP and fuses them using a per-
mutation invariant function, e.g., a max-pooling layer. The
permutation invariance guarantees that permuting the points
in the point cloud doesn’t affect the prediction results. Dozens
of architectures were proposed based on PointNet, including
PointNet++ [20], which allows to capture finer geometric
strutures and PointWeb [21] that leverages local neighborhood
context to improve point features. Sun et al. [22] further
proposed the promising Context Awareness (CA) and Self
Attention Context Awareness (SACA) operations, to incorpo-
rate global context information about the point cloud into the
individual points-wise features. While they applied it to point
cloud generation, these operations can be also be applied on
classification models. PointNet classifiers have recently been
proven to be particularly robust to sparse and noisy point
clouds [11] compared to other baselines, which is particularly
interesting for our use case. The sparsest point cloud evaluated
by Taghanaki et al. [11] however still contained 128 points per
object for classification, which exceeds the number of points
considered in our use case.

Neverthless, most of the existing architectures are trained
on pre-collected datasets, which are constructed using either
vision based sensors such as 3D cameras [23]-[25] or lidars
[24], or synthetic data [26]. These datasets tipically contain
thousands of points per object or per scene.

Regarding object localization, existing architectures de-
signed for dense point clouds operate in 2 steps : (1) they
segment sub-parts/objects within the dense point cloud [27]
or utilize mechanisms to focus on relevant smaller regions
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of a large point cloud [28]; and (2) they predict the refined
coordinates of target objects, either through an additional
architecture [27], or dedicated prediction heads [28], [29]. In
our case, as the exploration strategy’s goal is to directly focus
on the target object, we can skip the first step and equip our
architecture with both a classification and a pose estimation
head.

B. Tactile Perception

Tactile Perception [8] is frequently utilized to assist robots
in gaining a better understanding of their surroundings. It
involves interpreting and representing tactile sensory infor-
mation to observe the properties of objects.Luo et al. [§]
categorize tactile sensors in 3 categories: (1) Single-point
contact sensors, that can detect object-sensor contacts and
eventually recover the 3D position of these contact points [30].
(2) High spatial resolution tactile sensors, including tactile
arrays [31], artificial skins [32] and vision-based fingertip
sensors [33], that can be easily embedded on robots grippers.
(3) Large-area tactile sensor [34] that are designed to cover
large, curved body parts of robots. In this study, we simulate
a robust type of single-point contact sensor, similar to the one
illustrated in Fig 1. This sensor allows us to retrieve 3D points,
even in challenging environments, like when examining buried
objects.

Many active tactile perception frameworks have been pro-
posed to effectively explore and characterize an environment
from touch. Gaussian processes were primarily used to model
the explored space and further focus samplings on specific
areas, depending on the uncertainty on the current environment
modeling. Jamali et al. [35] utilized Gaussian processes in
their work with fingertip sensors, and a similar approach was
employed by Kaboli et al. [36] with multi-modal skin sensor to
characterize objects in the target environment. Gaussian Pro-
cesses were also applied to robots to simultaneously explore
tactile information and refine grasp precision when dealing
with unknown objects [37]. More recently, tactile exploration
strategies learned through reinforcement learning (RL) algo-
rithms, as discussed in studies such as [38], [39], have been
proposed. These strategies aim to simultaneously learn an
object exploration strategy and an object classifier, allowing
both tasks to mutually enhance each other during the training
phase. Further RL reward functions were also investigated [10]
to improve the efficiency of the exploration strategy, in order
to ultimately enhance the classifier’s performance.

III. APPROACH

We consider a simulated workspace, where unknown objects
need to be quickly identified and localized, without access to
a camera. The setup is depicted in Fig 2. A poly-articulated
robot is equipped with a laser-based distance sensor that allows
to simulate the acquisition of 3D points in the workspace
from a single-point contact sensor, as shown in the Fig 1. The
robot has sufficient degrees of freedom to acquire 3D points
throughout the workspace. An RL agent is trained to sample
the points that are the most informative for the classification
and pose estimation tasks. The setup is simulated to facilitate

the training and validation of the proposed solution. Two
different sets of objects can be loaded into the simulation: the
realistic and the geometric object sets. Detailed descriptions
of these sets can be found in section . IV-A.

In this section, Part A first explains the simulated setup,
which is similar to the one proposed in [10], but emphasizes
novel features included to enable the evaluation of more real-
istic use cases. Secondly, it discusses the challenges associated
to a deployment on a real setup, similar to the one presented
in Fig 2. Part B explains the framework proposed to jointly
learn active exploration, localization and classification of 3D
objects positioned in the simulated workspace. Part C finally
provides details about the employed reinforcement algorithm
and the specific reward terms designed to train the framework.

A. Active sampling setup
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Fig. 2: Overview of the RL-based approach.

1) Simulated setup: The simulator consists of a 3D envi-
ronment where 3D objects can be loaded at the origin "O”,
as depicted in Fig 3. The Z=0 plane in Fig 3 is equivalent
to the top of the table in Fig 2. To facilitate the evaluation
of the proposed models in more realistic scenarios, where
objects could be randomly placed in the workspace, we can
also introduce random offsets for the objects along both X
and Y axes. The object position offsets along X and Y axis
are respectively denoted as X, and Y,. The objects can be
rotated around Z axis. Note that if objects are both rotated and
shifted with position offsets, the rotation is executed prior to
the positional shift. The objects can further be re-scaled when
they are loaded in the environment. 3D points can be acquired
from the environment by activating the simulated laser sensor.
Therefore, the 3D workspace and the loaded object can be
actively explored by instructing the simulator to perform laser
acquisition sequences. This setup allows active exploration
of the workspace, where a model iteratively controls the
position and orientation of the laser sensor, guided by previous
acquisitions.

The Fig 3 highlights the inputs/outputs and the operation
of the simulator. The simulator works by using input values
that determine the laser’s position and orientation to control
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Fig. 3: Illustration of an object loaded in the simulator from
3 views ((a) Side; (b) Top; (c) 3D).

the laser acquisition system. It then records the 3D point that
the laser reaches under this control.

More formally, the laser sensor can traverse the surface of a
cylinder that encompasses the whole workspace. The diameter
of the cylinder, noted as D, and the position of the laser on the
cylinder, noted P, are both depicted in Fig 3(c). P is defined by
two parameters: Z, € [0, Z,, ..] and o € [0,360], prior one
denotes the height of the probe on the cylinder, and later one
denotes the revolution angle around the cylinder. As depicted
in Fig 3(c), vector uf and wh represent two laser propagation
routes that run parallel to the ground and towards Z axis,
respectively before and after applying revolution angle a.

Moreover, the orientation of the laser is determined by two
variables: ¢ and 6, which represent the “yaw angle” and
the “pitch angle”, respectively. These angles allow the laser
to deviate from its default propagation. ¢ allows to deviate
from default propagation towards Z axis, while 6 allows to
deviate from a propagation parallel to the ground. Concretely,
vector 4 on Fig 3 represents the laser propagation after
successively applying Z,, « and ¢ transformations in this
order. Vector u} represents the laser propagation after applying
0 transformation to 17§

When the simulator receives a query set (Z,, «, @, 0),
it propagates the laser with this configuration until it either
touches the object or reaches the maximum propagation dis-
tance. It then computes the 3D point (X, Y, Z) reached with
this configuration. The computed 3D point is returned, ac-
companied by a boolean value, T, indicating whether the laser
actually made contact with an object or not. In the following
part, we refer to this querying operation as “sampling” 3D
points in the environment.

2) Towards a real setup: Since we began developing the
hardware for our tactile exploration solutions, we’ve gathered
insights to ease the transfer to a real setup. Unlike computer
vision, our tactile strategy focuses on elements common to
both simulation and reality, ignoring environment-specific
backgrounds. The remaining gaps between simulation and
reality stem from measurement errors and robotic hardware
reachability limitations.

A sim-to-real transfer procedure is needed to model mea-
surement error on the real hardware, incorporating uncer-
tainties in 3D position due to factors like robot precision,
repeatability, positioning error, or probe deformation (for solid
mediums). It should also incorporates false positive rates in
touch detection. These uncertainties must be integrated into the
simulator and can be overestimated as a domain randomization
strategy [40]. Uncertainties calibration ensures the simulation
reflects real-world conditions, aiding generalization of trained
models to real setups. For instance, with our real hardware,
the average measurement error was estimated at about 2mm,
peaking at Smm, limiting target objects to sizes greater than
lcm. With our 6-degree-of-freedom robot, balancing param-
eters D and « (Section III-Al, Fig 3) is necessary. Our
hardware restricted « to [—7 /2, 7 /2], restricting to probe only
on surfaces facing the robot, which enabled exploration of up
to approximately 1m wide surfaces.

Controlling the real robot based on the output of the trained
model is straightforward. The parameters P and w represent
the target position and orientation of the tool, respectively,
which can be reached using the robot’s inverse kinematics. The
operation of the contact sensor at this position is managed by a
dedicated controller, which moves the rigid stick until contact
is made or the maximum range is reached.

B. Framework architecture

1) Overview of the proposed framework: We propose a
framework capable of sequentially predicting sampling con-
figurations, so as to progressively construct a 3D point cloud.
Consequently, this set of points will be used to classify
and locate the 3D object in the workspace. The left side
of Fig 4 gives an overview of the proposed framework. It
iteratively predicts new points to sample based on the previ-
ously collected points. At each prediction step, the framework
further predicts the class and location of the object using
the acquired points. This framework is constructed with a
deep neural network that can be trained end-to-end with an
off-Policy RL algorithm. Importantly, the framework receives
immediate rewards after each prediction, and these rewards
are determined based on the classification and localization
performances achieved using the current acquired point cloud.
This way, each predicted sampling must provide the most
relevant information for the classification and localization
tasks. As a result, the exploration strategy is learned to
optimize the success of 3D object recognition and localization.
As illustrated in the left side of Fig 4, the proposed framework
can be divided into 5 parts. (1) An action prediction module,
that predicts the configuration of the next samplings from the
latent representation of the already collected points; (2) a point
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Fig. 4: Overview of the proposed policy network (left) and proposed reward function terms (right).

cloud storage, aiming to archive the 3D points collected by the
samplings accumulated throughout all preceding steps; (3) a
point cloud feature extractor, that encodes the accumulated
point cloud from all the previous steps into a permutation
invariant latent representation; (4) the classifier, that predicts
the class of the object placed in the workspace from the latent
representation of the accumulated point cloud; (5) the pose
estimation module, that predicts the position (X,, Y,) of the
object in the workspace.

2) Predicting series of samplings: As illustrated on Fig 4
(left), it’s important to acknowledge that the framework con-
sistently predicts three samplings simultaneously. This choice
represents a deliberate trade-off between two key considera-
tions. Firstly, the framework receives a reward after each iter-
ation. When a fixed total number of samplings is considered,
predicting fewer samplings at once increases the frequency
of reward reception, thus facilitating reinforcement learning
optimization. However, predicting fewer samplings at once
also leads to higher variation in point cloud densities supplied
to the classifier and pose estimator. This variation can intro-
duce challenges in their optimization processes, potentially
increasing the noise in the associated reward terms. Moreover,
when too few points are added to the point cloud at once, it
may not significantly enhance classification and localization
performance.

At the very beginning of the exploration, the point cloud
storage is filled with zero values, which represents an empty
point cloud. The exploration starts with 3 hard-coded sampling
configurations, used to initialize the point cloud: (Z,,.,, ®o:2,
©o:2, 0o.2). The 3 initial samplings are chosen to cover
uniformly the ranges of o and Z, parameters, with ¢ and
¢ set to 0. This simple initialization provides an overview
of the workspace to the model to start making its first
predictions. After initialization, the point cloud storage is then
updated with the 3 initially sampled points (Xg.2, Yp.2, Zo:2,
To:2). Consequently, for each step k € {3n,n € [1, N]}, the
framework (1) tries to classify and to localize the object; (2)
predicts the next three samplings (Zp, > Qk:k42, Phikt2s

Ok.k+2) and requests them to the simulator, and (3) stores the
three newly acquired points (Xg.x+2, Yi:k+2, Zk:bt2, Thikt2)
in the point cloud storage. A total 3 x N points are sampled
from the object through the execution of IV acquisition steps.
Details of various parameters can be found in the experiments
section.
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Fig. 5: Point cloud feature extraction, classifier, action pre-
diction and Q&Value prediction architectures. Green values
represents feature sizes.

3) Point cloud feature extraction: The point cloud fea-
ture extraction module is described in Fig 5. It is inspired
from the “Per-point Context Aware Representation” proposed
in [39]. The input of the module is the point cloud, that
contains 3 x [N points. As described above, each point has
a dimension of 4, prior 3 values representing the 3D point
reached during the corresponding sampling, the last one is a
boolean indicating if an object was actually touched during
the sampling. These points are independently processed by a
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set of MLPs sharing the same weights, in the PointNet [19]
fashion. In the following, we refer to this operation as “’per-
point-MLP” operation. The features obtained from the first
per-point-MLP are subsequently sent to a “Context Aware”
operation (CA), overlapped by a Residual connection. The
CA was introduced by Sun et al. [22] with the PointGrow
architecture. The CA takes 3 N point cloud features as input,
and outputs 3 x N embeddings. Each of these embeddings
reflect the global context of the previously sampled points
so far. Concretely, for each point in the cloud, CA returns
the average of the features of the points collected previously.
The resulting embeddings are finally sent to an additional per-
point-MLP, followed by a ”Self-Attention Context Awareness”
operation (SACA-A). The SACA-A was also introduced in
the PointGrow [22]. While the CA aggregates features of the
previously collected points with a fixed average pooling, the
SACA-A aggregates them with a weighted average pooling.
The weights assigned to the previously collected points are
predicted by a dedicated learnt sub-module.This sub-module
itself is made of a CA operation overlapped by a Residual
connection, followed by a per-point MLP. For both CA and
SACA-A operations, we generally followed the configuration
of PointGrow [22], except the feature sizes predicted by each
of our MLP layers are set to 1/4 of original feature sizes.
The reason behind this feature size reduction is the sparsity of
the data used in our case. Additionally, we also added batch
normalization after each MLP layer.

4) Classification, action prediction and pose estimation:
The classifier and the action prediction module, also detailed
on Fig 5, respectively infer the object class probabilities
and the next samplings configurations from the current latent
representation of the accumulated point cloud so far. Both
the classifier and the action prediction module follow similar
structures, except for the last layers. They are both made of
two successive per-point-MLP layers, followed by an average
pooling layer that aggregates information from the whole point
cloud. Furthermore, several fully connected layers (FC) are
used to reduce the aggregated features to the desired output
dimensions. The very last layers structures will differ between
classifier and action prediction branches. On one hand, the
classifier predicts deterministic class probabilities through its
softmax layer. On the other hand, the action prediction module
is stochastic [41]. It predicts parameters p and o of a Gaussian
distribution for each component of the sampling configuration,
instead of deterministically predicting their values :

P N(Mtpk ) 0—3%)
O N(H’ek ) O—gk)
Since the proposed framework explores the workspace 3
points by 3 points, the action prediction module predicts 3
sampling configurations at once, resulting in 3 sets of Gaussian
distribution parameters predicted at once.

When the pose estimation module is employed, additional
two sets of Gaussian Distribution parameters are predicted by
the action prediction module, (¢t x,, 0x0) and (y o, Oyo), SO
that :

XOk MN(/LXOWO%(%% Yok V‘N(NY%,U)Q/%) )

2k va\/'(,uszi,)v (1)
075 V‘N(,Uzakaaik)v

By doing so, the object position is modeled as a Gaussian
noise added to the ideal position (X, = 0,Y, = 0).

5) Additional module dedicated to RL training: The lower
section of Fig 5 introduces an additional module dedicated to
predicting Q-values (¢ and g-) and the state-value (v). These
predictions play a crucial role in optimizing our architecture
through the Soft Actor-Critic (SAC) reinforcement learning
algorithm [42], detailed in Section III-C. Here, aj; denotes
predictions encompassing object class, object pose, and next
sampling configuration. Conceptually, the Q-values are trained
to estimate the advantage of these predictions with respect
to the previously gathered point cloud, while the state-value
assesses the quality of this point cloud for classification
and localization tasks. The module’s input is derived from
a dedicated point cloud feature extraction module, which is
structured identically to the one used for classification, action
prediction, and pose estimation, but without weight sharing.

C. RL algorithm and reward function terms

The proposed framework is trained using Soft Actor Critic
(SAC) [42], an off-policy RL algorithm. SAC trains a policy
m, the decision making agent, to take actions a; from current
state s;, so that it maximizes the objective J(7) defined by
Equation 3.

J(r)= E

T AT

T
th(mst,at,sm)+aH<w<-|st>>)] G
t=0

The objective represents the sum of rewards, denoted as
R(st, at, s¢11).that the agent receives for its decision-making
throughout the whole sequence of visited states, spanning from
step 0 to step T. The entropy term, H (7 (-|s;)), is added to
encourage exploration of diverse policy strategies. The dis-
count factor v < 1 is an impatience term, favoring immediate
rewards over late ones. In our use case, the state s; is defined
as the point cloud collected at time ¢. The action a; is made of
3 components (1) the next 3 samplings configurations; (2) the
classification probabilities; and (3) the object pose estimation
(X,,Y,). Equation 4 defines the reward as the weighted sum
of three reward terms, namely, the classification reward r., the
exploration reward 7. and the pose estimation reward r,. The
weights 3, , B, and 3, are part of hyperparameters of the
framework.

R<3t7 Ay, 8t+1) = Brc-ﬁtz + Bre-ré + /BTP.T; )

. represents the classification performances of the framework.
After each acquisition step ¢ € [1, N], the model tries to
classify the object. A successful classification is denoted
as r. = 1, while a failed one results in r. = 0. This
process serves 2 purposes: providing supervision for classifier
training, and ensuring the action prediction module adheres to
a sampling strategy that facilitates the classification.

The function of 7. is to (1) ensure consistency in the
exploration strategy during training, and (2) to enhance the
exploration quality by penalizing missed parts and noisy points
(samplings that missed the object). Formally, consider B; as
the set of three initial points, G; as the set of points that
made contact with the object, and R, as the set of points that
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failed to touch the object. These sets are visually represented
as Blue, Green, and Red points on the right side of Figure 4.
We refer D(A) which is defined by Equation 5, as the sum of
inter-points distances of a set of points A.

[A] -1

D(A) =" de(Ai, Ay), (5)

i=0 j=0

where d. is the euclidean distance, and |A| represents the
number of points in A. On this basis, . is defined by Equation
6. The left part of the equation encourages to sample points
on the object of interest while simultaneously maximizing the
distance between them, thereby broadening the exploration.
¢ D(Gy)
Te = D(Gt U Rt U Bt) + Doutt (6)
However, in certain cases. the samplings that failed to
capture the object could hold relevance for the classification
task. In particular, samplings that almost touched, or made
slight contact with the object, could be valuable in outlining
its boundaries. 7. is thus enhanced with an additional term,
namely D,,;, that gives credit to missed samplings regarding
the reward they would obtain if they reached the closest point
in (Gy U By). Noteworthy that the reward is normalized by
their distance to this closest point. Formally, each sampling is
represented as a line segment, denoted as (dj,), characterized
by (P, 174,3 ). Here, 1742 represents the direction vector of the
sampling line, and P represents a point on the this line, as
illustrated in Fig 3. The distance d.. between a sampling (dy)
and a point A is defined by Equation 7.

— N

_ [[PAA g

= @)
[|uagll

de(A, (dr))

Therefore, the closest point to a sampling (dy) in (G;UB),
denoted as A, ((dg)), is defined by Equation 8.

Apmin((dg)) = argmin (d.(4, (di)) (8)

AE(GtUBt)

Doy, is finally defined by Equation 9, where Mp, is the
set of missed samplings that resulted in R;.

> X

(di)eMRt AjE(GtUBt)

de (Amm((di))? Aj)
Finally, as defined on the right side of Fig 4, , quantifies

the Root Mean Square Error (RMSE) between the predicted
and the actual pose of the object within the workspace.

Doutt = (9)

IV. EXPERIMENTS

The experiments are divided into 6 parts. Part A describes
the general experimental settings, common to all the experi-
ments conducted. Part B recalls the main results of our prelim-
inary work [10] and points out the limits of its experimental
validations. Part C and D bring complementary studies on
the initial results [10]. Part E investigates the usability of the
framework in more realistic scenarios. Part F evaluates the
novel pose estimator performances and its contributions to the
overall framework.

A. Experimental settings

In our preliminary work [10], we built a dataset with four
3D geometric objects to conduct experiments. In this study,
we have extended this dataset with a second set of “realistic
objects”. These objects are characterized by greater complexity
and a closer resemblance to each other, thus challenging the
classification task even further. The geometric and realistic sets
are respectively depicted in Fig 6 and Fig 7.

Fig. 6: Geometric objects :
Triangle.

Sphere, Quarter-round, Cube and

Fig. 7: Realistic objects : Gearwheel variations

For all the following experiments, during the framework
training, the objects are randomly chosen among the used
set, and placed with a random rotation R, around the Z
axis, which is illustrated in Fig 3. All experiments consider
N = 4 iterative acquisition steps, leading to a total of 12
points sampled at the end of the exploration sequence, which
is similar to [39]. The proposed RL-based framework is trained
using the stable-baselines-1 [43] SAC implementation with
default hyperparameters except for the batch size, which was
set to 512. In particular, v = 0.99, learning-rate=0.0003, and
a="auto’, which means it is learnt during training. All RL-
based trainings ran 600k steps, and were evaluated by com-
puting the accuracy of the best model obtained during training
on 1400 objects per class. Results corresponding to our
framework are denoted as MTR-RL in result tables. It stands
for Multi-Term-Reward Reinforcement Learning. Additionally,
Table I details the simulation configuration and action ranges
used in all the experiments. Finally, in experiments involving
random object scaling, the loaded objects are rescaled by a
randomly selected factor within the range of [0.8,1].

We compared our framework to both active-sampling-based
and passive-sampling-based exploration methods for 3D object
recognition. In the case of the active-sampling strategies, we
compare to the state-of-the-art LSTM-based tactile exploration
model [38], which we adapted to our use case. We denote it
as "LSTM” model. For the passive-sampling strategies, we
feed point clouds into a state-of-the-art classifier. These point
clouds are sampled from the simulator using hard-coded sam-
pling strategies. We employed two passive sampling strategies
for the comparisons: (1) ”Rand. Explo + PointNet”, in which
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TABLE I: Simulation parameters and action ranges (depicted
in Fig 3). “Geom.” and “Real.” indicate parameter values
respectively for the Geometric and the Realistic object sets.

min  max

Zp (Geom.) 1 100
Zp (Real.) 0 50

e 0°  360°
@) -30° 30°
0 -20° 20°
D 100mm
Probe range 200mm

point clouds are randomly sampled from the simulator, and (2)
”Hom. Explo + PointNet”, in which points are homogeneously
sampled on the 3D object. For the homogeneous sampling, 6
and ¢ were set to 0, and Z, and o were uniformly chosen
between their minimum and maximum values. The idea of the
homogeneous sampling is to provide an exploration strategy
that can scan the whole object to avoid “missing parts”,
known to affect point cloud classifiers. It is worth noting
that the homogeneous sampling is an ideal scenario, which
is possible in simulation. This is because the position of the
object is known in advance, and the object is well positioned
to facilitate such procedure, given the flexibility of the robotic
arm movement around the object. On the contrary, our RL-
based framework can be trained from scratch for any kind of
scenario, adapting and learning an optimal exploration strategy
tailored to each specific situation.

The proposed active-sampling based framework classifies
the object after each 3 collected points, and for a total of 12
points. It means that the classification is successively made
from 3, 6, 9, and 12 points. For fair comparisons, we also
evaluated the passive-sampling strategies on 3, 6, 9 and 12
points densities. Concretely, we used the hard-coded sampling
strategies to collect a point cloud dataset for each density and
trained independent PointNet models [19] on each of these.
PointNet has been chosen as it has been proven to be robust
to sparse and noisy point clouds [11].

In contrast, our framework only uses one single classifier for
all point cloud densities (3, 6, 9, and 12 points). Moreover,
the classification utilizes a shared latent representation that
is common to the classifier, the pose estimation head, and
the action prediction head. This is not fair to compare our
framework’s classification results to the independent PointNet
models trained for “Rand. Explo + PointNet” and “Hom.
Explo + PointNet” experiments, since these models are density
specific and fully dedicated to the classification task. We thus
conducted further experiments to fairly compare the quality of
the exploration strategy learned by our proposed framework.
Similarly to passive models evaluation, we collected a point
cloud dataset for each density, but using our trained active-
sampling framework, and further trained independent PointNet
models on each of these datasets. In experiments results, this
scenario coupling our framework with independent PointNet
classifiers is denoted "MTR-RL + PointNet”.

Every PointNet models, for all "Rand. Explo + PointNet”,

“Hom. Explo + PointNet” and “MTR-RL + PointNet” ap-
proaches, were trained on 22000 training point clouds balanced
between the 4 classes, and on 80 epochs. All PointNet models
were also evaluated by computing the accuracy of the best
version obtained during training over 1400 objects per class.

B. Comparison to prior works under ideal settings

In our preliminary study [10], the proposed framework
was evaluated on an ideal setup, where the position of the
objects was frozen to (X, = 0,Y, = 0), without rescaling
and using only the geometric set. The resulting accuracies
with both passive and active sampling-based approaches, after
3, 6, 9 and 12 points samplings, are summarized in Table
II. Our framework (MTR-RL) outperforms LSTM model at
each probe. It also outperforms the "Hom. Explo + PointNet”
approach when only 6 points are sampled, and exhibits similar,
yet slightly worse performances with 9 and 12 sampled
points. However, training PointNet classifiers with point clouds
sampled by our framework (MTR-RL + PointNet) allows to
get better overall performances than training them with point
clouds sampled using the homogeneous exploration “Hom.
Explo + PointNet”. The performance gap especially increases
when decreasing the number of sampled points. Therefore,
besides being trained from scratch, our framework allows to
learn a more efficient exploration strategy than the hard-coded
homogeneous version. Note that performances after the 3 first
sampled points are not comparable, since these 3 initial points
are pre-defined rather than learned in our framework.

TABLE II: Accuracies of point cloud classifiers on the geo-
metric set, with frozen objects positions (X, = 0,Y, = 0),
without random object scaling, with different exploration
approaches. MTR-RL models are trained using Classification
and Exploration rewards (5.=1, 3.=1 and (3,=0)

Sampled points

3 6 9 12

Passive sampling methods

Rand. Explo + PointNet 5848 7152 78.68 83.20
Hom. Explo + PointNet 70.29 86.48 100 100
Active sampling methods

LSTM 56.31 81.10 87.07 90.30
MTR-RL 90.52 98.85 99.92 99.95
MTR-RL + PointNet 90.67 99.44 100 100

The Figure 8 shows points collected by our trained active
sampling framework, projected on the 3D objects they were
sampled from. On easily distinguishable shapes (cube, sphere),
our model chooses to broadly explore the surface of the object,
as intended, thanks to the exploration term incorporated into
the proposed reward. However, on similar objects (Quarter-
Round, Triangle), our model seems to seek for key areas on the
objects, that would allow the classifier to discriminate them.
For instance, the difference between the Quarter-Round and
the Triangle comes from the curvature of the upper surface,
area that the model seems to mainly focus on (areas 17,
”2” and ”3” on Figure 8). Moreover, the missed point in
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area ’4” seems to come from a sampling that brushed the
upper surface of the triangle while searching for a potential
”rounded surface”, which is in line with the D,,; reward term
expectations.

1

i

e O!
\_\ i
\ '
1

I

1

1

N
\\.\,Z«"
Quarter-round Triangle Cube Sphere

Similar classes Dissimilar classes

Fig. 8: Visualisation of 3D points sampled by our trained agent
(red dots), projected on corresponding meshes. The agent was
trained using both classification and full exploration reward
and with no object positioning uncertainty.

The aforementioned results show that the proposed frame-
work is able to learn an efficient exploration strategy but
doesn’t explicitly analyze which of its components contribute
the most to its success. Moreover, such framework is of
greatest interest in use cases where one needs to learn to
discriminate new objects quickly without having to label
large-scale datasets each time. With the proposed framework,
only 3D models of the objects of interest are needed. The
framework will learn to focus on relevant areas of the object
and forget noisy information from rest of the workspace, which
makes it fully trainable in simulation without sim-to-real gap,
as long as the object positioning can be known. However,
on a real case scenario, one can not expect to know the
exact position of the object in the workspace. Therefore, the
performances of the proposed framework should be evaluated
under varying object positioning. Moreover, in such realistic
scenario, it is interesting to investigate whether our framework
could be extended with a pose estimation head, that could
predict the actual position of the object on the workspace.
Finally, an evaluation on realistic and more complex objects
(e.g., the objects from the new set depicted in Figure 7) is
needed to validate the usability of the framework on realistic
scenarios. All the aforementioned questionings are addressed
in the following sections.

C. Reward Terms Contributions

Exploration rewards are aimed to give supervision to the
exploration task by rewarding the model i) when it touches
the object, ii)) when it broadly explores the object, iii) if a
missed sampling brushed the object. Fixing the position of
the 3D object at the origin facilitates the exploration task,
as the sampling hardware only needs to turn around it and
to target Z axis to ensure a broad exploration that always
reaches the object. On the contrary, a more realistic scenario
where the position of the object is unknown, hardens the
exploration task by i) favoring missed samplings and ii) adding
uncertainties on the explored object. Intuitively, the second
scenario gives more credit to the exploration rewards, as
they help to robustify the exploration strategy learning. In
this section, we experimentally study the contribution of the
different reward terms under varying amount of uncertainty on

the position of the object, relatively to its fixed position at the
origin (X, =0,Y, =0).

The Figure 9 shows the training curves of our proposed
model, trained with classification reward only, namely ’Class
Rwd’, and trained with both classification and exploration
rewards, namely ’Class + Touch Rwd’. Training curves with
varying levels of uncertainty on the objects positions are re-
ported. ”0Omm noise” corresponds to the experimental settings
in section IV-B, where the objects are always placed at the
origin (X, = 0,Y, = 0). On the extreme opposite, ~40mm
noise” means that the object is randomly placed with devia-
tions to the origin, uniformly chosen in [—40mm, +40mm)],
on both X and Y axis.

Strikingly, the training curves with Omm positioning noise
appear to be really unstable. We emit the hypothesis that it
is due to the choice of Soft Actor Critic as underlying RL
Algorithm, which is an off-policy RL algorithm, known for
its high sample-efficiency yet high instability [44]. Moreover,
with Omm position uncertainty, it is easier for the classifier
to overfit on a given point cloud distribution corresponding
to a specific exploration strategy. If the exploration strategy
changes because of the RL algorithm unstability, the classifier
will not be able to generalize to the corresponding new point
cloud distribution. Using the exploration reward seems to
reduce the accuracy drops during training with Omm position
uncertainty probably by ensuring a more consistent exploration
strategy. On the contrary, with higher levels of position un-
certainty, the trainings are slightly more unstable with the
exploration reward, yet overall quite stable compared to the
Omm position uncertainty scenario, which tends to confirm
that the uncertainty on the objects positions acts like a data
augmentation strategy for the classifier.

More generally, the performance of the framework tends to
decrease while increasing the amount of noise on the objects
positions. However, as expected, the addition of the explo-
ration term to the reward allows to maintain performances
on par with the Omm noise scenario, until 30mm position
noise, and severely limits the accuracy drop with 40mm noise,
compared to the *Class Rwd’ version.

D. Passive vs Active acquisition methods under noisy object
positioning

The Table III allows to fairly compare the exploration
strategy learned by our framework with the hard-coded ho-
mogeneous sampling strategy, under varying levels of noise
on the object position, on the geometric object set.

The exploration strategy allows to outreach 90% accuracy
from only 6 points (2 acquisition steps), and outperforms the
homogeneous exploration strategy on the sparser point cloud
densities, for all position uncertainty levels. However, when
denser point cloud are considered (12 points densities), the
homogeneous exploration strategy gives better classification
results.

However, after sampling 12 points, all results are close to
100% accuracy, regardless of the object position noise level
considered. To be fairly representative of a realistic use case,
more realistic objects needs to be considered in the models
evaluation.
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Fig. 9: Training curves of the proposed model without ex-
ploration reward (left column) and with exploration reward
(right column) under varying uncertainty level on the object
positioning (Noise). Training is done on the geometric set,
without random objects scaling.

E. Evaluation of the framework on realistic use case

Three levers were used to close the gap between the
simulated scenario and a real-life industrial scenario : i) the
uncertainty on the object positioning on the workspace; ii) the
realism and the complexity of the considered objects and iii)
the similarity between the objects to classify.

In this section, the realistic set of objects (Figure 7) was
used as it contains 3D models of realistic and more complex
objects Moreover, the four available objects share similar
shapes, since they all represent variations of a gearwheel. To
increase the difficulty of the recognition task, the objects can
also be randomly rescaled when placed on the workspace,

TABLE III: Accuracies of point cloud classifiers with Hom.
Explo and MTR-RL exploration strategies, under varying lev-
els of position uncertainty (pos. noise), on the set of geometric
objects. MTR-RL models are trained using Classification and
Exploration rewards (8.=1, B.=1 and (3,=0).

Sampled points

3 6 9 12

Hom. Explo + PointNet

0 mm pos. noise 70.29 86.48 100 100
10 mm pos. noise 58.48 86.46 98.55 100
20 mm pos. noise 5491 83.02 9745 100
30 mm pos. noise 54.69 80.51 96.02 99.90
40 mm pos. noise 5439 77.51 9232 99.81
MTR-RL + PointNet

0 mm pos. noise 90.67 9944 100 100
10 mm pos. noise 87.85 98.36 99.00 99.24
20 mm pos. noise 80.62 98.68 99.48 99.65
30 mm pos. noise 7429  96.02 98.36 98.64
40 mm pos. noise 68.5 91.56 9528 96.65

which prevents the models to bias the classification on the
objects sizes, and therefore forces them to seek for key
semantic differences on the objects. Finally, uncertainty can
also be added on the position of the object, as done in section
IV-D on geometric objects. In this section, only extreme
uncertainties are considered (Omm and 40mm).

TABLE IV: Accuracies of point cloud classifiers with differ-
ent exploration approaches, on realistic objects, with 40mm
position uncertainty, and random rescaling (Hardest Scenario).
MTR-RL models are trained using Classification, Exploration
and Localization rewards (3.=1, 8.=0.5 and §,=1).

Sampled points

3 6 9 12
Hom. Explo + PointNet 56.27 80.38 80.3571 80.04
MTR-RL 46.0 71.66 7252 7252
MTR-RL + PointNet 56.92 7837  80.63  82.05

The Table IV shows the performances of "Hom. Explo +
PointNet”, "MTR-RL” and "MTR-RL + PointNet” approaches
under the most difficult scenario, namely, on realistic objects,
with 40mm position uncertainty, and with random rescaling.
The“MTR-RL + PointNet” approach shows the best results
after 9 and 12 samplings, but is outperformed by the "Hom.
Explo + PointNet” approach after 6 samplings. The choice of
the hyperparameter 3.=0.5 is justified from Tables V and VI.

The Table V summarizes the performances of "Hom. Ex-
plo + PointNet”, "MTR-RL” and "MTR-RL + PointNet”
approaches with different combinations of the random object
scaling and position uncertainty disturbances. The MTR-RL
frameworks were trained with the hyperparameter settings
formerly used on the geometric set (5.=1, B.=1 and S,=0).
First, we can notice that both "Homogeneous + PointNet”
and "MTR-RL + PointNet” approaches show surprisingly
high accuracies on the realistic set (nearing 100%), apart
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from the hardest scenario where both position uncertainty and
object rescaling are applied together (Scale, 40mm). Secondly,
with both position uncertainty and object rescaling applied
together, our framework (both "MTR-RL” and "MTR-RL +
PointNet” approaches) shows significantly worse results than
Hom. Explo + PointNet. However, by further tracking reward
terms evolution during training, we noticed that the hardest
scenario, “Scale, 40mm”, increased the classification task
difficulty way more than the exploration task, as the framework
was still able to quickly increase r., while having difficulty
to improve r.. This resulted in an imbalance between r. and
r¢, where r. became negligible. To compensate this effect, we
tried to change the reward weights hyperparameters, which,
by default, were set to [5.=8.=1. (The location reward is
voluntarily ignored in the first place, which means 3, = 0). We
especially played with S, value to decrease 7. preponderance.
Table VI reports the evaluation results of our framework with
Be=0, 8,=0.5 and SB.=1 (3 values uniformly chosen between
0 and 1) on the ”Scale, 40mm” scenario, while keeping S.=1
and 3,=0.

The performances of our framework (MTR-RL + PointNet)
varies from 66% to 79% accuracy (after 12 samplings) by only
changing (. hyperparameter. Moreover, we can notice that the
best performing end-to-end model (MTR-RL) doesn’t always
provide the best exploration strategy for the PointNet model.
As a matter of fact, the end-to-end MTR-RL model performs
better with 5.=0 (classification reward only), while the ex-
ploration strategy learned by the model with 5.=0.5 allows
PointNet to achieve top accuracies, matching Homogeneous +
PointNet accuracy on this scenario (Table V, ”Scale, 40mm”)

TABLE V: Accuracies of point cloud classifiers on realistic
objects, processing point clouds from different exploration
approaches. MTR-RL models are trained using Classification
and Exploration rewards (3.=1, B.=1 and §3,=0)

Sampled points

3 6 9 12
Hom. Explo + PointNet
No scale, Omm 100 100 100 100
Scale, Omm 96.28 99.44 99.39 99.27
No scale, 40mm 65.55 99.72 99.8 99.81
Scale, 40mm 56.27 80.38 80.3571 80.04
MTR-RL + PointNet
No scale, Omm 100 99.98 100 100
Scale, Omm 97.19  98.27 .9896 99.29
No scale, 40mm 62.97 98.62 98.42 98.47
Scale, 40mm 56.45 65.83 65.64 66.31
MTR-RL
No scale, Omm 100 100 100 100
Scale, Omm 96.33 96.91 96.84 97.29
No scale, 40mm 56.69 95.49 96.85 96.2
Scale, 40mm 46.8 51.38 52.16 52.04

The overall best performances of our framework highlighted
in Table IV are further obtained by adding the localization re-
ward term during the model training (3,=1). The contribution

TABLE VI: Impact of 8. hyperparameter choice on MTR-RL
and MTR-RL+PointNet classification accuracies, on the set of
realistic objects, with 40mm position uncertainty and applied
random rescaling . (8.=1, and 3,=0)

Sampled points

3 6 9 12

MTR-RL + PointNet

Be=0 (classif only) 56.77 7439 74.05 75.48
B=0.5 56.34  79.11 79.8 79.8
Be=1 56.45 65.83 65.64 66.31
MTR-RL

Be=0 (classif only) 48.62 72.133 73.06 73.42
Be=0.5 46.0 71.66 7252 7252
Be=1 46.8 51.38 52.16 52.04

of this reward term is detailed in the next section.

F. Pose estimator performances and contribution to the over-
all framework

TABLE VII: Contribution of the pose estimation reward on
the classification performances of realistic objects, with 40mm
range of position offset and applied random rescaling . (8.=1,
and (3.=0.5)

Sampled points

3 6 9 12
MTR-RL
Pos. est. (B,=1) 4651 7215 7473 7575
No Pos. est. (3,=0) 460 71.66 72.52 72.52
MTR-RL + PointNet
Pos. est. (B,=1) 56.92 7837 80.63 82.05
No Pos. est. (3,=0) 5634 79.11 79.8  79.8

In this section, we investigate the value of adding the
pose estimation term to the reinforcement learning reward.
The hardest scenario is considered, that is, 40mm position
uncertainty with object rescaling. As demonstrated in section
IV-E, It has shown significant potential for improvement.

The Table VII compares the classification accuracy of our
framework with and without pose estimation reward. The pose
estimation reward gives more supervision during training and
allows the framework to learn to figure out where the object is
positioned, which results in an improvement on the accuracy
of the framework, despite providing no additional information
to the classification task.

Moreover, the pose estimation head, trained using the pose
estimation reward, allows to estimate the position of the object
on the workspace with 11mm, 10mm, 9mm and 10mm Root
Mean Square Error, respectively after 3, 6, 9 and 12 points
sampled.

V. CONCLUSION

In this work, we proposed a framework for extremely sparse
point cloud acquisition, classification and localization. The
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main idea was to learn the three components together using
a reinforcement learning algorithm, supervised by a 3-term
reward, each term accounting for a respective component.
Our framework learns an exploration strategy by itself, and
doesn’t need any further coding effort when considering new
environments or new objects to recognize. Our solution out-
performs similar learned exploration strategies adapted to our
use case. Moreover, training point cloud classifiers on point
clouds collected with our trained framework leads to better
results than training them on randomly collected point clouds.
It even leads to similar or better classification performances
than training them on point clouds homogeneously sampled on
the object of interest, while such hard-coded sampling strategy
is not always possible, contrary to our learnt strategy. This
highlighted the sensibility of point cloud classifiers to the sam-
pling strategy when considering extremely sparse point clouds.
We validated our solution both on a set of geometric shapes
and on a set of realistic objects, with varying uncertainty on
the object position on the workspace, and with random objects
rescaling. We noticed significant classification accuracy drops
when considering realistic objects with both object position
uncertainty and random object rescaling. However, we further
noticed that in this scenario, i) choosing the weights that
balance the exploration and classification reward terms signifi-
cantly affected classification performance; and ii) the addition
of the pose estimation reward allowed to slightly increase the
classification accuracy. In such a challenging scenario, we
would encourage considering all exploration, classification,
and pose estimation reward terms, but balancing them with
weights to be determined through a hyperparameter search
guided by the final performance of state-of-the-art point cloud
classifiers used.

VI. FUTURE WORKS

The pose estimation reward was mainly used here to in-
crease the final classification performances by helping the
framework in learning to localize the objects. Few efforts have
actually been spent on the actual pose estimation architecture.

Additionally, the investigation of sim-to-real transfer on
our in-house robotic setup is a crucial area for future work.
Specifically, we plan to examine how to incorporate the
estimated measurement uncertainty of the real system into the
simulation and study the impact of this additional noise during
training on the performance in the real setup.

Evaluating the system in real life presents its own chal-
lenges, as acquiring a single evaluation example can take
several minutes due to the time required for object positioning
and exploration. Automating the evaluation involves a future
plan with a two-robot setup: one for object positioning and
the other for tactile exploration. Moreover, while our ultimate
tactile exploration use case will involve a rigid stick-based
contact sensor, we also plan to integrate a laser-based sensor
into our hardware setup to prevent damage to the evaluation
objects during repeated assessments.
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