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Design of Non-Orthogonal Beamspace Multiple
Access for Cellular Internet-of-Things

Rundong Jia, Xiaoming Chen, Caijun Zhong, Derrick Wing Kwan Ng, Hai Lin, and Zhaoyang Zhang

Abstract—In this paper, we study the problem of massive
connections over limited radio spectrum for the cellular Internet-
of-Things (IoT) in the fifth-generation (5G) wireless network.
To address the challenging issues associated with channel state
information (CSI) acquisition and beam design in the con-
text of massive connections, we propose a new non-orthogonal
beamspace multiple access framework. In particular, the user
equipments (UEs) are non-orthogonal not only in the temporal-
frequency domain, but also in the beam domain. We analyze the
performance of the proposed non-orthogonal beamspace multiple
access scheme, and derive an upper bound on the weighted
sum rate in terms of channel conditions and system parameters.
For further improving the performance, we propose three non-
orthogonal transmit beam construction algorithms with different
beamspace resolutions. Finally, extensive simulation results show
that substantial performance gain can be obtained by the
proposed non-orthogonal beamspace multiple access scheme over
the baseline ones.

Index Terms—Cellular IoT, massive connections, beamspace
multiple access, NOMA, massive MIMO

I. INTRODUCTION

The fast development of the Internet-of-Things (IoT) has
triggered an exponential growth in the number of IoT devices
to provide various emerging applications, e.g., metropolitan
time-frequency perception, virtual navigation/virtual manage-
ment, smart traffic, and environmental monitoring. Hence, as
the most advanced wireless network, the fifth-generation (5G)
wireless network is required to provide wireless access for a
large number of IoT applications with certain quality of service
(QoS) guarantee [1]. In this context, the cellular IoT has been
widely regarded as a basic function of the 5G wireless network
[2], [3].

Compared to the traditional cellular communications, the
cellular IoT has several new characteristics, such as a massive
number of access devices, a variety of application services,
scarce wireless resources, and capability-constrained wireless
devices. In other words, it is imperative to design a low-
complexity massive access scheme for simple IoT devices
with limited wireless resources. It is well known that con-
ventional orthogonal multiple access (OMA) techniques, e.g.,
time division multiple access (TDMA) and frequency division
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multiple access (FDMA), exclusively allocate an orthogonal
time-frequency resource block to a unique user equipment
(UE). Although OMA techniques simplify the design of signal
processing, they lead to a low spectral efficiency. As a result,
it is difficult for OMA techniques to support massive access
over limited radio spectrum. To this end, the non-orthogonal
multiple access (NOMA) technique has been proposed as a
viable solution to the cellular IoT [4]-[6]. In general, the
NOMA technique employs superposition coding to realize
massive spectrum sharing [7], [8], and then utilizes successive
interference cancellation (SIC) to mitigate the co-channel
interference caused by non-orthogonal transmission [9], [10].
However, in the cellular IoT, the computational complexity of
SIC that is proportional to the number of access devices might
be unbearable for the capability-constrained IoT devices. To
address this issue, the access devices are usually partitioned
into several clusters, and SIC is only performed with respect
to interference caused by the devices in the same cluster
[11], [12]. However, user clustering leads to extra inter-cluster
interference since SIC is performed only within a cluster.
Therefore, the cluster-based NOMA should be deployed by
combining with effective interference cancellation techniques.
Considering multiple-antenna is a fundamental characteristic
of 5G wireless networks, it is natural to apply spatial beam-
forming to mitigate the co-channel interference caused by
NOMA [13]. In particular, by exploiting the spatial degrees of
freedom offered by the multiple-antenna systems, it is likely
to jointly perform user clustering and interference cancellation
in the spatial domain. As a simple example, the authors in
[14] grouped the access devices into several clusters in the
spatial domain, and the devices in a cluster share the same
transmit beam. Then, spatial beamforming is performed to
cancel the inter-cluster interference, and the SIC is adopted
to eliminated the intra-cluster interference. In fact, the spatial
degrees of freedom of multiple-antenna systems, i.e., the num-
ber of antennas equipped at the base station (BS), determines
the capability of interference supression and the maximum
number of supportable devices. In order to further improve the
performance of massive access, the massive MIMO technique
was applied to NOMA systems by deploying a large-scale
antenna array at the BS [15], [16].

To exploit the benefits brought by the spatial degrees of
freedom for user clustering and interference cancellation in
the cellular IoT, the multiple-antenna BS should have certain
channel state information (CSI) about the access devices. In
the ideal case, the BS can acquire full CSI by some means,
and thus it is possible to perform optimal user clustering
and cancel the inter-cluster interference effectively [17], [18].
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However, it is not a trivial task to obtain CSI in multiple-
antenna NOMA systems, since the BS is at the transmit side
of the downlink channels. In practical systems, the CSI is
usually obtained at the BS through quantized feedback in
FDD mode [19] and channel estimation in TDD mode [20].
However, in the scenario of massive access for the cellular
IoT, the resources required for quantized feedback or channel
estimation are prohibitive. To this end, a non-orthogonal
channel estimation method for CSI acquisition was proposed
in [21] to largely alleviate the burden in resource consumption.
Yet, due to the co-channel interference, the non-orthogonal
channel estimation method leads to a severe reduction of the
CSI accuracy compared to the orthogonal one. Especially,
the simple user clustering method based on channel spatial
correlation is unfeasible and the commonly used interference
cancellation method based on zero-forcing beamforming is
inefficient in the case of low-precision CSI. As mentioned
above, there is an emerging need to design a low-complexity
massive access scheme for the cellular IoT. Recently, a beam
division multiple access (BDMA) scheme was proposed for
multiuser massive MIMO systems [22], [23]. Specifically, the
users are simultaneously served by asymptotically orthogonal
beams, which are constructed only based on the channel
coupling matrix (namely channel correlation matrix). The
orthogonal beams can effectively decrease the co-channel
interference, and thus improve the overall performance. More
importantly, channel coupling matrix varies over a relatively
long period, and can be constructed with some slow time-
varying parameters, e.g., angle of arrival (AoA) [24], [25].
Hence, BDMA is regarded as a simple and feasible multiple
access scheme. Furthermore, if a beam of BDMA serves
multiple users, namely non-orthogonal BDMA, the system
is capable of supporting massive connections [26]. In other
words, the clusters in the NOMA systems are separated in the
beamspace, which also simplifies the design of user clustering
[27].

In the beamspace MIMO-NOMA systems, a beam is ex-
ploited to serve multiple devices in the same cluster simulta-
neously. Due to the random locations of the devices, a beam
is unable to perfectly align all devices’ channels. Therefore,
although the beams are orthogonal, there still exists severe
inter-cluster interference. In fact, orthogonal beamforming is
generally suboptimal and redesigning the beamspace schemes
is desired to improve the overall performance. In [28], the
authors proposed to adjust the beam direction by padding
zeros in the beam domain, such that the beam can align the
equivalent channel spanned by the devices. However, padding
zeros is an integer programming problem, which is difficult
to provide a general solution. To this end, we provide a
new non-orthogonal beamspace multiple access framework
for massive connections in the cellular IoT. In particular, the
access devices are non-orthogonal not only in the temporary-
frequency domain, but also in the beam domain. The non-
orthogonal transmit beams can be directly constructed from the
originally orthogonal base beams through linear combinations.
The contributions of this paper are as follows:

1) This paper designs a comprehensive non-orthogonal

beamspace multiple access scheme for the cellular IoT
with massive connections, including CSI acquisition, user
clustering, superposition coding, and SIC.

2) This paper analyzes the performance of the proposed
non-orthogonal beamspace multiple access scheme and
derives a closed-form expression for an upper bound on
the weighted sum rate in terms of system parameters and
channel conditions.

3) This paper optimizes the proposed non-orthogonal
beamspace multiple access scheme, and presents three
beam design algorithms with different degrees of freedom
in the beamspace.

The rest of this paper is organized as follows: Section II
gives a brief introduction of the cellular IoT and presents a
massive access framework in the beamspace. Section III first
analyzes the weighted sum rate of the proposed massive access
scheme, and then proposes three non-orthogonal transmit
beams design algorithms. Next, Section IV provides extensive
simulation results to validate the effectiveness of the proposed
scheme. Finally, Section V concludes the paper.

Notations: We use bold upper (lower) letters to denote
matrices (column vectors), (·)H to denote conjugate transpose,
E[·] to denote expectation, var(·) to denote the variance, ‖ · ‖
to denote the L2-norm of a vector, ⊗ to denote the Kronecker
product, vec(·) to denote the vectorization of a matrix, | · | to
denote the absolute value, and [x]+ = max[x, 0].

II. SYSTEM MODEL

Fig. 1. A massive access model for the cellular IoT in the beamspace.

We consider a single-cell cellular IoT system as shown in
Fig. 11, where a base station (BS) equipped with Nt antennas
broadcasts messages to K IoT user equipments (UEs). Due
to the size limitation, it is assumed that the IoT UEs have a
single antenna each. Note that in the 5G cellular IoT, both
the number of BS antennas Nt and the number of UEs K are
very large [1]. To support massive access over limited radio
spectrum, we propose a non-orthogonal beamspace multiple
access framework. In what follows, we introduce the key steps

1The proposed non-orthogonal beamspace multiple access scheme can be
easily extended to the multiple-cell scenario.
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of non-orthogonal beamspace multiple access framework in
detail.

A. CSI Acquisition

CSI availability at the BS is the precondition of designing
the massive access scheme. However, in the context of massive
connections, instantaneous CSI is hardly obtained due to the
limited resources. To address this issue, we propose the use
of long-term channel parameters, namely statistical CSI, to
design the massive access scheme. We use hk to denote the
Nt-dimensional channel vector from the BS to the kth UE.
It is assumed that the signal sent from the BS is scattered
by a cluster and then arrives at the kth UE through L
propagation paths, where the lth path associated to the kth
UE has a propagation distance dk,l, a propagation attenuation
ak,l, and an angle of departure (AoD) θk,l. Then, according
to the electromagnetic wave propagation theory [25], [29], the
channel vector hk can be expressed as

hk =

L∑
l=1

ak,le
−j2πdk,l/λce(θk,l), (1)

where λc is the carrier wavelength, and e(θk,l) is the transmit
antenna array response vector. For a typical uniform linear
array (ULA), e(θk,l) is given by

e(θk,l) =
1√
Nt

[
1, · · · , e−j2π(i−1)% sin(θk,l), · · · ,

e−j2π(Nt−1)% sin(θk,l)
]T
,∀i ∈ [1, Nt], (2)

where % is the normalized array spacing with respect to
the carrier wavelength. Then, we construct these trans-
mit antenna array response vectors as a matrix Uk =
[e(φk,1), e(φk,2), · · · , e(φk,Nt

)] ∈ CNt×Nt . In this case, the
channel vector hk can be further transformed as

hk =

L∑
l=1

ak,le
−j2πdk,l/λce(θk,l)

=

Nt∑
i=1

e(φk,i)
∑
l∈Li

ak,le
−j2πdk,l/λc

= UkΛ
1
2

k h̄k, (3)

where Li is the set of all paths whose angles are equal to
the angle φk,i, and Λk = diag{ηk,1, · · · , ηk,Nt

} is a diagonal
matrix with ηk,i as the ith diagonal element being the gain in
the angle φk,i. In general, ηk,i is determined by the sum of
the propagation attenuation of multiple paths, whose angles
are equal to the angle φk,i. Moreover, h̄k is a Nt-dimensional
complex Gaussian vector with zero mean and unit variance.

In the considered 5G cellular IoT, since the number of BS
antennas is very large, we have the following lemma [30],
[31]:

Lemma 1: If the number of BS antennas is sufficiently large,
the beamspace matrix Uk is asymptotically identical for all the
UEs, i,e.,

Uk → U,∀k, asNt →∞, (4)

where the ith column of U, namely ui, can be expressed as
e(arcsin( 2i

Nt
−1)), which means that the AoDs of all paths are

sampled at some fixed angles. If the number of BS antennas is
sufficiently large, the error caused by angle sampling can be
ignored. Specifically, assuming the BS has Nt antennas, the
maximum angle sampling error is π

2Nt
and the average relative

error is 1
4Nt

. For example, when the number of BS antennas
is Nt = 64, the average relative error is 0.39%, which is
negligible.

Furthermore, the channel vector hk and the transmit channel
correlation matrix Rk can be expressed as

hk = UΛ
1
2

k h̄k, (5)

and

Rk = E
[
hkh

H
k

]
= UkΛkU

H
k , (6)

respectively. In other words, hk can be represented as a linear
combination of Nt base beam directions. All the combinations
of these orthogonal base beams form a beamspace.

Given the channel correlation matrix, it is possible to obtain
the gain matrix Λk over the Nt base beam directions. In fact,
the channel correlation matrix remains unchanged during a
relative long time and is easily obtained by statistical averaging
over a large number of channel realizations. Thus, we can get
the gains of the beam directions based on statistical CSI. In
summary, the BS is capable of obtaining the beamspace CSI,
i.e., the base beams ui and the corresponding gains ηk,i of all
the UEs, ∀i ∈ [1, Nt], k ∈ [1,K].

B. User Clustering

User clustering can effectively reduce the computational
complexity at the UEs as the SIC is only performed within
a cluster, which is a critical issue for the IoT devices. It
is intuitive that user clustering should be performed based
on available CSI at the BS. In the proposed framework, the
BS only utilizes the statistical CSI or beamspace CSI to
simplify the system complexity. Accordingly, we propose to
perform user clustering in the beamspace. Generally speaking,
the beamspace [−π2 ,

π
2 ] is divided into Nt subspaces and a

subspace corresponds to a cluster2. Therefore, an UE whose
AoD belongs to [−π2 + (i− 1) π

Nt
,−π2 + i πNt

] is grouped into
the ith cluster. For the AoD information of the UEs, it can
be obtained by using existing algorithms, e.g., the MUSIC
algorithm [32]. Hence, we can easily partition the UEs into
multiple clusters according to the AoD information. Due to
the random distribution of the IoT UEs, we assume that there
are M clusters3 and Nm UEs in the mth cluster. For ease of
notation, we use UEm,n and hm,n to denote the nth UE in the
mth cluster and the corresponding channel vector, respectively.

2Note that the subspace is determined by the angular resolution of the large-
scale antenna array. Thus, the maximum number of clusters is Nt, but we
also can use multiple subspaces to form a cluster. As a result, the number of
clusters can be decreased.

3The system may have Nt clusters at most, but only M clusters are non-
empty. Thus, we have 1 ≤ M ≤ Nt.
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C. Superposition Coding

Superposition coding at the BS is a key step for achieving
efficient massive access over limited radio spectrum. In gen-
eral, superposition coding can be regarded as a weighted sum
of the signals to be transmitted, which is mathematically given
by

x =

M∑
m=1

Nm∑
n=1

wm,nxm,n, (7)

where xm,n and wm,n is the Gaussian distributed transmit
signal with unit norm and the transmit beam for the UEm,n,
respectively. In previous related works [26] and [27], the trans-
mit beam is directly designed based on the transmit antenna
array vector associated to its assigned cluster. For instance,
since the UEm,n falls in the mth cluster, wm,n can be simply
constructed as ui, namely matching filter (MF) beamforming.
An advantage of such a method is that the beams across the
clusters are orthogonal of each other if the number of BS
antennas is sufficiently large. However, due to the limited
angular resolution, a beam cannot perfectly align multiple
UEs in a cluster. Hence, the co-channel interference does
exist even the MF beamforming is performed. To solve this
problem, we propose a non-orthogonal beamspace multiple
access framework. As shown in Fig. 2, a transmit beam
is a linear combination of multiple transmit antenna array
vectors, namely base beams. In particular, by optimizing the
weighted coefficients, the non-orthogonal beamspace multiple
access scheme can significantly increase the angular resolu-
tion, decrease the inter-beam interference, and thus improves
the overall performance of the cellular IoT. In this case, the
transmit beam for the UEm,n can be expressed as

wm,n =
∑

c∈Bm,n

√
pm,n,cuc

= UP
1
2
m,nsm,n, (8)

where Bm,n is the index set of selected base beams for
the UEm,n, pm,n,c is the transmit power on the cth base
beam, and Pm,n = diag{pm,n,1, · · · , pm,n,Nt

}. Moreover,
sm,n = [sm,n,1, · · · , sm,n,Nt

]T is the beam selection vector.
If i ∈ Bm,n, then sm,n,i = 1, otherwise sm,n,i = 0. As
such, superposition coding is equivalent to the design of non-
orthogonal transmit beams, namely a combination of beam
selection and power allocation, which will be discussed in
detail later.

D. Successive Interference Cancellation

With the superposition coded signal x, the BS broadcasts
it over the downlink channels. Without loss of generality, we
consider the received signal at the UEm,n, which is given by

ym,n = hHm,nx + nm,n

= hHm,nwm,nxm,n︸ ︷︷ ︸
Desired signal

+

Nm∑
i=1,i6=n

hHm,nwm,ixm,i︸ ︷︷ ︸
Intra-cluster interference

Fig. 2. The construction of the non-orthogonal transmit beam.

+

M∑
j=1,j 6=m

Nj∑
i=1

hHm,nwj,ixj,i︸ ︷︷ ︸
Inter-cluster interference

+ nm,n︸ ︷︷ ︸
AWGN

, (9)

where nm,n is additive white Gaussian noise (AWGN) with
unit variance. Note that the first term at the right side of Eq.
(9) is the desired signal, the second one is the intra-cluster
interference, and the third one is the inter-cluster interference.
In order to further improve the quality of the received signal,
the UEm,n carries out SIC within the associated cluster. It is
assumed that the desired channel gains in the mth cluster has
a descending order as follows:

gm,1 ≥ · · · gm,n ≥ gm,Nm
, (10)

where gm,n is defined as

gm,n = ‖hm,n‖2

= h̄Hm,nΛ
1
2
m,nUHUΛ

1
2
m,nh̄m,n

= h̄Hm,nΛm,nh̄m,n, (11)

with h̄m,n being the small-scale channel fading vector, and
Λm,n = diag{ηm,n,1, · · · , ηm,n,Nt

} being the gain matrix of
the orthogonal base beams for the UEm,n. In practice, each UE
knows its channel gain through channel estimation for coherent
detection [33]. Thus, the UEs can feed back the channel gains
to the BS via the uplink and the BS determines the order of
channel gains in each cluster which is informed to the UEs
through the downlink. Based on the order of the channel gains,
the UEm,n decodes the interfering signals and subtracts the
corresponding interference from the Nmth to (n + 1)th UE
in sequence, and finally demodulates its desired signal xm,n
[34]. Hence, the received signal after SIC at the UEm,n can
be expressed as

y′m,n = hHm,nwm,nxm,n +

n−1∑
i=1

hHm,nwm,ixm,i

+

M∑
j=1,j 6=m

Nj∑
i=1

hHm,nwj,ixj,i + nm,n. (12)

Thus, the corresponding signal-to-interference-plus-noise ratio
(SINR) and the achievable rate of the UEm,n can be computed
as (13) and (14) at the top of the next page. From (14), it
is known that the achievable rate is mainly determined by
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γm,n =
|hHm,nwm,n|2

n−1∑
i=1

|hHm,nwm,i|2 +
M∑

j=1,j 6=m

Nj∑
i=1

|hHm,nwj,i|2 + 1

=
|h̄Hm,nΛ

1
2
m,nP

1
2
m,nsm,n|2

n−1∑
i=1

|h̄Hm,nΛ
1
2
m,nP

1
2
m,ism,i|2 +

M∑
j=1,j 6=m

Nj∑
i=1

|h̄Hm,nΛ
1
2
m,nP

1
2
j,isj,i|2 + 1

, (13)

rm,n = log2(1 + γm,n)

= log2


M∑

j=1,j 6=m

Nj∑
i=1

|h̄Hm,nΛ
1
2
m,nP

1
2
j,isj,i|2 +

n∑
i=1

|h̄Hm,nΛ
1
2
m,nP

1
2
m,ism,i|2 + 1

M∑
j=1,j 6=m

Nj∑
i=1

|h̄Hm,nΛ
1
2
m,nP

1
2
j,isj,i|2 +

n−1∑
i=1

|h̄Hm,nΛ
1
2
m,nP

1
2
m,ism,i|2 + 1

 . (14)

the beam selection and the corresponding power allocation,
namely the design of non-orthogonal transmit beams. To im-
prove the system performance, we design the non-orthogonal
beamforming algorithms according to the characteristics of the
beamspace massive access system.

III. PERFORMANCE ANALYSIS AND OPTIMIZATION OF
NON-ORTHOGONAL BEAMSPACE MULTIPLE ACCESS

In this section, we aim to design the non-orthogonal
beamspace multiple access scheme from the perspective of
maximizing the weighted sum of the ergodic rates of the
cellular IoT. To facilitate the design, we first analyze the
weighted sum of the ergodic rates.

A. Performance Analysis

In general, the weighted sum of the ergodic rate can be
expressed as

Rsum =

M∑
m=1

Nm∑
n=1

αm,nE[rm,n], (15)

where αm,n > 0 denotes the priority of the UEm,n. As seen
in (14), rm,n is a complicated function of the random variable
‖h̄m,n‖2, thus it is difficult to obtain a closed-form expression
for the weighted sum rate Rsum. As an alternative, we derive
an upper bound on the weighted sum of the ergodic rates,
which is summarized in the following theorem:

Theorem 1: Based on the proposed non-orthogonal
beamspace multiple access framework, the weighted sum of
the ergodic rates of all UEs is upper bounded by (16) at the
top of the next page.

Proof: Please refer to Appendix A.
Note that the upper bound Rub can be rewritten as (17).

It is seen that the upper bound Rub is equivalent to a sum
rate on Nt orthogonal resource blocks. As such, there is
no interference among these resource blocks. Furthermore,
according to the upper bound, we can obtain the following
proposition:

Proposition 1: In the scenario of massive connections, the
weighted sum of the ergodic rates will be saturated.

Proof: Let pj,i,c = νj,i,cPtot, where Ptot is the total
transmit power of the BS, and νj,i,c is the power allocation
factor for the UEj,i over the cth base beam. In the scenario
of massive connections, if the transmit power is high enough,
the cellular IoT is usually interference-limited. In other words,
the noise is negligible compared to the interference. Then, the
upper bound is reduced to (18) at the top of the next page.
It is seen in (18) that the upper bound is independent of the
transmit power, and thus it will be saturated. In addition, the
saturated upper bound also has nothing to do with the channel
gains in the beamspace. Thus, the UEs with the same order
but in different clusters may asymptotically achieve the same
performance.

B. Performance Optimization

From Theorem 1, the overall performance of the cellular
IoT depends on the design of non-orthogonal beams in the
beamspace, namely beam selection and power allocation. In
this section, we jointly optimize beam selection and power
allocation from the perspective of maximizing the upper bound
on the weighted sum of the ergodic rates, which can be
formulated as the following problem:

J1 : max
S,P

Rub

s.t. C1 :

M∑
m=1

Nm∑
n=1

Nt∑
c=1

sm,n,cpm,n,c ≤ Pmax,

where Pmax is the maximum transmit power at the BS, S =
{s1,1,1, · · · , sM,NM ,Nt

} and P = {p1,1,1, . . . , pM,NM ,Nt
} are

the beam selection and power allocation matrices, respectively.
Since sm,n,c,∀m,n, c should be in {0, 1}, J1 is a mixed
integer programming problem. Thus, it is difficult to obtain
the optimal solutions.

Generally speaking, beam selection forms the set of the
orthogonal base beams for serving the UEs, and power al-
location constructs the transmit beams based on the selected
base beams. Thus, the number of available orthogonal base
beams determines the size of the subspace, namely the angular
resolution. Inspired by this, we provide three suboptimal
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Rub =

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n

log2

 M∑
j=1,j 6=m

Nj∑
i=1

sj,i,cpj,i,c +

n∑
i=1

sm,i,cpm,i,c

 ηm,n,c + 1


− log2

 M∑
j=1,j 6=m

Nj∑
i=1

sj,i,cpj,i,c +

n−1∑
i=1

sm,i,cpm,i,c

 ηm,n,c + 1

 (16)

=

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n log2

1 +
sm,n,cpm,n,cηm,n,c

M∑
j=1,j 6=m

Nj∑
i=1

sj,i,cpj,i,cηm,n,c +
n−1∑
i=1

sm,i,cpm,i,cηm,n,c + 1

 . (17)

Rub ≈
M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n log2

1 +
sm,n,cνm,n,cPtotηm,n,c

M∑
j=1,j 6=m

Nj∑
i=1

sj,i,cνj,i,cPtotηm,n,c +
n−1∑
i=1

sm,i,cνm,i,cPtotηm,n,c



=

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n log2

1 +
sm,n,cνm,n,c

M∑
j=1,j 6=m

Nj∑
i=1

sj,i,cνj,i,c +
n−1∑
i=1

sm,i,cνm,i,c

 . (18)

design algorithms from the viewpoint of the angular resolution
in the beamspace.

Fig. 3. The multiple-beam design in the whole beamspace.

1) Full-Space Multiple-Beam Design: First, we consider
the case that the BS can select all orthogonal base beams for
each UE, namely sm,n,c = 1,∀m,n, c. As seen in Fig. 3, the
beam for each UE can be constructed in the whole beamspace,
and the transmit beams are in general non-orthogonal. In this
case, the beam design is reduced to the problem of power
allocation, namely determining the weighted coefficients for
each UE’s orthogonal base beams, which can be expressed as
J2 on the next page. Unfortunately, the objective function of
J2 is still non-concave with respect to the transmit powers,
and it is difficult to design the optimal power allocation.
Checking the objective function of J2, it is found that it can be
considered as the sum rate of KNt independent UEs, where
the transmit power is pm,n,c and the channel gain is ηm,n,c
for the equivalent UEm,n,c. Therefore, we have the following

equivalent input-output relation to the UEm,n,c:

ym,n,c =
√
pm,n,cηm,n,cxm,n,c

+

M∑
j=1,j 6=m

Nj∑
i=1

√
pj,i,cηm,n,cxj,i,c

+

n−1∑
i=1

√
pm,i,cηm,n,cxm,i,c + nm,n,c, (19)

where xm,n,c is the normalized Gaussian distributed desired
signal for the equivalent UEm,n,c and nm,n,c is the AWGN
with unit norm. Then, the SINR and the achievable rate for
the equivalent UEm,n,c are given by

γm,n,c =
pm,n,cηm,n,c

M∑
j=1,j 6=m

Nj∑
i=1

pj,i,cηm,n,c +
n−1∑
i=1

pm,i,cηm,n,c + 1

,

(20)
and

Rm,n,c = log2 (1 + γm,n,c) , (21)

respectively. It is well known that the minimum mean squared
error (MSE) and the SINR for an arbitrary received signal
have the following relation [35], [36]:

Lemma 3: The minimum MSE em,n,c and the SINR γm,n,c
of a received signal satisfy

e−1m,n,c = 1 + γm,n,c. (22)

In other words, maximizing the rate is equivalent to mini-
mizing the MSE. According to the input-output relation in
(19), the MSE for the equivalent UEm,n,c can be easily
expressed as (23), where vm,n,c denotes the receiver, and
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J2 : max
P

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n log2

1 +
pm,n,cηm,n,c

M∑
j=1,j 6=m

Nj∑
i=1

pj,i,cηm,n,c +
n−1∑
i=1

pm,i,cηm,n,c + 1


s.t. C2 :

M∑
m=1

Nm∑
n=1

Nt∑
c=1

pm,n,c ≤ Pmax.

MSEm,n,c = E[(vm,n,cym,n,c − xm,n,c)(vm,n,cym,n,c − xm,n,c)H ]

= vm,n,c

ηm,n,c
 M∑
j=1,j 6=m

Nj∑
i=1

pj,i,c +

n∑
i=1

pm,i,c

+ 1

 vHm,n,c

−√ηm,n,cpm,n,c
(
vm,n,c + vHm,n,c

)
+ 1

=
(
vm,n,c −

√
ηm,n,cpm,n,cΦ

−1
m,n,c

)
Φm,n,c

(
vm,n,c −

√
ηm,n,cpm,n,cΦ

−1
m,n,c

)H
−ηm,n,cpm,n,cΦ−1m,n,c + 1, (23)

Φm,n,c = ηm,n,c

(
M∑

j=1,j 6=m

Nj∑
i=1

pj,i,c +
n∑
i=1

pm,i,c

)
+ 1 is the

power of the equivalent received signal of the UEm,n,c. It is
clear that MSEm,n,c is minimized if and only if vm,n,c =√
ηm,n,cpm,n,cΦ

−1
m,n,c, namely adopting the MMSE receiver.

Thus, according to Lemma 3, the objective function of J2
can be transformed as

min
P

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n(log2(em,n,c)). (24)

However, the objective function in (24) is still not convex. Note
that (24) aims to minimize a function of minimum MSE, which
is equivalent to minimizing a function of MSE for a given
MMSE receiver. In other words, the optimization objective in
(24) can be transformed as

min
P,v

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n(log2(MSEm,n,c)), (25)

where v = {v1,1,1, · · · , vM,NM ,Nt
} is the collection of the

receivers. The sum of logarithmic functions hinders us to
further solve this problem. Similar to [35] and [36], we can
replace the logarithmic function with the following term

min
P,v,β

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n(βm,n,cMSEm,n,c − log2(βm,n,c)), (26)

where β = {β1,1,1, · · · , βM,NM ,Nt
} is the collection of

auxiliary variables. Note that only when βm,n,c = MSE−1m,n,c,
the objective function in (26) can achieve its minimum value.
Under such a condition, the optimization objectives (25) and
(26) are equivalent.

According to the definition of MSEm,n,c in (23), it is known
that (26) is not a jointly convex function of P, v, and β, but
is a convex function with respect to each optimization vari-
able. Thus, we can adopt the sequential iteration optimization
method to solve the problem. Specifically, we optimize one

variable by fixing the others, and the variables are iteratively
optimized until they approach a stationary point. First, for the
variable P, by combining the objective function (26) and the
constraint condition C2, we get the Lagrange function as

L1(P) =

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n(βm,n,cMSEm,n,c − log2(βm,n,c))

+µ

(
M∑
m=1

Nm∑
n=1

Nt∑
c=1

pm,n,c − Pmax

)
, (27)

where µ ≥ 0 is the Lagrange multiplier of C2. By leveraging
the KKT conditions, we obtain Eq. (28) at the top of the next
page. Then, the intermediate variables v and β capturing the
performance of the UEs in the previous iteration can be ob-
tained according to their definitions. Moreover, the Lagrange
multiplier µ can be updated by the iterative gradient method.
In the (t+ 1)th iteration, the µ can be updated as

µ(t+ 1) =

[
µ(t) + ∆µ

(
M∑
m=1

Nm∑
n=1

Nt∑
c=1

pm,n,c − Pmax

)]+
,

(29)
where ∆µ > 0 is an iteration step size. In summary, the full-
space multiple-beam design algorithm can be described as

In this algorithm, we construct the transmit beam in the
whole beamspace, and thus there are KNt optimization vari-
ables for P in total. In fact, since the UEs are partitioned into
clusters according to the AoD information, the transmit beam
for an arbitrary UE is mainly determined by a finite number
of base beams with high correlation in the beamspace. Thus,
the required number of optimization variables for P can be
effectively reduced.

2) Partial-Space Multiple-Beam Design: In this section, we
design the transmit beam for each UE with a few base beams,
namely in the partial beamspace, cf. Fig. 4. Note that in the
scenario of massive access for the cellular IoT, the system
performance is mainly limited by the co-channel interference.
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pm,n,c =

 αm,nβm,n,cvm,n,c
√
ηm,n,c

M∑
j=1,j 6=m

Nm∑
i=1

αj,iβj,i,cv2j,i,cηj,i,c +
n∑
i=1

αm,iβm,i,cv2m,i,cηm,i,c + µ


2

. (28)

Algorithm 1: Full-Space Multiple-Beam Design
Input: αm,n, Pmax, ηm,n,c
Output: P

1 Initialize the parameter: pm,n,c = Pmax

KNt
,∀m,n, c;

2 do
3 µ = 1, vm,n,c =

√
ηm,n,cpm,n,cΦ

−1
m,n,c,

βm,n,c = MSE−1m,n,c,∀m,n, c;
4 do
5 Update pm,n,c according to (28), ∀m,n, c,
6 Update µ by the gradient method in (29);
7 while µ is not converged;
8 while P is not converged;

Fig. 4. The multiple-beam design in the partial beamspace.

In order to effectively reduce the co-channel interference, we
enforce the subspaces between the clusters orthogonal to each
other. In specific, the Nt base beams are allocated to the
M clusters, and a base beam can only serve the UEs in
a cluster, namely

∑M
m=1 sm,n,c = 1. As a result, we have

M∑
j=1,j 6=m

Nj∑
i=1

sj,i,cpj,i,cηm,n,c = 0,∀j 6= m. In this case, the

beam design can be formulated as the problem J3 at the top
of this page. As mentioned above, due to the constraint of
sm,n,c ∈ {0, 1}, J3 is also a mixed integer programming
problem. To solve this problem, we partition it into two
subproblems, one for beam selection, and the other for power
allocation.

We first address the problem of beam selection. It is
intuitive that the optimal beam selection can be realized by
the exhaustive searching. However, since there might be a
massive number of clusters and base beams, the computational
complexity of the exhaustive searching is prohibitive. Hence,
we propose a low-complexity beam selection method accord-
ing to the characteristics of massive access in the beamspace.
Checking the objective function of J3, it is found that since a
base beam is only distributed to one cluster exclusively, there

is no inter-cluster interference. In other words, the clusters
are independent of each other over an arbitrary base beam.
Meanwhile, there is no interrelation among the base beams.
Thus, we can allocate the base beams one by one. For a certain
base beam, in order to maximize the weighted sum rate, it is
better to allocate it to the cluster with the maximum weighted
sum rate over such a base beam. Mathematically, the beam
selection method can be expressed as

m?=arg max
m=1,··· ,M

Nm∑
n=1

αm,n log2

1 +
pm,n,cηm,n,c

n−1∑
i=1

pm,i,cηm,n,c + 1

.
(30)

In other words, the cth base beam is allocated to the m?th
cluster.

Then, given the beam selection result, we allocate the power
for constructing the transmit beam of each UE. Fortunately,
based on the selected base beams, power allocation is similar
to the optimization problem J2. Therefore, with the same
method, if the cth base beam is allocated to the mth cluster,
the transmit power pm,n,c is given by

pm,n,c =

 αm,n,cβ
′

m,n,cv
′

m,n,c
√
ηm,n,c

n∑
i=1

αm,i,cβ
′
m,i,c(v

′
m,i,c)

2ηm,i,c + µ′


2

, (31)

where

v
′

m,n,c =
√
ηm,n,cpm,n,c

(
ηm,n,c

n∑
i=1

pm,i,c + 1

)−1
, (32)

β
′

m,n,c =

(
v

′

m,n,c

(
ηm,n,c

n∑
i=1

pm,i,c + 1

)
(v

′

m,n,c)
H

−√ηm,n,cpm,n,c
(
v

′

m,n,c + (v
′

m,n,c)
H
)

+ 1

)−1
,

(33)

and the Lagrange multiplier µ
′

can be updated as

µ
′
(t+1)=

[
µ

′
(t)+∆µ′

(
M∑
m=1

Nm∑
n=1

Nt∑
c=1

sm,n,cpm,n,c−Pmax

)]+
,

(34)
where ∆µ′ > 0 is an iteration step size. Thus, the partial-
space multiple-beam design algorithm can be summarized as
Algorithm 2 on the next page.

In this algorithm, we construct a transmit beam for each
UE. Thus, we need to have K transmit beams in total. In the
scenario of massive access for the cellular IoT, the required
number of transmit beams might be very large, resulting in
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J3 : max
S,P

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n log2

1 +
sm,n,cpm,n,cηm,n,c

n−1∑
i=1

sm,i,cpm,i,cηm,n,c + 1


s.t. C1,C3 :

M∑
m=1

sm,n,c = 1,∀n, c.

Algorithm 2: Partial-Space Multiple-Beam Design
Input: αm,n, Pmax, ηm,n,c
Output: P,S

1 Initialize the parameter: sm,n,c = 0,
pm,n,c = Pmax

NmNt
,∀m,n, c;

2 for c = 1 : Nt do
3 Choose m? and let sm?,n,c = 1 according to (30), ∀n;
4 Let pj,n,c = 0,∀j 6= m?, n;
5 end
6 do
7 µ′ = 1, v′m,n,c and β′m,n,c are updated according to

(32) and (33), respectively, ∀m,n, c;
8 do
9 Update pm,n,c according to (31), ∀m,n, c,

10 Update µ
′

by the gradient method in (34);
11 while µ′ is not converged;
12 while P is not converged;

a high computational complexity. In fact, since we perform
user clustering according to the AoD information, the UEs in
a cluster may have small differences in the AoD. Especially
in the case of a large-scale antenna array at the BS, the AoDs
of the UEs in a cluster are nearly the same. In this context, we
can construct the same transmit beam for a cluster, and hence
the required number of transmit beams and the corresponding
computational complexity can be reduced significantly.

Fig. 5. The single-beam design in the partial beamspace.

3) Partial-Space Single-Beam Design: As mentioned
above, considering the high correlation among the UEs in a
cluster, we can design only one transmit beam for a clus-
ter, which can reduce the computation complexity but also
decreases the degrees of freedom. Meanwhile, to mitigate
the inter-cluster interference, the subspaces, namely the base

beams, for designing the transmit beams are orthogonal of
each other. In general, as shown in Fig. 5, the total Nt base
beams are divided into M sets, and each set of base beams is
used to construct a transmit beam for a specific cluster.

It is assumed that the transmit beam for the mth cluster is
wm, then it can be constructed as

wm =
∑
c∈Bm

√
pcuc, (35)

where Bm is the index collection of the selected base beams
for the mth cluster, and pc is the total transmit power over
the cth base beam. In order to guarantee that the UEs in a
cluster share the same transmit beam, wm and wm,n should
be aligned, ∀n. Equivalently, the transmit power of the UEm,n
over the cth base beam pm,n,c should satisfy the following
condition

pm,n,c = ιm,npc, (36)

where 0 ≤ ιm,n ≤ 1 is the power allocation factor of the

UEm,n with the constraint
Nm∑
n=1

ιm,n = 1. Then, the relation

between wm and wm,n can be expressed as

wm,n =
√
ιm,nwm =

√
ιm,n

∑
c∈Bm

√
pcuc =

∑
c∈Bm

√
pm,n,cuc,

(37)
which satisfies the power equality in (36), and wm,n is also
aligned with wm.

Thus, the partial-space single-beam design can be formu-
lated as an optimization problem J4 at the top of the next
page, where pc = {p1, . . . , pc} and ι = {ι1,1, · · · , ιM,NM

}.
Similarly, J4 is a mixed integer programming problem, and
we solve it through beam selection and power allocation
separately. For beam selection, we can adopt the same method
as (30) in the last algorithm.

Then, we design the power allocation method as before.
First, given the beam selection result, the Lagrange function
of J4 can be written as

L2(pc, ι) =

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n(β′′m,n,cMSE′′m,n,c − log2(β′′m,n,c))

+µ′′

(
Nt∑
c=1

pc − Pmax

)

+

M∑
m=1

ωm

(
Nm∑
n=1

ιm,n − 1

)
, (38)



10

J4 : max
S,pc,ι

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n log2

1 +
sm,n,cpcιm,nηm,n,c

sm,n,cpcηm,n,c
n−1∑
i=1

ιm,i + 1


s.t. C3, C4 :

Nt∑
c=1

pc ≤ Pmax,

C5 :

Nm∑
n=1

ιm,n = 1,∀m,

where

MSE′′m,n,c = v′′m,n,c

(
ηm,n,cpc

n∑
i=1

ιm,i + 1

)
(v′′m,n,c)

H

−√ηm,n,cpcιm,n
(
v′′m,n,c + (v′′m,n,c)

H
)

+ 1,(39)

v′′m,n,c =
√
ηm,n,cpcιm,n

(
ηm,n,cpc

n∑
i=1

ιm,i + 1

)−1
, (40)

and β′′m,n,c = (MSE′′m,n,c)
−1. Moreover, µ′′ ≥ 0 and ωm ≥ 0

are the Lagrange multipliers of C4 and C5, respectively. Then,
by using the KKT conditions, we have

pc =


Nm?∑
i=1

αm?,iβ
′′

m?,i,cv
′′

m?,i,c
√
ηm?,i,cιm?,i

µ′′ +
Nm?∑
i=1

αm?,iβ
′′
m?,i,c(v

′′
m?,i,c)

2ηm?,i,c

i∑
q=1

ιm?,q


2

.

(41)
and

ιm,n =


Nt∑
c=1

sm,n,sαm,nβ
′′

m,n,cv
′′

m,n,c
√
ηm,n,cpc

Nt∑
c=1

Nm∑
i=n

sm,n,sαm,iβ
′′
m,i,c(v

′′
m,i,c)

2ηm,i,cpc + ωn


2

,

(42)
where m? is the index of the cluster which uses the cth base
beam according to (29). Moreover, µ′′ and ωm can be updated
by the following gradient methods

µ
′′
(t+ 1) =

[
µ

′′
(t) + ∆µ′′

(
Nt∑
c=1

pc − Pmax

)]+
, (43)

and

ωm(t+ 1) =

[
ωm(t) + ∆ωm

(
Nm∑
n=1

ιm,n − 1

)]+
,∀m, (44)

where ∆µ′′ > 0 and ∆ωm
> 0 are iteration step sizes. Thus,

the partial-space single beam design algorithm for massive
access can be summarized as

Up to now, we have already presented three algorithms
to design non-orthogonal transmit beams for massive access
in the cellular IoT. The computation complexity of three
algorithms are as follows: 1) Algorithm 1 calculates a power
for each UE in each beam, so the computation complexity is
O(KNt). 2) For Algorithm 2, the computation complexity of

Algorithm 3: Partial-Space Single-Beam Design
Input: αm,n, Pmax, ηm,n,c
Output: S,P

1 Initialize the parameter: sm,n,c = 0, pc = Pmax

Nt
,∀c,

ιm,n = 1
Nm

,∀m,n;
2 for c = 1 : Nt do
3 Choose m? and let sm?,n,c = 1 according to (30), ∀n;
4 end
5 do
6 µ′′ = 1, ωm = 1,∀m,

7 v
′′

m,n,c =
√
ηm,n,cpcιm,n

(
ηm,n,cpc

n∑
i=1

ιm,i + 1

)−1
,

β′′m,n,c = (MSE′′m,n,c)
−1,∀m,n, c;

8 do
9 Update pc according to (41), ∀c,

10 Update ιm,n according to (42), and let
pm,n,c = ιm,npc, ∀m,n,

11 Update µ′′ and ωm by the gradient methods in
(43) and (44), respectively;

12 while µ′′ or ωm is not converged;
13 while pc is not converged;

beam selection can be ignored because this part is executed
only once and we only focus on the computation complexity in
the iteration. The computation complexity of power allocation
is O(N̄Nt), where N̄ is a mean value of each cluster’s UE
number Nm. 3) The numbers of parameters in Algorithm 3 are
Nt (pc) and K (ιm,n). Therefore, the computation complexity
can be approximated as O(Nt +K).

As analyzed above, for the three algorithms, the degrees of
freedom for beam selection are decreased but the number of
optimization variables is also reduced in sequence. Therefore,
it is possible to choose a proper beam design algorithm
according to the requirements of system performance and
computational complexity.

IV. SIMULATION RESULTS

To validate the effectiveness of the proposed algorithms for
non-orthogonal beamspace multiple access in the cellular IoT
with massive connections, we carry out extensive numerical
simulations in such a scenario: Nt = 64, K = 60, and
Pmax = 10 dB. The UEs are uniformly distributed in a circle
with the BS as the centre and of the radius 50m. Thus, the
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number of clusters is dynamically changed as the UEs move.
We adopt a typical urban (TU) channel model for the cellular
IoT according to the document of 3GPP TR 45.820 [38]. For
ease of notation, we use SNR (in dB) to represent the term
10 log10 Pmax. Specifically, the transmit power is measured
with respect to the power of noise. For example, the noise
power of UE is σ2, then the maximum transmit power is 10σ2

with Pmax = 10 dB. All curves are obtained by averaging over
1000 channel realizations.
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Fig. 6. The gap between the exact sum rate and the derived upper bound of
proposed algorithm 1.

First, we show the gap between the exact sum rate and the
derived upper bound of the proposed algorithm 1. As seen
in Fig. 6, the gap between the exact sum rate and the upper
bound is negligible when the SNR is less than 2 dB, which
means that the derived upper bound provides an appropriate
method to evaluate the weighted sum rate. As SNR increases,
the gap becomes large, but the exact sum rate and the upper
bound have the same trend.
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Fig. 7. Performance comparison of different beam design algorithms.

Then, we compare the performance of the three proposed
algorithms and the traditional single-beam algorithm in Fig.
7. Specifically, the traditional single-beam algorithm (namely
beamspace MF) uses the base beam specified by the AoD
information as the transmit beam for a given cluster. It is seen
that the three proposed multiple-beam combination algorithms

perform much better than the single-beam algorithm, and
the performance gain enlarges as the SNR increases. This is
because the proposed algorithms have more degrees of free-
dom to design the transmit beams, then can mitigate the co-
channel interference to a large extend. Therefore, the proposed
algorithms have a strong capability to support massive access
over limited radio spectrum. For the three proposed algorithms,
the second one can nearly achieve the same performance as the
first one in the whole SNR region. In other words, it is enough
to construct the transmit beam based on a few base beams with
high correlation. Since the second one can obtain a balance
between system performance and computational complexity,
we take it as a typical non-orthogonal beamspace multiple
access algorithm for performance comparison with the other
multiple access technique in the following.
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Fig. 8. Performance comparison of the NOMA and OMA schemes.

Fig. 8 exhibits the performance advantage of the proposed
non-orthogonal beamspace multiple access scheme (algorithm
2) over two traditional OMA schemes, including space di-
vision multiple accse (SDMA) and time division multiple
access (TDMA). To be specific, the TDMA scheme divides
a time slot into K sub-slots and each UE occupies a sub-
slot exclusively, while the SDMA scheme serves all UEs at
the same time. Both TDMA and SDMA select the optimal
base beam as the transmit beam for each UE, which lead to
a fair comparison because all schemes are designed according
to the same beam domain channel information. It is seen that
the proposed algorithm 2 has an obvious performance gain
over the SDMA. This is because the proposed algorithm 2
has more degrees of freedom to design the transmit beam
and the SIC can further mitigate the interference. Comparing
with TDMA, the proposed algorithm 2 effectively exploits the
spatial multiplexing capability offered by the multiple-antenna
BS, and thus can significantly improve the sum rate. Although
there is high co-channel interference in the high SNR region,
the proposed algorithm 2 is able to mitigate the interference by
using beamspace beamforming. Hence, the performance gain
becomes large as the SNR increases.

Fig. 9 shows the influence of the number of UEs K
on the sum rate when the number of BS antenna Nt is
fixed. It is found that the performance of the three proposed
algorithms improves as K increases. This is because more
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Fig. 9. The influence of the number of UEs on the sum rate.

UEs can leverage the spatial multiplexing gain offered by the
multiple-antenna BS. However, as K increases, the co-channel
interference also sharply increases. Under this condition, the
first and second algorithms have more degrees of freedom to
mitigate the interference, and thus their performance improves
continuously. For the third one, there exists high residual
interference after beamspace beamforming at the BS and SIC
at the UEs. As a result, the sum rate of the third one increases
slowly and becomes saturated fast.
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Fig. 10. The impact of the number of BS antennas on the sum rate.

Fig. 10 investigates the impact of the number of BS antenna
Nt on the sum rate for a given number of UEs. As is intuitively
observed, a large number of BS antennas can provide a high
angular resolution in the beamspace, and hence designs highly
accurate transmit beams for interference mitigation and signal
enhancement. As a result, the sum rates of the three proposed
algorithms improve as the number of BS antennas increases.
Therefore, we can improve the performance of massive access
by simply adding the BS antennas, which is a major advantage
of the 5G BS with a large-scale antenna array. However, it is
found that the performance gain by adding the BS antennas
becomes small gradually. This is because there is nearly one
UE in a cluster when the angular resolution is high enough.

Finally, we check the convergence behavior of the three
proposed algorithms in Fig. 11. It is seen that all the algorithms
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Fig. 11. The convergence behavior of the proposed three algorithms.

converge after no more than 10 times iterations. As discussed
earlier, the beam design is a linear combination of multiple
base beams with the power obtained by iterations. Thus, the
proposed algorithms have low computational complexity and
fast convergence behavior.

V. CONCLUSION

In this paper, we designed a massive access framework
for the cellular IoT by making use of the characteristics of
beamspace. Especially, we proposed to adopt non-orthogonal
transmit beams to improve the performance of massive access
systems. Three non-orthogonal beam design algorithms with
different system performance and computation complexity
were presented with the purpose of providing feasible solu-
tions for the cellular IoT with distinct requirements. Simula-
tion results have confirmed that the proposed non-orthogonal
beamspace multiple access schemes can significantly improve
the performance compared to the baseline ones.

APPENDIX A
THE PROOF OF THEOREM 1

Prior to proving Theorem 1, we first provide the following
lemma [22]:

Lemma 2: If A, B, and X are symmetric positive semi-
definite matrices and A − B � 0, the matrix function f(X)
in below is concave with respect to X.

f(X) = log2 det(I + AX)− log2 det(I + BX). (45)

According to the definition, the achievable rate of the
UEm,n in (14) can be transformed as (46) at the top of the
next page, where vm,n,j,i = Λ

1
2
m,nP

1
2
j,isj,i and Vm,n,j,i =

vm,n,j,iv
H
m,n,j,i. Eq. (46) holds true due to the fact that

det(I + AB) = det(I + BA). According to Lemma 2, rm,n
in (46) is a concave function of ‖h̄m,n‖2. Thus, applying the
Jensen’s inequality yields Eq. (47). Then, the upper bound of
the weighted sum of the ergodic rates can be written as Eq.
(48), where (48) follows the fact that Vm,n,j,i is a diagonal
matrix. The proof completes.
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rm,n = log2


M∑

j=1,j 6=m

Nj∑
i=1

|h̄Hm,nvm,n,j,i|2 +
n∑
i=1

|h̄Hm,nvm,n,m,i|2 + 1

M∑
j=1,j 6=m

Nj∑
i=1

|h̄Hm,nvm,n,j,i|2 +
n−1∑
i=1

|h̄Hm,nvm,n,m,i|2 + 1


= log2 det

h̄m,nh̄Hm,n

 M∑
j=1,j 6=m

Nm∑
i=1

Vm,n,j,i +

n∑
i=1

Vm,n,m,i

+ I


− log2 det

h̄m,nh̄Hm,n

 M∑
j=1,j 6=m

Nm∑
i=1

Vm,n,j,i +

n−1∑
i=1

Vm,n,m,i

+ I

 , (46)

E{rm,n} ≤ log2 det

E[h̄m,nh̄Hm,n]

 M∑
j=1,j 6=m

Nm∑
i=1

Vm,n,j,i +

n∑
i=1

Vm,n,m,i

+ I


− log2 det

E[h̄m,nh̄Hm,n]

 M∑
j=1,j 6=m

Nm∑
i=1

Vm,n,j,i +

n−1∑
i=1

Vm,n,m,i

+ I


= log2 det

 M∑
j=1,j 6=m

Nm∑
i=1

Vm,n,j,i +

n∑
i=1

Vm,n,m,i + I


− log2 det

 M∑
j=1,j 6=m

Nm∑
i=1

Vm,n,j,i +

n−1∑
i=1

Vm,n,m,i + I

 , (47)

Rub =

M∑
m=1

Nm∑
n=1

αm,n

log2 det

 M∑
j=1,j 6=m

Nm∑
i=1

Vm,n,j,i +

n∑
i=1

Vm,n,m,i + I


− log2 det

 M∑
j=1,j 6=m

Nm∑
i=1

Vm,n,j,i +

n−1∑
i=1

Vm,n,m,i + I


=

M∑
m=1

Nm∑
n=1

Nt∑
c=1

αm,n

log2

 M∑
j=1,j 6=m

Nj∑
i=1

sj,i,cpj,i,c +

n∑
i=1

sm,i,cpm,i,c

 ηm,n,c + 1


− log2

 M∑
j=1,j 6=m

Nj∑
i=1

sj,i,cpj,i,c +

n−1∑
i=1

sm,i,cpm,i,c

 ηm,n,c + 1

 . (48)
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