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Abstract—Positioning has recently received considerable at-
tention as a key enabler in emerging applications such as
extended reality, unmanned aerial vehicles and smart environ-
ments. These applications require both data communication and
high-precision positioning, and thus they are particularly well-
suited to be offered in wireless networks (WNs). The purpose of
this paper is to provide a comprehensive overview of existing
works and new trends in the field of positioning techniques
from both the academic and industrial perspectives. The paper
provides a comprehensive overview of positioning in WNs,
covering the background, applications, measurements, state-of-
the-art technologies and future challenges. The paper outlines
the applications of positioning from the perspectives of public
facilities, enterprises and individual users. We investigate the key
performance indicators and measurements of positioning systems,
followed by the review of the key enabler techniques such as
artificial intelligence/large models and adaptive systems. Next, we
discuss a number of typical wireless positioning technologies. We
extend our overview beyond the academic progress, to include the
standardization efforts, and finally, we provide insight into the
challenges that remain. The comprehensive overview of exisitng
efforts and new trends in the field of positioning from both the
academic and industrial communities would be a useful reference
to researchers in the field.

Index Terms—Applications, adaptive systems, key performance
indicators, machine learning/large models, positioning technolo-
gies

I. INTRODUCTION

A. Background and Motivation

High-precision positioning has attracted increasing attention

in recent years. In emerging applications such as extended

reality (XR), unmanned aerial vehicles (UAVs), and smart

environments, positioning plays a key role in accurately

mapping a real-world environment to a digital world [1].

In future 6G networks, it is envisioned that positioning will

become a key function, which can improve the performance
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of communication, computing, and control [2]. Therefore,

several positioning technologies (PTs) have been proposed in

order to enhance the performance of wireless communication

networks and satisfy the demanding requirements of emerging

applications.

Global navigation satellite system (GNSS) is a prominent

PT for positioning. However, using GNSS for positioning

faces several key challenges: (i) meeting the stringent real-

time requirements of certain emergent applications due to the

significant distance of satellites from the earth; and (ii) high

attenuation and reduced reliability in indoor environments due

to weak satellite signals and obstructed by roofs, walls, and

other solid structures. In order to address these challenges, PTs

based on wireless networks (WNs), such as cellular networks,

WiFi, Bluetooth, and visible light positioning (VLP), are of

great value for indoor environments.

Positioning using WNs offers several advantages over

GNSS systems including (i) lower latency, due to the shorter

signal propagation time of WNs compared to that of satellites;

(ii) improved coverage in indoor environments with a higher

level of reliability; (iii) reuse of existing WN infrastructure,

which makes the solution more cost-effective; and (iv) en-

hanced positioning capabilities by using emerging technolo-

gies such as artificial intelligence (AI), large foundation mod-

els and reconfigurable intelligent surfaces (RIS). Therefore,

In consequence, there is an ongoing interaction between new

positioning needs and emerging technologies, which neces-

sitate a further comprehensive review of the existing PTs

requirements.

B. The Evolution Of PT Over WNs

Cellular networks are one of the most representative types

of WNs, where the early generations were mainly designed

for communication services. Historically, positioning has been

considered as a byproduct of communications in 1G to 4G,

resulting in a limited level of positioning accuracy (PA). For

instance, during the 1970s, researchers attempted to locate

vehicles using 1G cellular networks based on signal strength,

since communication processes such as cell site selection

would benefit from knowing the location of the vehicle [3].

During the 2G era, as the standard lacked a built-in location

mechanism, global system for mobile communications (GSM)

positioning capabilities were confined to using training or

synchronization signals for computing ranging measurements.

Release 4 of 3G, as described in TS 22.071, introduced

location services with a horizontal location accuracy ranging

from 25 to 200 m [4]. As a result of limited advancements

http://arxiv.org/abs/2403.11417v1
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in positioning in 4G networks, it has been demonstrated to

achieve a 50 m horizontal location accuracy as required by

the enhanced 911 (e911) location requirements defined by the

Federal Communications Commission (FCC) with long-term

evolution (LTE) location methods [4].
With 5G, location information has become increasingly im-

portant, which offers reduced latency and enhanced scalability

and robustness. Meanwhile, due to the scarcity of wireless

spectrum, technologies using millimeter waves (mmWave)

with short wavelengths and large bandwidths are being ex-

ploited to provide more sensitive signal measurements and

better spatial resolution, resulting in higher PA. The next gen-

eration wireless network (i.e., 6G and beyond), will introduce

terahertz (THz) and optical (both visible and infrared) bands

as enabler technologies with improved PA for both indoor and

outdoor environments.
In 2004 [5], a VLP system based on visible light commu-

nication (VLC) was proposed for the first time by Horikawa

et al. It has since been extensively reported that indoor VLP

systems based on light emitting diode (LED) lights with line-

Of-sight (LOS) propagation paths and limited multipath inter-

ference can achieve centimeter-level PA [6]–[8]. Furthermore,

a number of short-to-medium-range wireless technologies such

as WiFi, Bluetooth, radio-frequency identification (RFID),

and ultra-wideband (UWB), are also available, which are

indispensable for future positioning applications.

C. Relevant Works

Considering that PTs have received much attention over the

past century, there are quite a few articles that provide an

overview of this interesting and important topic. In particular,

most of the existing surveys are specific to a certain technology

[9], such as cellular networks [1], [4], mmWave [10], THz [11]

and VLP [7], [8], [12], or certain applications domain such as

Internet-of-Things (IoT) [12]. Note that there are already some

high-quality, generic survey papers reported in the literature

[1], [9], [13]–[16]. Specifically, Liu et al. [13] provided an

overview of the wireless indoor positioning systems (IPSs)

and their performance metrics with a special emphasis on

fingerprinting algorithms. Gu et al. [14] provided a com-

prehensive survey of numerous IPSs including commercial

products, research-oriented solutions, and evaluation criteria.

Yassin et al. [15] investigated the theoretical aspects and

applications of an IPS. Zafari et al. [9] presented a detailed

description of different IPSs and technologies, whereas Yang et

al. [16] presented key performance metrics, as well as machine

learning (ML)-based and filter-based methods adopted in IPSs.
Compared with the existing survey papers on indoor po-

sitioning [4], [8]–[16], this comprehensive survey paper of-

fers the following key features: (i) reviewing a number of

the latest enabling techniques including ML, large models,

RIS, adaptive systems and soft-defined networks (SDN) for

positioning; (ii) introducing the standardization progress of

positioning in various WNs technologies; (iii) providing a

comprehensive evaluation criterion for wireless positioning

systems (PSs); and (iv) considering the fusion of different

positioning technologies. The organization of this paper is

summarized as follows.

• In Section II, we discuss a series of possible applications

of positioning, and highlight their applications in public

utilities, enterprise, and individual users. We summarize

the key motivations for PSs by analyzing the needs of

these emerging positioning applications.

• In Section III, we summarize the key performance indi-

cators (KPIs) of a PS. We highlight privacy and security

aspects in KPIs. We also summarize the key measure-

ments used for positioning in this section.

• In Section IV, we introduce the advanced techniques used

for positioning including ML, adaptive systems, RIS, and

SDN. Especially, we introduce the possible application of

large models for indoor positioning.

• In Section V, we present different wireless technologies

for positioning. We primarily discuss cellular networks,

WiFi, Bluetooth, RFID, mmWave, UWB, THz, and visi-

ble light. We also discuss the advantages and challenges

of each technology.

• In Section VI, we summarize the challenges and future

research directions of positioning.

• In Section VII, we conclude this paper.

II. APPLICATIONS

It is becoming increasingly common to use positioning in

a range of applications. It is reported that the market size for

indoor positioning was approximately $10.9 billion in 2023,

and it is expected to reach $29.8 billion by the end of 2028,

with a compound annual growth rate of 22.3% during the

forecast period [17]. Here, we mainly categorize positioning

applications into three types: public provision, enterprise and

individual users.

A. Public Provision

In public places such as airports, museums and hospitals, in-

door positioning enables precise navigation and location-based

services, enhancing the visitor experience and maximizing op-

erational efficiency. Public spaces can be made more accessible

and manageable using pathfinding, asset tracking, emergency

response coordination, and personalized information delivery.

Context Aware Location Based User Assistance: For in-

stance, PSs can enhance visitor experiences by providing

location-based services, such as guided tours, information on

books, and interactive content directly to visitor’s smartphones

or via AR devices. These systems leverage technologies like

Wi-Fi, Bluetooth beacons, and RFID to determine the visitor’s

location in indoor environments and deliver relevant content

accordingly. For example, Huang et al. [18] developed a

NO Donkey E-learning system addressing challenges related

to spatial and learning domain unawareness and navigation

within a library. Similarly, there are other applications such as

museums, airports, underground parking, and tourism services,

among others, that can benefit from positioning and navigation

services.

Medical and Healthcare: In the medical and healthcare

domain, PSs are also useful to enhance operational efficiency,

patient care, and safety. With this capability, not only is asset

utilization, tracking, and management optimized and the time
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Fig. 1: The applications of wireless positioning technologies.

spent looking for staff and equipment reduced, but emergency

response times are also improved. Furthermore, IPSs enable

hospitals to monitor patient movements, ensuring that patients

who require special care do not wait for too long and/or end

up in restricted areas. Additionally, these systems facilitate

navigation within complex hospital buildings, helping patients

and visitors to locate departments, wards, and amenities read-

ily. Luschi et al. [19] adopted a hybrid mobile application

architecture to deploy multiple platforms. It demonstrated that

the proposed indoor positioning and navigation system within

healthcare facilities can efficiently improve the navigational

experience for staff, patients, and visitors.

Public Security: A public security application requires the

rapid and precise determination of the location of individuals

in need of emergency services in order to dispatch police,

firefighters, and medical staff to the exact location of the inci-

dent as quickly as possible. The positioning delay, robustness,

and accuracy are vital in saving lives and reducing the time

it takes to provide assistance. Moder et al. [20] discussed

the use of IPSs in public transport environments to enhance

public safety and accessibility for visually impaired people.

This study demonstrated the potential of indoor positioning

technologies to improve the autonomy and safety of vulnerable

populations in complex indoor environments.

B. Enterprise

A PS can also be used to improve the operational efficiency

of enterprise by providing precise location tracking of staff,

UAVs, equipment, assets, and customers.

UAVs: Nowadays, UAVs play an increasingly important role

in enhancing the efficiency and accuracy of task execution,

offering innovative and safe solutions for data collection,

monitoring, and logistics delivery, especially in inaccessible

or hazardous environments. For the application of UAVs, the

positioning technology is, therefore, of parament importance.

For instance, in logistics, UAVs use positioning to streamline

delivery routes, demonstrating their pivotal role in automat-

ing and optimizing UAV operations across various sectors,

from smart manufacturing plants to disaster assessment and

beyond [27]. Moreover, UAVs themselves can also provide

high-precision positioning services. For instance, Wang et al.

[28] proposed a UAV-based PS to provide highly reliable

positioning services for people in mountainous environments,

where conventional wireless PSs offered limited services. Due

to their unique ability to navigate to locations where both the

signal propagation conditions and geometric configurations are

optimal for positioning, UAVs can outperform conventional

ground-based wireless technologies. With the advancement

of positioning technology, UAVs are expected to find more

applications such as manufacturing, farming, environmental

monitoring, and warehouses, among others.

Location Based Personnel and Customer Assistance: Posi-

tioning can optimize paths and tasks based on the employees’

locations and deliver targeted advertisement to users based on

their locations, therefore enhancing enterprise efficiency. It can

also enhance safety through location-based alerts. Moreover,

high-precision positioning allows enterprises to obtain accurate

information about their users, thereby increasing their revenue.

For example, online advertising is a valuable revenue stream
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TABLE I

LOCALIZATION REQUIREMENTS OF DIFFERENT APPLICATIONS

Application Requirement

Public provision

Context aware location-

based user assistance

• Meter-level accuracy

• Low energy consumption and low cost [21]

Medical and healthcare

• At least meter-level accuracy

• High reliability and robustness

• Low latency

• Privacy information protection [22]

Public security

• At least meter-level accuracy

• Low latency

• High reliability and robustness [20]

Enterprise

UAVs

• Centimeter-level accuracy

• Wide coverage

• High mobility tracking [23] and low latency

Location based personnel

and customer assistance

• Meter-level accuracy

• Low latency

• Wide coverage

Asset tracking and management

• At least submeter-level accuracy

• Cooperative localization among massive IoT devices [23]

• High reliability

• Low latency

Individuals

Extended reality (XR)
• Centimeter-level accuracy (i.e. 1-10 cm)

• Very low latency (less than 20 ms) [24]

Smart life

• Submeter-level accuracy

• NLOS-based localization [25]

• Low energy consumption

• Privacy information classification and protection [26]

for providers, with location-based advertising emerging as

an effective means of enhancing the effectiveness of online

advertising. Cheng et al. [29] investigated a framework to

maximize the effectiveness of mobile advertising. The authors

concluded that both service providers and customers can

benefit from location information.

Asset Tracking and Management: Positioning allows en-

terprises to monitor the location of equipment and assets in

real-time, thus reducing inventory tracking and management

time and resources. Real-time tracking of goods, for example,

ensures transparency from warehouse storage to delivery,

enhancing the reliability of supply chains in logistics and

supply chain management. In the context of smart factories,

indoor positioning is instrumental in optimizing operational

efficiency and safety. As a result, it facilitates automated

inventory management, enhanced workflow optimization, and

the prevention of accidents by ensuring workers do not enter

hazardous areas without the proper clearances. By leveraging

indoor positioning, factories can achieve higher levels of au-

tomation, improve resource allocation, and enhance the overall

safety and productivity of their operations [30].

C. Individuals

In the online to offline (O2O) ecosystem, PSs play a crucial

role in bridging the gap between digital platforms and physical

stores. In contrast to the previous subsections that focused on

small enterprises and public facilities, this section is primarily

concerned with personal services.

Extended Reality: Positioning is a cornerstone of XR en-

compassing virtual reality (VR), augmented reality (AR), and

mixed reality (MR). For example, in AR applications, PSs

enable the overlay of digital content over the real world in a

way that seamlessly interacts with the user’s environment. In

navigation aids, educational tools, and gaming the alignment

of virtual objects with the physical world enhances the user’s

sense of presence and engagement [31]. For room-scale expe-

riences in VR, location tracking is essential, as it allows users

to move freely within a virtual environment that is similar to

their physical environment. As a result of this capability, users

are not only able to interact more effectively within the virtual

domain, but they are also protected from collisions with real-

world objects.

Smart Life: Positioning is essential in realizing the vision

of a smart life, where digital and physical worlds converge in

order to enhance the quality of life. In smart homes/offices,

location-based technology enables automation systems to ad-

just lighting, temperature, and security settings in accordance

with the residents’ presence or absence, thereby creating a

more comfortable and energy-efficient living environment. For

personal health, wearable devices use location tracking to

monitor physical activities and provide personalized service.

For example, A robust PS, for example, can provide rapid
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location and rescue services for an elderly person who has

fallen or assist blind people in navigating within buildings. In

the field of transportation, location services can provide real-

time navigation, traffic updates and customized personalized

travel recommendations, thereby streamlining commutes and

reducing congestion.

D. Motivations

A summary of the requirements of typical positioning

applications is given in Table I. As can be observed from Table

I, there are different key indicators for different applications.

For example, XR typically requires a delay to be within

20 ms and centimeter-level PA. The intelligent adjustment

application, on the other hand, does not require such high

positioning precision and low latency, but it does require low

energy consumption in order to provide long-term service,

since many sensors are powered by batteries. As medical

and healthcare applications contain life-critical services, the

security of patients’ data is highly important. Therefore, it is

necessary to comprehensively analyze KPIs, techniques, and

technologies of PSs, which will be discussed in detail in the

following sections.

III. KPIS AND MEASUREMENTS

A. KPIs

The primary objective of IPSs is to achieve high levels

of PA. There are, however, certain applications that require

additional metrics due to their specific features, thus the need

for KPIs. An overview of KPIs (accuracy, energy efficiency,

availability, cost, latency, scalability, robustness, and security)

for IPSs is provided in this subsection.

Accuracy: PSs rely heavily on accuracy, which measures

the degree to which the estimated location corresponds to

the actual position. It is typically quantified in terms of

root mean square error (RMSE) or cumulative distribution

function (CDF) of measurements with an error below a

specified threshold. There are different levels of PA, that are

capable of meeting various business functions, which require

a tailored analysis aligned with a specific application scenario.

The implementation of location-based store recommendation

services, for example, does not require highly accurate location

information. Note, a high degree of PA may result in additional

costs. An emergent application such as indoor AR navigation,

however, will benefit from the higher accuracy of the location

information, thus improving the experience for users.

Energy efficiency: A crucial performance indicator is the

energy efficiency of PSs. This is because a PS that consumes

high amount of energy may lead to rapid battery drainage on

user devices, thus limiting its application and marketability. As

a result, a well-designed PS should be energy efficient, which

meets the energy requirement of next-generation wireless

networks (i.e., 6G). Note, several factors influence energy

efficiency, including transmit power, algorithm complexity,

hardware design, etc., so a trade-off must be made between

them to achieve the best energy efficiency [9], [32].

Availability: Devices as well as services are affected by

availability issues. In the former, users can access the PS on

their own devices without the need for specialized terminal

equipment. For example, WiFi and Bluetooth are widely used

technologies that are available on almost all mobile devices.

For the latter, availability refers to the continuity and stability

of the PS’s services. PSs with good availability should con-

sistently provide accurate, reliable, and real-time positioning

services, ensuring users will always receive reliable results

regardless of the circumstances.

Cost: Cost is an important aspect of the design and ap-

plication of PSs, which necessitates a thorough consideration

of the costs throughout the development process. The PS’s

cost is influenced by a variety of factors, including hardware

expenditures, time investment, human resources, as well as

maintenance and expansion of the system. In order to minimize

overall cost, an ideal PS should reduce the need for additional

infrastructure and avoid relying on high-end user equipment

or systems that are difficult to deploy widely.

Latency: The term “latency” refers to the amount of time

that elapses between sending a request and receiving the

corresponding location results. Latency can have a significant

impact on the user experience in many real-time applications

and can even be life-critical in some circumstances. For

example in intelligent transportation systems, the delay in

positioning may prevent vehicles from avoiding obstacles or

adjusting direction in time, thereby increasing the chance of

accidents.

Scalability: Scalability refers to a system’s ability to expand

geographically and to deal with the increasing number of

devices. As the number of users or devices that rely on the

PS increases, a system with good scalability should maintain

a stable performance and accuracy. As the demand increases.

scalability also implies that the system can effectively manage

its resources, such as bandwidth and power consumption, in

an effective manner. In addition, as technology develops and

advances, a scalable PS should also be able to integrate new

technologies and standards.

Robustness: The robustness of PSs refers to their ability

to withstand disturbances and signal losses that may im-

pair their functionalities. In practice, the positioning environ-

ment is complex with different situations, such as extreme

weather conditions, obstructions, noise and interference, etc.

PSs should adapt to different environmental conditions and

provide accurate positioning service even in harsh conditions

that can affect the transmission of signals.

Security and Privacy: Although security has become an

increasingly important topic in communications, it is rarely

considered a significant indicator in positioning. However,

security and privacy issues in PSs are equally important and

may compromise other performance metrics such as accuracy

and latency as well [33]. Security and privacy issues include

confidentiality, integrity, authenticity, and other issues such

as the draining of resources. Note that different PSs have

different safety issues. For example, for beacon-based PSs,

the replacement and replaying of beacons can result in inac-

curate positioning data. A jamming attack is another example,

in which externally introduced noise disrupts the wireless

communication channel between the beacon and the receiver.

Therefore, security and privacy are also important performance



6

A1
B1

C1

Fig. 2: TOA positioning schematic diagram.

indicators, especially for future intelligent applications that

contain a significant amount of personal information and life-

critical applications that may lead to serious consequences.

B. Measurement

TOA: A time of arrival (TOA) or time of flight (TOF)-

based distance estimation is based on the propagation time of

the signal from the transmitter to the receiver. Two common

methods are employed to obtain TOA information. The first

method involves estimating the round-trip time (RTT) by

including timestamps in the transmission and reception times

of the signal. Alternatively, if the system is synchronized, TOA

can be directly inferred from the signal, and the time resolution

is primarily dependent on the bandwidth of the signal.

ToA-based two-dimensional (2D) positioning algorithms

require at least three non-coplanar access points (AP) or

anchors, to ensure unique positioning results [34], see Fig.

2. Assume that the transmitter sends a signal at time 0, and

the i-th AP receives the signal at time ti. The distance between

the transmitter and i-th AP can be calculated as di = c · ti,

where c = 3×108 m/s is the propagation speed. The distances

between the three APs and the transmitter are d1, d2, and

d3, respectively. Assuming that the AP location is the center

and the measured distance is the radius, the target can be

located by drawing three circles intersecting at one point. The

least square method can be used to calculate the approximate

position of the target [35]. Alternatively, a three-dimensional

(3D) PS requires a minimum of four APs. Khalaf-Allah et al.

[36] proposed a solution for the three-anchor ToA-based 3D

PS without the need for an initial position guess in order to

reduce the hardware deployment costs.

TOA directly measures the arrival time of the signal and

can filter out the multipath effects, thereby improving the

PA. This technique, however, has the drawback of requiring

highly accurate time synchronization between the transmitter

and the receiver. A synchronization error of one nanosecond

results in a positioning error of 0.3 m [37]. The process of

achieving synchronization among all units is often challenging

and costly, and there are some solutions for PSs using the TOA

algorithm when synchronization is imperfect [38] [39]. For

A2 B2

C2

Fig. 3: TDOA positioning schematic diagram.

TOA-based PSs [40], position estimation accuracy typically

falls within the range of millimeters or centimeters under

perfect synchronization between the transmitter and receiver.

Time difference of arrival (TDOA): To relieve the strict

synchronization requirement of TOA, TDOA is proposed.

TDOA determines the transmitter position by measuring the

difference in signal arrival time, TOAD is able to determine

the transmitter’s position, and, therefore, it only requires strict

synchronization between APs or receivers, which is easier to

implement. Here, TDOA can either refer to the TDOA of

multiple nodes or the TDOA of multiple signals [41]. In ap-

proaches based on TDOA of multiple nodes, several receivers

are placed at different locations and kept synchronized in time.

Periodically, the transmitter transmits signals and the receivers

record the time at which they are received. The time difference

between signal arrivals is then calculated. For approaches

based on TDOA of multiple signals, the transmitter transmits

two different types of signals with different propagation speeds

[42], and the distance between these two devices can be

determined by measuring the difference in time between the

arrival of these two types of signals [43].

The TDOA with multiple nodes requires at least three

synchronized APs to locate the transmitter, see Fig. 3. The

technique measures the time difference ti,j between a pair of

APs, i.e., AP i and j. The distance difference between a pair

of APs is defined as L = c · ti,j . Using AP A2 and AP B2

as an example, a hyperbola can be obtained by combining

the distance difference between the two APs. Similarly, using

APs A2 and C2, another hyperbola can be obtained, and the

intersection point of the two hyperbolas is the position of the

user equipment (UEs) [13]. The hyperbola can be expressed

as:

L =

√

(xi − x)
2
+ (yi − y)

2
+ (zi − z)

2

−

√

(xj − x)
2
+ (yj − y)

2
+ (zj − z)

2
,

(1)

where (xi, yi, zi) is the coordinate of i-th AP and (x, y, z)

is the coordinate of the transmitter. The system of hyperbola

equations can be solved either through linear regression or by

linearizing the equation using Taylor series expansion [44].

In general, the TDOA eliminates the need for synchroniza-

tion between the transmitter and receiver, which simplifies
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Fig. 4: AOA positioning schematic diagram.

the PS design and enhances its scalability. However, the PA

of TDOA is susceptible to environmental factors such as

multipath effects, noise, and non Line-Of-Sight (NLOS).

AOA: The angle of arrival (AoA) technique estimates the

angle of the transmitter to the receiver by equipping the

receiver with an antenna array. As shown in Fig. 4, a multi-

antenna array produces a time difference in the reception of

signals arriving from different angles, which corresponds to

the arrival angle of the signals. The AOA algorithm requires

at least two APs with known positions. Starting from the AP,

the ray formed will pass through the target, which is located

at the intersection of the two rays.

AOA-based PS does not require time synchronization and

offers higher flexibility compared to TOA or TDOA-based sys-

tems, as it only requires the deployment of two APs equipped

with antenna arrays. AoA offers accurate estimates, particu-

larly in scenarios where the distance between the transmitter

and receiver is relatively short [45]. For example, in Bluetooth

5.1 standard, the application of AoA greatly enhances the PA.

Zhao et al. [46] implemented an AOA IPS based on Bluetooth

5.1 to realize the asset positioning in the warehouse, which has

the advantages of simplicity, low installation costs, and sub-

meter PA.

The practical implementation of the AOA technology faces

several challenges. In the absence of AOA not combined with

distance information, only a relative coordinate system can be

used for estimating a position. For accurate positioning, hybrid

algorithms integrating AOA with other PS, such as TOA or

TDOA, have been proposed [47]–[49]. Moreover, blockage

and multipath propagation may result in inaccurate estimation

of AOA.

POA: The phase of arrival (POA) utilizes the phase of the

carrier signal to estimate the distance between the transmitter

and the receiver. POA measures the phase of the signal at the

receiver, which is modulated with different frequencies and

has the same initial phase at the transmitter. By calculating the

phase difference, the distance between the two can be obtained.

The POA measurement can be combined with ToA, TDoA, or

RSSI to improve the accuracy and performance of the PSs.

Since distance information is related to the signal phase, POA

has relatively lower requirements for signal synchronization,

thereby avoiding the impact of time synchronization inaccu-

racies on positioning results. POA-based methods have the

disadvantage of requiring LOS propagation paths to achieve

high precision positioning, which is challenging to realize in

real-world situations [9].

RSS: Received signal strength (RSS) is one of the most

popular measurements in IPS due to its simplicity and low

costs. Here, RSS typically refers to the absolute measure of

the signal strength in dBm or mW at the receiver. A concept

closely related to RSS is RSS indicator (RSSI), which is

a relative measure of RSS in arbitrary units. Often, RSSI

values are often mapped to a scale defined by the hardware

manufacturer, which makes is easier to interpret than RSS

values. For instance, Atheros WiFi chipset utilizes an RSSI

range between 0 and 60; Cisco, on the other hand, uses a

broader RSSI range of 0 to 100 [9].

As we know, RSS attenuates with the transmission distance.

Therefore, given the channel model, the distance between

the transmitter and the receiver can be determined. Here, the

channel model varies depending on the types of transmission

signals. For instance, for visible light signals, the deterministic

Lambertian channel model is typically employed to calculate

the distance between the transmitter and the receiver [50],

while for terahertz (THz) signals, deterministic, statistical, and

hybrid approaches channel models may be used depending to

the specific application scenarios [51]. Considering the VLP,

for example, its RSS in mW can be expressed as:

Pr =
U

dm+3
, (2)

where d is the distance between the transmitter and the

receiver, and U is a parameter related to the transmit power,

the configurations of the transmitter and the receiver, and

the emergence and incidence angles of the transmission link.

Therefore, when the system parameters are known, U can then

be calculated, and d can be determined from measured Pr

according to (2).

Based on RSS, two types of positioning algorithms can

be used: (i) the fingerprinting algorithm, where the collected

data from various known locations is stored in a database.

To localize a device, it measures in real-time the RSS values

from the surrounding APs in real-time, and compares them

with fingerprints stored in the device. Common matching

techniques include the following methods [9]: probabilistic,

artificial neural networks, k-nearest neighbor, and support

vector machine. (ii) The second type is proximity, which is

a simple matching strategy that estimates the location of the

device to be the same as that of the nearest access point

(AP). However, its accuracy is limited and heavily dependent

on the density of APs. RSS-based positioning is particularly

advantageous due to its low hardware requirements and ease

of implementation, making it a preferred method for situations

where advanced PSs may not be practical or cost-effective. It

is widely used in a variety of environments, from commer-

cial settings for tracking customers to industrial settings for

monitoring assets. However, RSS also faces some challenges.

In complex indoor environments, factors such as multipath
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TABLE II

POSITIONING MEASUREMENT COMPARISON

Measurement Accuracy Cost Real-time
Synchro-
nization

Privacy and
Security

Computation Comments

TOA
Centimeter to

Sub-meter-level
● Hard Yes

⊙ ⊙ Highly biased from the
environment, additional hardware

may be required.

TDOA
Centimeter to

Sub-meter-level
● Hard Yes

⊙ ⊙ Performance is degraded
in the NLOS condition.

AOA
Sub-meter to
meter-level

● Soft No
⊙

●

LOS signal propagation and
additional hardware is required

(e.g., antenna arrays).

POA
Sub-meter to
meter-level

⊙
Soft Yes

⊙
●

LOS signal propagation is
required .

RSS
Meter-level or

lower
© Hard No © ©

PA is susceptible to
obstacles and multipath

propagation.

CSI
Centimeter-level

or higher
● Hard No ●

⊙
Special hardware is required.

∗We roughly categorize KPI values in the table into 3 levels, e.g. ©: Low,
⊙

: Medium, ●: High.

propagation can significantly distort the RSS values, resulting

in inaccuracies in positioning. Additionally, environmental

dynamics such as human movement and changes in interior

layout negatively affect RSS-based methods.

CSI: CSI refers to the fine-grained characteristics of the

wireless propagation path such as attenuation and phase shift,

which is crucial in both data transmission and positioning.

In contrast to RSS which measures the average amplitude of

the signal across its entire bandwidth and aggregates signal

strength from all antennas, CSI measures both the amplitude

and the phase of each carrier frequency [52]. Zheng et al.

[53] proposed a support vector machine model for an NLOS-

based system based on CSI amplitude, which outperformed the

Rician-K and Skewness NLOS detection methods. Moreover,

both the channel impulse response (CIR) and the channel

frequency response (CFR), which are two variations of CSI

techniques, are commonly used in multipath environments for

different PSs including geometrical methods [54], fingerprint-

ing [55], [56], or ML-based method [57]–[59].

It is generally acknowledged that CSI provides a high level

of granularity for precise location estimation and is more

robust in multipath and NLOS scenarios than RSS-based PSs.

Additionally, CSI provides a wealth of information that can

be used by ML algorithms to further enhance PA. However,

in dense, cluttered indoor environments, signal reflection, and

occlusion can have a significant impact on CSI, which further

affects the PA. Moreover, the calibration of the CSI-based PSs

can also be laborious in site surveying. Table II summarizes

and compares the key features of all measurements.

IV. KEY ENABLER TECHNIQUES

A. Machine learning

ML enables computers to analyze data (i.e., user behavior

data, wireless network, and environmental data) for IPS. In

particular, ML has two key roles in PSs. (i) ML can extract

the positioning features from wireless pilot signals to build

a relationship between them and user positions. Here, ML

algorithms can be viewed as black boxes with the inputs being

wireless pilot signals (in the time or frequency domain) or

features (i.e., RSS) of CSI signals and the output being the

user’s position. As opposed to traditional methods such as

TOA methods [60], which manually extract user positioning

features (i.e., the distance between the access point and the

user), ML-based PSs can automatically extract user positioning

features. Hence, ML-based PSs can extract more features from

signals in order to determine a user’s position. The ML meth-

ods, however, require several labeled data points for training,

which is a time-consuming and labor-intensive process. (ii)

ML extracts CSI from pilot signals and the extracted CSI,

which will be used for traditional positioning methods. For

example, one can use ML methods to (i) determine whether the

transmission link is LOS or NLOS; (ii) predict the arrival time

of the signal; (iii) estimate the distance between the BS and

the user; and (iv) estimate the angle differences between two

antennas. The ML methods, as opposed to traditional methods

[61] not being able to extract CSI features accurately in NLOS-

based systems, is capable of analyzing the hidden wireless

environmental features, resulting in accurate CSI features that

can be used to perform traditional positioning. In addition, ML

methods for CSI feature extraction can be trained by using the

simulated data, which reduces the overhead associated with

generating labeled data.

Next, we discuss several recent works on the use of ML

algorithms for both user positioning and CSI feature extrac-

tion. Current works [62] [63] [64] [65] have studied the use of

multilayer perceptron, convolutional neural networks (CNNs),

recurrent neural networks (RNNs), generative models, and

attention-based networks (i.e., transformer) to process CSI

data and directly output user positions. Note, (i) a CNN is

used when the CSI data can be viewed as an image (i.e., CSI

data generated from multiple antennas); and (ii) RNNs are

used when the CSI data are time-dependent, while attention-

based networks are used to extract CSI features that can

significantly contribute to estimation of the user position.

Meanwhile, some current works [66] [67] have studied the

use of previously mentioned NNs for CSI feature prediction.
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In [66], the deep neural network (DNN) method was proposed

to learn the distribution of known RSS samples by estimating

a user’s location by comparing the similarity of online RSS

samples with the reference fingerprints. In [67], three DNN

models were developed using pre-proposed data for training.

Following training, a subset of samples is selected from the

training set for assessing the models, which are then employed

during the testing phase to predict real-time CSI data.

To further improve the user position and CSI feature predic-

tion accuracy, current works [68] [69] [70] also investigated

the use of ML to analyze multi-modal data (i.e., camera

images, CSI data, earth magnetic field readings) for user

positioning. In [68], a system based on deep long-short-term

memory (LSTM) was proposed for indoor positioning using

magnetic and light sensors embedded in smartphones. In [69],

the amplitude information extracted from the CSI together

with the calibrated phase information as fingerprints were used

to train a DNN-based regression model in order to estimate

the target location. The authors [70] utilized a CNN-based

image retrieval strategy that represented the scene by CNN

features and matches the query image with database images. In

[59], a VLC-IPS with a camera-based receiver was proposed,

where the receiver’s position is precisely estimated based on

the decoded block coordinate and backpropagation ANN with

a mean PA of 1.49 cm.

B. Large models

Large models belong to the field of ML. To distinguish large

models from positioning methods based on traditional ML

methods, we introduce them separately due to their immense

potential. The traditional ML-based method has two issues: (i)

largely relying on labeled data, resulting in the need for a sig-

nificant amount of manual labor; and (ii) limited adaptability

to new environments. Large models are expected to alleviate

these problems. First, large models can analyze the wireless

network’s environment, temporal and situational with excep-

tional accuracy, thus accurately identifying users’ locations.

Multimodal large language models, through the integration

of multimodal data, are expected to parse and comprehend

various information in the environment, including RF-based

feedback signals, visual gestures, inertial measurement unit

(IMU) motion sensor data, and 3D maps [71], thus introducing

sensing and prediction of the surrounding environment in

complex settings. Second, multimodal large models should

be able to understand the connections between RF, visual,

and inertial data among other modal data types, thereby

reducing the need for labeled RF data and the manual labor

costs associated with data annotations. Moreover, considering

the generative capabilities of multimodal large models, it is

anticipated that limited wireless data will be able to generate

super-resolution 3D images of the surrounding environment.

Incorporating 3D image data with the RF data may provide

a better understanding and prediction of user behavior [72],

resulting in better proactive positioning, beamforming, power

distribution, switching, and spectrum management.

Overall, large models have a wide range of applications in

positioning. To benefit from the potential of large models in

PSs, it is essential to enhance their ability to understand and

predict environments, as well as unlock their ability to align

and comprehend multimodal data.

C. Adaptive filter

Adaptive filter refers to a digital filter that dynamically

adjusts its coefficients to adapt to changing properties of the

signal or the environment in which it operates. It is widely

used in fusion positioning due to its ability to iteratively

optimize estimations as well as robustness to the noise and

interference [73]. Different sources of data may have varying

levels of accuracy and features, which change over time due to

environmental factors like signal obstruction or sensor errors.

Inertial navigation methods, for example, provide continuous

estimation of target orientations and positions but suffer from

the problem of cumulative errors [74]. PSs based on the

UWB can provide valuable precious position observations,

albeit with the limitation of intermittent output. UWB can

assist in the correction of inertial navigation errors, while

inertial navigation can provide stable positioning services

when UWB fails. Therefore, exploiting the complementary

nature of deeply fusing diverse positioning methods based

on adaptive filters and fusing them to obtain more accurate

estimates of position and orientation has received considerable

attention [75]. The two most employed filters in PSs are the

Kalman filter (KF) and the particle filter (PF) [76].
1) Kalman Filter based methods: Kalman filter is designed

to process a sequence of measurements observed over time,

which may contain statistical noise and various inaccuracies.

It generates more precise estimates of unknown variables than

those derived from a single measurement. This is achieved

by estimating a joint probability distribution of the variables

for each timeframe, thereby enhancing the accuracy of the

output. This technique involves the acquisition of two sets of

data: the estimation from the previous time step and the real-

time measurement [77]. As a result of combining these two

sets of data in real-time estimation, the obtained estimation

represents the transition process of the system state. This

approach addresses the challenging task of estimation in non-

stationary random processes. However, the initial implemen-

tation of KF primarily relied on the state equation, making

it only applicable to linear systems. In subsequent research,

various improved KF techniques have been developed for the

optimization of estimates in nonlinear systems. Among them,

the most representative ones are the extended Kalman filter

(EKF) and the unscented Kalman filter (UKF).
The EKF introduces Jacobian matrices to address the chal-

lenges in nonlinear systems by means of local linearizing.

Feng et al. [78] proposed an integrated IPS using EKF,

demonstrating that the proposed algorithm can significantly

reduce the complexity and costs of base station deployment.

In [79], an adaptive feedback extended Kalman filter (AFEKF)

algorithm was proposed to fuse Bluetooth low energy (BLE)

and pedestrian dead reckoning (PDR), in which the range

measurement is deeply fed back to the estimated position at the

next moment. Experimental results showed that the AFEKF

algorithm improves the accuracy by 23.4% compared with the

classical EKF algorithm.
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The UKF scheme combines the unscented transform (UT)

with KF framework, thereby making the equations of a non-

linear system compatible with the standard KF framework.

In [80], a multisensor fusion technology based on UKF was

used to avoid the issue of neglecting the high-order terms

of the nonlinear observation equations of UWB and IMU,

which have the potential to improve PA. In [81], an adaptive

maximum correntropy unscented Kalman filter (AMCUKF)

was proposed to fuse IMU and UWB data. Using the maxi-

mum correntropy criterion, the algorithm suppresses the non-

Gaussian noise, thus improving the PA and robustness in

complex environments.

In addition to the enhancements to the KF mentioned above,

other fusion solutions based on KF have been introduced. The

authors in [82] proposed an adaptive federated Kalman filter

(AFKF) algorithm, where the sharing factors of information

fusion and distribution in the FKFr are adaptively adjusted

based on the information of sub-filters. The results showed that

the PA is improved by more than 10% compared with other

FKF algorithms. In [83], an enhanced ensemble transform

Kalman filter (ETKF) was proposed, which fused the predicted

position by a PDR and the positional measurement by RSS

fingerprinting, thereby estimating the user position based on

the ensemble transformation. The experimental results showed

that the enhanced ensemble ETKF can achieve higher PA than

ETKF and other ensemble-based KFs [83].

2) Particle Filter based methods: PF is a nonparametric

Bayesian filter algorithm based on Monte Carlo methods and is

employed for the estimation of states in hybrid PSs. Compared

with the KF algorithm, a unique feature of the PF algorithm

is its sampling approach, which utilizes a set of randomly

sampled particles with the associated weights to approximate

the posterior distribution of the state [84]. Note that by (i)

relaxing the constraints of linearity and Gaussianity, it is

possible to handle nonlinear models and non-Gaussian noise

distributions; and (ii) adjusting the weights and positions of

particles, the algorithm yields an estimate of the state of

the system, i.e., the position of the user. The selection and

computation of the weights depend on the PSs to be fused.

In [85], a feasible method utilizing particle filter to fuse data-

driven inertial navigation and BLE was proposed for indoor

positioning. The proposed fusion algorithm reduced the mean

positional error by more than 25% compared with Bluetooth-

based positioning.

The current research primarily focuses on enhancing the

weight strategy and modifying the structure of filters. The

authors in [101] proposed an optimized particle filter algorithm

that fused PDR and geomagnetic positioning by introducing

a firefly algorithm to optimize PF, thereby enhancing particle

updating and target state detection. Compared with the conven-

tional particle filter, the PA was improved by 120%. In [88],

a federated particle filter (FPF) with information sharing was

proposed to fuse PDR and WiFi. The system is comprised

of multiple sub-filters and a primary filter. The observed

data input was initially optimized for the corresponding sub-

filters. Subsequently, the obtained output was applied to the

primary filter for the final estimation. The experimental results

demonstrated that the proposed method can effectively control

the accuracy to within approximately 1 m. The authors in

[87] proposed TrackInFactory, a solution based on PF that

fuses INS and WiFi information in a novel way. The scheme

dynamically updates the particles’ weights using a new and

reliable metric that defines the confidence of each position

estimate, with a mean error of 0.81 m. Also, in [89], a novel

maximum likelihood particle filter was proposed to ensure

that all particles are efficiently used. The performance of the

algorithm exceeded the requirements of the 5G NR Release 16

standard from 3GPP. In [102], the authors developed a high-

precision PS that completed an enhanced particle filter with

an adaptive reassignment of weights to different positioning

modules. The system outperformed the current state-of-the-art

PSs and achieved an average PA of 0.4 m.

In summary, adaptive filters have gained widespread ap-

plication in fusion positioning due to their ability to au-

tonomously update filter coefficients depending on the envi-

ronment in which they are used. There are, however, some

challenges associated with adaptive filters including the coef-

ficient adjustment delays and slow convergence rates, which

makes them less suitable for real-time data fusion tasks with

stringent timing requirements [103]. Table III summarizes the

current research and provides an evaluation of the attributes of

the fusion PSs based on adaptive filter [78]–[83], [85]–[100].

D. Reconfigurable Intelligent Surface

RIS is a plane composed of numerous tiny antenna compo-

nents, which can be programmatically controlled to dynami-

cally modify the propagation characteristics of electromagnetic

waves (i.e., amplitude, phase, and polarization) [104]–[106].

RIS optimizes the performance of wireless communication

networks by efficiently controlling wireless signals through

altering the electromagnetic wave propagation environment

[107]. RIS operates on the principle of electromagnetic wave

reflections. Specifically, when electromagnetic waves, such as

wireless signals, encounter the RIS, each scattering element

of RIS independently adjusts the phase and amplitude of

the reflected waves. By precisely adjusting these parameters,

RIS can change the propagation direction of electromagnetic

waves, and concentrate or disperse energy, thus controlling the

propagation of signals in specific directions.

In PSs, RIS generally plays two roles: (i) as passive reflec-

tors, which are most used [108]; and (ii) active reflectors (i.e.,

active transceivers) [107]. When RIS acts as reflectors, it can

create additional signal propagation paths to bypass blocking

and shadowing, thus introducing extra degrees of freedom

in the design of PSs [109]. In [110], a reflector-based RIS

was introduced in a mmWave multiple-input multiple-output

(MIMO)-based PS. Also introduced were Fisher information

matrix (FIM) and Cramer–Rao lower bound (CRLB) for the

standard deviation of the positioning estimation error as well

as the orientation estimation error, which demonstrated that the

proposed PS is superior to the traditional PS. The authors in

[111] used reflector-based RIS in the scenarios with no LOS

paths, and derived the FIM and CRLB in order to estimate

the absolute position of the mobile station. By optimizing the

reflect beamforming design to minimize CRLB, the PA was
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TABLE III

ADAPTIVE FILTER BASED FUSION POSITIONING COMPARISON

Base Filter System Positioning Algorithm Filter Algorithm
Evaluation Framework

Availability Accuracy Cost
Environment

-friendly
Portability Instantaneity

Kalman Filter [78] Extended Kalman Filter (EKF) UWB + INS √ Centimeter-level (cm) High √ Low √

Kalman Filter [80] Unscented Kalman Filter (UKF) UWB + INS √ Centimeter-level (cm) High √ Low √

Kalman Filter [81]
Adaptive Maximum Correntropy

Unscented Kalman filter (AMCUKF)
UWB + INS √ Sub-meter to meter-level High √ Low √

Kalman Filter [82]
Adaptive Federated

Kalman filter (AFKF)
UWB + INS √ Centimeter-level (cm) High √ Low √

Kalman Filter [86] Extended Kalman Filter (EKF) UWB + INS √ Sub-meter to meter-level High √ High √

Kalman Filter [83]
Ensemble Transform
Kalman filter (ETKF)

WIFI + INS √ Meter-level Low √ Low ×

Particle Filter [87] Particle Filter (PF) WIFI + INS √ Sub-meter to meter-level High × Low ×

Particle Filter [88] Federated Particle Filter (FPF) WIFI + PDR √ Sub-meter to meter-level Low √ High ×

Particle Filter [89]
Maximum Likelihood
Particle Filter (MLPF)

WIFI + INS √ Sub-meter level High √ Low √

Particle Filter [90] Particle Filter (PF) WIFI + BLE √ Meter-level High √ Low ×

Kalman Filter [91] Unscented Kalman Filter (UKF)
WIFI + BLE

+ PDR
√ Meter-level High √ Low √

Particle Filter [92] Extended Kalman Filter (EKF) WIFI + PDR √ Meter-level High √ Low ×

Kalman Filer [79]
Adaptive Feedback Extended

Kalman filter (AFEKF)
BLE + PDR √ Sub-meter to meter-level Low √ High √

Particle Filter [85] Particle Filter (PF) BLE + INS √ Meter-level Low √ High ×

Kalman Filter [93] Extended Kalman Filter (EKF) BLE + PDR √ Sub-meter to meter-level High √ Low ×

Kalman Filter [94] Extended Kalman Filter (EKF)
Acoustic Ranging

+ PDR
√ Sub-meter to meter-level Low √ Low ×

Particle Filter [95] Particle Filter (PF) VLP + INS √ Centimeter-level (cm) Low √ High √

Kalman Filter [96] Extended Kalman Filter (EKF) VLP + INS √ Sub-meter level High √ High √

Kalman Filter [97] Extended Kalman Filter (EKF) VLP + PDR √ Sub-meter to meter-level Low √ High √

Particle Filter [98] Particle Filter (PF) VLP + PDR √ Sub-meter level Low √ High ×

Kalman Filter [99] Extended Kalman Filter (EKF) VLP + PDR √ Sub-meter level Low √ High ×

Kalman Filter [100] Extended Kalman Filter (EKF) VLP + INS √ Centimeter-level (cm) High √ Low √

improved by the decimeter level or even the centimeter level

[112], [113]. By acting as transmitters [114] or receivers [115],

the RIS can be operated as a reconfigurable lens in PSs.

The advantages of applying RIS in PSs are as follows:

(i) significantly enhanced PA by adjusting signal propagation

paths [116]; (ii) enhancing the coverage area by smartly

reflecting signals to avoid obstacles, thereby establishing adap-

tive virtual LOS connections in areas with poor coverage

or blind spots [117]; and (iii) cost-effective, using reflective

components, miniature antennas, and diodes. The challenges

of RIS in PSs, however, are in the design and implementation

complexity, highly precise control, standardization, and com-

patibility [108]. In addition, the RIS technology lacks unified

standards [118], and more research works need carrying out

on protocols [119].

E. Software Defined Network (SDN)

SDN represents a new paradigm of network architecture

designed to enhance network flexibility, manageability, and

programmability [120], [121]. The fundamental idea of SDN is

to separate the network control layer from the data forwarding

layer [122], which allows more agile handling of network

traffic and policies [123]. In conventional networks, each

network device, such as switches and routers, possesses its

own control logic and forwarding functions. As a result of

SDN, network management is simplified and optimized by

abstracting the control logic (which determines how and where

data is forwarded) from physical devices and centralizing it

into a single point of control,i.e., the SDN controller [123]–

[127].

In wireless sensor networks, SDN can enhance the efficiency

and accuracy of positioning services [128]. In PSs, SDN can be

used with either gainful methods or ungainful methods [129],

where in the former the focus is on enhancing PA and reducing

energy consumption. Kim et al. [128] proposed an SDN-

based positioning node selection algorithm that used a linear

least square algorithm and RSS measurements to implement

Euclidean position estimation. Simulation results showed up to

45% increase in PA. In [130], a centralized anchor scheduling

scheme was proposed, which used the SDN controller to

broadcast messages among nodes and localized mobile agents.

Based on simulation results with a 14,400 m2 sensor field

with 200 randomly placed anchor nodes and 10 mobile agents,

it was shown that the scheme reduced the number of active

anchor nodes and reduced the PA with a significant reduction

in the energy consumption, thereby increasing the network

lifetime. Some similar works can be found in [131]–[133].

In ungainful methods, SDN does not typically incorporate the

computational requirements of positioning in the control-plane

[134]. Instead, they explore the potential of combining SDN

with positioning.

SDN can enhance various aspects of positioning, such as
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reducing energy consumption and improving accuracy [135].

Specifically, SDN can not only provide an energy-efficient

method for managing sensors but also manage networks,

thereby reducing convergence time. Due to these two char-

acteristics, SDN can reduce energy consumption and reduce

positioning latency in PSs [135]. Based on high centrality

and global perspective on positioning nodes [123], SDN has

improved PA [128], [129], [132] is attributed to its.

V. TECHNOLOGIES AND SOLUTIONS

A. Celluar Networks

Positioning has always been an integral component of stan-

dardized 3GPP technologies. In 3GPP 5G New Radio (NR),

UEs are provided with enhanced positioning capabilities. In

terms of frequency bands, NR operates over a wide frequency

spectrum of below 6 GHz and the lower mmWave range

of 24.25 GHz. This allows NR to leverage a wide signal

bandwidth to achieve higher PA with timing measurements.

A 5G enabler with higher data throughput and coverage

areas, massive antenna arrays, and beamforming techniques

can also be leveraged to locate UEs through accurate angular

measurements.

3GPP 5G NR has supported positioning features since

its inception in Release-15. However, Release 15 position-

ing support is limited to the so-called RAT (Radio Ac-

cess Technology)-independent positioning methods (i.e., using

signals from the UE’s various sensors and WiFi/Bluetooth

receivers) and LTE-based positioning. 3GPP 5G NR Release-

16 introduces native 5G positioning signals and extends the

standardized positioning capability beyond those defined in

4G LTE. Release-16 specifies a range of PSs to satisfy the

needs of regulations, such as FCC’s e911 emergency calls

requirements, and commercial use cases, such as emergency

calls, indoor factories, and vehicle-to-everything (V2X). The

target requirement for commercial use cases is to achieve

a 2D positioning accuracy of less than 3 m and 10 m for

80% of UEs in indoor and outdoor scenarios, respectively.

The regulatory requirement mandates a 2D PA of 50 m for

both indoor and outdoor applications. The PSs include those

using the timing measurements between the UE and multiple

transmission-reception points: downlink or uplink TDoA and

multi-cell round trip time (multi-RTT). In terms of reference

signals, the uplink-sounding reference signal (UL- SRS) for

positioning and the downlink positioning reference signal (DL-

PRS) were introduced in Release-16. Both can be configured

with a bandwidth in the range of 24 to 276 PRBs in steps

of 4 PRBs. This provides a large bandwidth of up to 100

MHz for a 30 kHz subcarrier spacing in FR1, and up to 400

MHz for a 120 kHz subcarrier spacing in FR2. As a result

of large bandwidth, timing measurement can be much more

precise than that of LTE. Additionally, positioning methods

are defined to leverage angular measurements from antenna

arrays, namely the downlink angle of departure (DL-AoD) and

the uplink angle of arrival (UL-AoA).

3GPP Release-17 addresses the stringent requirements of

new applications and industry verticals, including increased

accuracy and lower latency, while maintaining high integrity

and reliability [136]. For general commercial use cases, the

target requirements for 90% of UEs are horizontal and vertical

PAs of <1 and <3 m, respectively. For industry IoT (IIoT)

use cases (e.g., factory automation), the target requirements for

90% of UEs are horizontal and vertical PAs of <0.2 and <1

m, respectively. Release-17 specified numerous enhancement

features to satisfy the tight requirements [137]. These include

methods to mitigate transmission and reception timing errors

at the UE and gNB; methods to improve angular measurements

for DL-AoD and UL-AoA; LOS -NLOS indicator; positioning

of UEs in the inactive state; on-demand transmission and

reception of DL PRS; and GNSS positioning integrity deter-

mination.

In 2023, the work on 3GPP Release-18 for positioning is

being carried out [138], where 5G NR positioning features are

further enhanced, including:

• Two methods are specified for achieving higher PA:

(i) increasing the transmission/reception bandwidth of

the DL and UL reference signals for positioning by

bandwidth aggregation of intra-band contiguous carriers;

and (ii) using the NR carrier phase measurements to

achieve centimeter-level PA, similar to GNSS carrier case

positioning defined for outdoor applications.

• Sidelink (UE-to-UE) positioning is supported in all cov-

erage scenarios (in-coverage, partial coverage and out-

of-coverage) with a focus on V2X and public safety use

cases.

• Low power high accuracy positioning (LPHAP) is sup-

ported for IIoT use cases such as massive asset tracking

and automated guided vehicles (AGV) tracking in facto-

ries. The emphasis is on lower UE power consumption

while achieving a target accuracy of <1 m, where the

device battery life is expected to last from 6 months to a

year.

• PA enhancement features are introduced in Redcap UEs,

to deliver high-accuracy positioning even for devices with

a limited RF bandwidth.

• Positioning integrity is supported for mission-critical use

cases that rely on positioning estimates and uncertainty

estimates. The integrity of RAT-dependent positioning

methods provides a measure of trust in the accuracy of the

position-related data as well as the capability to provide

timely alerts when the accuracy may deteriorate beyond

acceptable levels.

In parallel to the Release-18 work item for positioning,

a study on ML-based positioning is being conducted from

May 2022 to November 2023, which is a representative use

case of Release-18 study on ML for the physical layer [139].

Two approaches are investigated: (i) direct ML positioning

shown in Fig. 5, where the model output is the UE position;

and (ii) ML assisted positioning shown in Fig. 6, where the

model output is one or more intermediate measurements (e.g.,

LOS/NLOS indicator and time-of-arrival) that can be utilized

by conventional positioning methods to determine the UE

position.

ML-based positioning is designed to target challenging

scenarios. For example, in a cluttered factory indoor scenario,
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Fig. 5: Direct AI/ML positioning.

Fig. 6: AI/ML assisted positioning.

where links are scarce and the conventional methods that rely

on timing (e.g., multi-RTT) and/or angular measurements (e.g.,

UL-AoA) tend to fail. For example, the probability of LOS

paths is 0.8% in a factory environment with dense clutter and

a high base station height, and the clutter parameter settings

are clutter density=60%, clutter height=6 m, clutter width=2

m. If using conventional positioning methods, the horizontal

PA is around 15.8 m at 90% CDF, indicating very poor PA. In

contrast, when using the ML-based positioning method, a PA

as low as 20 cm is achievable, depending on design factors

such as ML model input, model architecture and size, and

training dataset size. Such excellent PA demonstrates that ML-

based positioning is a very worthwhile objective for standards

to pursue.

In comparison to conventional (i.e., non-ML) positioning

methods, ML-based positioning requires a paradigm shift in

the design. With conventional methods, a snapshot of the

wireless signals is measured and processed to extract the

timing and/or angular information, after which the location of

the UE can be estimated by triangulation. With the ML-based

positioning methods, an ML model is trained to learn from a

large training dataset, where the training dataset contains fea-

tures that are representative of the target deployment scenario.

The quality and quantity of the training dataset significantly

affect the PA of the model. To support the ML model, a set of

ML life cycle management issues need addressing, including

training data collection, model training, model monitoring, and

model update.

B. WiFi

With WiFi, electronic devices are able to connect to a

wireless local area network (LAN) via the ISM radio band. In

addition to providing high data-rate communication services,

WiFi sensing has emerged as an innovative approach in

environmental sensing. Positioning is one of the most common

tasks for WiFi sensing [140], due to the increasing demands for

locating humans and devices in smart environments. There are

typically two techniques for WiFi positioning. The first type

is RSS-based in order to estimate the devices’ position using

WiFi networks. An early RADAR system based on RSS was

demonstrated in [141], followed by a series of other schemes

such as Redpin [142], LoCo [143] and OpenWRT [144]. The

second type is CSI, was introduced in Section III, in which

finer granularity channel information is provided compared to

RSS. CSI measurements are also available for off-the-shelf

WiFi cards to develop a simple but accurate “effective SNR”

model to predict successful packet delivery for a given transmit

configuration [145]. In addition, there are other types of PSs,

such as time-based WiFi, which is rather complex due to

the measurement of the time delay and sensitivity to channel

conditions, thus needing further investigations [146].
The latest WiFi standard is 802.11ax, which further en-

hances wall penetration performance compared to WiFi stan-

dards. 802.11ax can provide as large as 80 MHz of bandwidth

coarsely corresponding to a resolution of 1.88 m [147]. 802.11

is based on a new structure of high-efficiency frames, which

reduces the subcarrier spacing and includes more subcarriers

within the same bandwidth, which is beneficial in positioning.

It is expected that IEEE 802.11be (i.e. WiFi 7) will extend

the bandwidth to 160 MHz, thus further increasing the range

resolution [148]. As a result of greater resolution in the fre-

quency domain, a receiver can distinguish a greater number of

multipath components. Through this enhanced discrimination,

it is possible to improve the estimation of channel parameters

such as the AOA and TOF, which are essential measurements

for positioning. Furthermore, some WiFi amendments, such

as IEEE 802.11mc, include the fine-time measurement (FTM)

protocol. This also motivates time-based WiFi positioning

studies [149]. The ubiquitous availability of WiFi makes it

a promising indoor positioning technology, however, it con-

sumes a relatively high amount of power compared to cellular

or Bluetooth [150]. Moreover, the existing RSS/CSI-based

positioning method is based on an extensive dataset. However,

RSS/CSI values may change over time (months or years), and

adapting to these variations is also a prominent challenge in

WiFi.

C. Bluetooth

Bluetooth is a popular short-range RF technology. Blue-

tooth low energy (BLE) is a low-power Bluetooth wireless

communication standard developed by the Bluetooth special

interest group (SIG), which is widely used in current devices.

Both BLE and classic Bluetooth operate in the 2.4 GHz band

[151] and use the Gaussian frequency shift keying modulation

scheme. Typically, BLE uses devices such as beacons or

Bluetooth positioning tags as transmitters, and devices such

as smartphones or Bluetooth gateways as receivers, RSSI is

used for estimating the receiver distance from the transmitter

in. In these systems, the receiver estimates its distance from the

transmitter based on the RSSI value. To achieve positioning

with this scheme, at least three beacons are needed for

trilateration [152]. Additionally, the fingerprint method has

also been extensively studied. Pu et al. [153] proposed a fin-

gerprint PS using the k-nearest neighbor (kNN) classification
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method, while Nguyen et al. [154] used an improved weighted

kNN and Gaussian process regression to achieve BLE-based

positioning. Echizennya et al. [155] investigated a method to

simultaneously detect the location and motion direction of a

pedestrian walking in an indoor environment using a trained

deep NN with a PA of 0.439 m and an average direction

accuracy of 81.2% in 9 directions.

In addition to RSS-based positioning, Bluetooth 5.1 further

proposed a centimeter-level PS based on AoA/AoD algo-

rithms. The AoA algorithm uses positioning tags such as

beacons or Bluetooth bracelets as transmitters and positioning

base stations as antenna arrays as receivers. In order to

achieve positioning, the positioning tag transmits a signal to

the antenna array to generate a phase difference to determine

the AOA. An antenna array transmitter is used for the AoD

positioning, which determines the signal departure angle for

positioning. He et al. [156] proposed an AoA estimation

based on multiple antenna arrays, which improved the AoA

estimation accuracy with an average error of less than 3.9°

compared with multiple signal classification. Zhu et al. [157]

proposed a CNN Bluetooth indoor positioning algorithm based

on hybrid RSSI-AoA with improved PA. Note, generally, the

PA of AoA/AoD is higher than that RSSI.

In addition to Bluetooth 5.1, SIG has released Bluetooth

5.2 [158] and 5.3 [159], which add new features such as LE

isochronous channels, enhanced attribute protocols, LE power

control, low-rate connections, enhanced encryption control,

enhanced periodic broadcasting, etc.. In this way, Bluetooth

technology has greatly improved the transmission rate, security

and stability of PSs. The main challenge faced by the RSSI-

based PS is that it is affected by complex and unpredictable

indoor environments and noise., where RSSI values fluctuate

greatly, resulting in unstable positioning results. Furthermore,

factors such as signal reflection interference and antenna

array errors may also affect the performance of AoA/AoD

positioning.

D. RFID

In RFID, objects tagged with RF transceivers are automat-

ically identified and tracked, and the information collected is

stored in the computer [160], [161]. An RFID system typically

consists of RFID tags and RFID readers with microchips

for data storage and antennas [160]. Active RFID tags emit

RF signals using their own power sources [162], whereas

passive RFID tags are activated on receiving reader signals

[163], [164]. RFID readers transmit signals to tags and receive

responses from them. When a tag is within the reader’s signal

range, it responds, allowing the reader to capture and relay the

data stored for processing [165]–[167].

The RFID protocol standards are broadly classified into

three categories based on frequency bands: ISO 14443, ISO

15693, and ISO 18000-6C. ISO 14443 is a protocol for close-

range reading, with tag read-write transmission range of 0 to

10 cm. ISO 15693 is designed for longer-range reading, with

the tag read-write distances of 0 to 100 cm. ISO 18000-6C

supports tag read-write over a range of 0 to 1000 cm, making

it suitable for mid-to-long-range applications. ISO 18000-

6Cs defines physical and logical requirements for a passive-

backscatter, interrogator-talks-first RFID system operating at

860–960 MHz [168].

Both active tags and passive tags can be used for position-

ing. Active tags are mainly used for long-range positioning

and object tracking [169]–[171]. In practice, passive RFID

tags are more commonly employed in PSs compared to active

RFID tags [172]. Panigrahi et al. [161] proposed a graph-based

simulated model for planning the shortest path, where RFID

tags were arranged in an equidistance manner in grid-based

surroundings to determine the robot’s position. Hybrid RFID

systems based on KF, vision, and Bayesian models were also

investigated in [173]–[176]. The RFID-based system is well

suited in indoor environments due to its precise path estima-

tion and low positioning error [177]. Active RFID tags are

characterized by a greater detection range, and higher power

consumption and costs [166], [172]. Passive RFID tags are

used for short-range, static point positioning in small spaces

[178]. The low costs of passive tags make RFID technologies

highly popular in many applications [179]. However, privacy

is a concern, especially in passive RFID tags with insufficient

computing capability to support cryptographic data protection

[180].

E. UWB

UWB is a short-range wireless technology that uses fre-

quencies between 3.1 and 10.6 GHz, which has much wider

bandwidth than narrow-band transmissions such as WiFi. The

wider bandwidth of UWB allows for better time and distance

estimates, resulting in enhanced positioning performance.

UWB has been primarily used for positioning purposes in

recent years.

PSs using UWB can determine the user’s position utilizing

various methods, including both ranging and non-ranging

techniques. UWB typically achieves positioning using time-

based measurements (i.e., TOA/TDOA), but with strict time

synchronization. To eliminate the need of synchronization, a

two-way-ranging (TWR) method has been proposed, in which

round-trip time (RTT) at the anchor was used to calculate

ToF without tag-anchor or anchor-anchor synchronization.

With AoA, the location of a tag can be estimated using a

single anchor equipped with at least two antennas. Several

systems have already been implemented [181], EUROPCOM

[182], and Ubisense [183], while others are being used as

experimental testbeds as in Decawave [184] and Bespoon

[185]. In recent years, some scholars have proposed hybrid

PSs by fusing UWB with other technologies. For example,

in [186], a PS based on UWB and dead reckoning algorithm

was proposed to overcome the problem of large errors and

instability.

Standards and protocols for UWB PSs have been defined

by several organizations including IEEE, FiRa, Car Connec-

tivity Consortium (CCC), etc. IEEE 802.15.4 is a prominent

example, where IEEE 802.15.4a was first released in 2007,

and since then it has been revised and improved. In 2020,

IEEE 802.15.4z was released with increased integrity and

improved accuracy of ranging measurements. Enhancements
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include additional coding and preamble options, resulting in

proportionally fewer zero-valued elements and improved de-

tection. The application of UWB has expanded rapidly, so task

groups and organizations (IEEE Task Group 15.4ab, Omlox)

have been formed to propose new protocols and standards. It

is expected that the cross-system, cross-platform information

exchange model between UWB solutions of different vendors

and various positioning technologies could be standardized

to permit multiple systems to communicate and interoperate

with each other, thereby improving context information and

resolving positioning errors [187]. Furthermore, standardiza-

tion of antenna design and new performance metrics are also

desirable since improper antenna design may lead to severe

pulse distortion and undesired phase center variations. This

also motivates AOA UWB positioning studies.

Despite the above advancements, UWB still faces several

challenges in practice. For instance, due to high propagation

loss and poor penetrating ability, UWB systems are range-

limited and require LOS paths between receivers and transmit-

ters, which raises the cost for a greater number of transmitters

in indoor environments [188].

F. mmWave

mmWave is an emerging wireless technology working in

the 30-300 GHz frequency band. Besides higher-rate commu-

nications, its short wavelength allows for accurate location es-

timates and lower location error bounds. Moreover, mmWave

propagation characteristics yield higher spatial scanning reso-

lution [189]. mmWave positioning algorithms typically make

use of signal parameters related to received signal power

(RSSI/SNR), time information (ToA/TDoA), angle informa-

tion (AoA/AoD), CSI, or hybrid approaches to obtain location

estimates with high PA. Among these schemes, AoA is the

most accurate, due to the exploitation of directional beam-

forming and antenna arrays in mmWave systems [190]. Li et

al. [191] proposed a novel hybrid dual-polarized antenna array

and studied an adaptive AoA and polarization state estimation,

showing a significant improvement in SNR. Using both the

angle and time has led to improved PA in mmWave systems

[192]. For example, Jia et al. [193] proposed an improved least

mean square algorithm to refine AoA estimation, and used a

modified multi-path AoA-ToA UKF algorithm to track UE’s

position with 2 times angle estimation gain and a centimeter

PA using a single AP in an office environment.

In addition, mmWave-based device-free positioning and

sensing has also been recognized as an energy-efficient and

feasible technology for environmental sensing [189]. It typ-

ically depends on radar systems that operate over short

distances. There are various types of mmWave radars, in-

cluding pulsed wave radars, frequency shift keying radars,

frequency-modulated continuous wave (FMCW) radars, etc,

[194]. FMCW radar is widely used in remote sensing, due

to its high resolution, in applications such as human activity

detection, object detection, health monitoring, etc. In addition

to traditional key processing techniques like micro-Doppler,

KF and ML are being successfully used in mmWave-based

radar sensing systems [189]. Jin et al. [195] used a 4-D

mmWave radar and a hybrid variational RNN autoEncoder

for fall detection of people with a 98% detection rate. Based

on sparse mmWave radar point clouds with a novel DL

classifier, Pegoraro et al. [196] proposed a real-time multi-

target tracking and identification system with an identifying

accuracy of 91.62% for up to three mobile subjects in an

indoor environment.

In 2012, IEEE 802.11ad standard was released with 60.0

GHz wireless communication features [197], which is the first

WiFi standard for the mmWave technology used in indoor ap-

plications. In 2018, IEEE 802.11aj was released with improved

frequency bands, bandwidth (i.e., higher data rates), transmis-

sion distances, and more stable connection quality compared to

IEEE 802.11ad standard. In 2021, IEEE released the 802.11ay

standard [198], with added single-user and MIMO modes of

operation in dense mmWave hotspots. The introduction of

MIMO in IEEE 802.11ay offers improved performance and

reliability. It is important to note that the support for up to

256-QAM high-order modulation schemes not only increases

the transmission bandwidth and rate, but also improves the rate

of time resolution. Furthermore, the enhanced beamforming

training improves the quality and coverage of wireless signals.

All these advancements have enhanced the accuracy and sta-

bility of mmWave-based positioning and sensing technology.

The positioning algorithms based on mmWave are also

subject to several challenges including (i) the modeling of the

channel state and accurately compensating for the received sig-

nal parameters, due to the complexity of indoor environments;

(ii) the requirement for universal applicability to a variety of

devices has also raised the bar for these algorithms; and (iii)

detection reliability and robustness of positioning and sensing

in an environment with mobility and other sources of noise

for mmWave radar-based systems.

G. THz

With increasing data traffic within wireless communication

networks, THz is emerging as a potential solution for pro-

viding ultra-broadband capabilities for 6G. The THz spectrum

ranges from 0.1 THz to 10 THz, which fills the utilization gap

between mmWaves and optical bands. THz-based PSs have

attracted increasing attention for two main reasons: (i) accurate

positioning, which is a prerequisite in THz communications

because of resource allocation, beamforming, and channel

estimation; and (ii) key features such as high directionality,

compact antenna arrays, and large communication bandwidth

that are essential in accurate PSs. Therefore, the interaction

between communication and positioning plays a key role in

the THz band.

In recent years, THz PSs have received considerable atten-

tion. Various methods based on RSS [199], CSI [200], AoA

[201], etc., have been studied in the THz band. Meanwhile,

there are several features associated with THz positioning:

(i) RIS plays an important role in THz- positioning, since

it can overcome blocking/shadowing and path losses, thereby

increasing the received power level and improving PA [201],

[202]; and (ii) the use of learning-based positioning meth-

ods. For instance, Fan et al. [200] proposed a structured
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bidirectional long short-term memory (LSTM) recurrent NN

architecture to achieve a 3D indoor positioning with a mean

distance error of 0.27 m.

In early 2008, the IEEE established ”Terahertz Interest

Group” (IGthz) within the 802.15 working group. This is

followed by the first IEEE standard for sub-band wireless

communications IEEE 802.15.3d in 2017 [203], which is an

amendment of the IEEE Std. 802.15.3, providing a wireless

physical layer operating up to 100 Gbit/s. In view of the

main objective of IEEE 802.15.3d, which is to demonstrate

the feasibility of fixed point-to-point THz communication,

research on THz positioning is relatively limited. In 2019, the

FCC unanimously agreed to lift restrictions on frequencies

above 95 GHz, thereby allocating 21.2 GHz of spectrum

for unlicensed use and authorizing experimental activities

in the electromagnetic spectrum up to 3 THz. This is also

beneficial for research on positioning using the THz band.

At THz frequencies, there are significant challenges in terms

of hardware imperfections and synchronization. Furthermore,

since THz signal experience substantial path losses, their

design must be carefully tailored to meet the needs of users

with a range of performance requirements, thereby maximizing

energy efficiency. Moreover, a realistic THz channel model

is still required that comprehensively addresses the THz-

specific characteristics, such as LOS, NLOS and hardware

impairments.

H. VLP

The RF-based PSs are less accurate mostly due to multi-

path induced fading and signal penetration. Optical wireless

technology-based PSs utilizing infrared (IR), ultraviolet, and

visible bands have been introduced in recent years with high

PA. Note, at low levels, all light sources are harmless to

humans and depending on the wavelength have different uses

in many applications. The IR technology has been used for PSs

with active beacon transmitters or receivers placed at known

locations and mobile transmitters or receivers with unknown

positions [204]. In [205], Microsoft Kinect has used a contin-

uously projected IR structured light to detect the environment

using an infrared camera. The implementation of RSS-based

IPSs is simpler compared with TOA and AoA, since (i) there is

no requirement for highly accurate transceiver synchronization

and for a receiver with efficient detection of the incidence

angle; and (ii) have high PA due to the availability of LoS

paths for most indoor environments. Several challenges must

be overcome, however, including the concurrent transmission

of the optical signals using multiple LED light sources may

make it difficult to recover the signals using a single PD-based

receiver; and transmitters and receivers are often assumed to

be parallel (i.e., without tilting angle) which may reduce the

PA.

In contrast, VLPs have received significant attention over

the past decade, in which LED lights are used for positioning,

illumination, and data communications. It used LED lights

at transmitters and photodiodes (PDs) or camera sensors as

the receiver. VLP offers inherent security at the physical

layer since lights emitted from the sources and reflected

surfaces are maintained within a confined space, abundant

license-free spectrum, immunity to RF-induced electromag-

netic interference, low costs, and high PA compared with

the RF-based PSs [12], [206], [207], [208], [209]. There are

numerous applications for VLP, including location tracking,

navigation, vehicular communications, shelf-label advertising

in supermarkets, medical surveillance, street advertising, and

robot movement control [210].

VLPs are categorized based on fingerprinting, proximity,

triangulation, sensor-assisted, ML, and filtering techniques. In

fingerprinting, also known as scene analysis, distinct features

of signals together with AoA, ToA, TDoA, and RSS are used

for estimating positioning. In [211], VLP using a correlation

approach to match the pre-estimated address for each LED

light with the detected signals at the receiver was investigated

experimentally in an indoor environment with PA of 1.495 cm.

In [212], VLP with time division multiplexing was proposed

to mitigate interferences with an average PA of 1.68 cm. The

proximity method is very simple but with the PA as good as the

resolution of the grid and the number of transmitter reference

nodes. For example, in [213] VLP based on the LED light and

a mobile phone was proposed for to determine the precise

location. Both passive and active beacons were investigated

with error-free range of up to 4.5 m. Using LED lights and a

geomagnetic sensor, in [214] VLP was adopted to accurately

determine position and travel directions for visually impaired

people. Based on rotation matrix and support vector machines,

the precise limits of field of view as well as azimuth and tilt

angulations were calculated with 80% less computation than

conventional geometric optics [215].

In triangulation, the target’s position is determined by

distance measurement from at least three reference locations

using RSS, TOA, TDOA, and direct detection techniques

[12], [40], [216], [217]. Perfect synchronization between the

transmitter (Tx) and receiver (Rx) is required for TOA and

TDOA [3], [4]. In RSS, the optical receiver should receive

signals from multiple LED transmitters with no interference.

Note that the coordinates of LED transmitters in the real world

are unknown prior to determining the position of the receiver.

Therefore, it is critical to establish the link between the LEDs

and the receiver to obtain the coordinates of the LEDs. The

implementation of RSS-based IPSs is simpler compared with

TOA and AoA, since (i) there is no requirement for highly

accurate transceiver synchronization and for a receiver with

efficient detection of the incidence angle; and (ii) have high

PA due to the availability of LOS paths for most indoor

environments. Several challenges must be overcome, however,

including the concurrent transmission of the optical signals

using multiple LED light sources may make it difficult to

recover the signals using a single PD-based receiver; and

transmitters and receivers are often assumed to be parallel (i.e.,

without tilting angle) which may reduce the PA.

Since in VLC-IPS the transmission data rate is not an issue,

both camera (image sensor) and PD-based receivers could be

used.

1) PD-based VLP systems: At the transmitter, the encoded

address and identification (ID) information of each LED are

broadcast via free space. At the receiver, the optical signals
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are detected using a PD-based optical receiver for regeneration

of the electrical signal. The channel gain can be expressed by

Lambertian model [207]. From the perspective of measure-

ment, PD-based VLP algorithms can be classified into several

categories: i) Proximity [218], [219], ii) TOA/TDOA [220]–

[222], iii) AOA [223], iv) RSS [224], and v) Fingerprinting

[225].

2) Image Sensor (IS)-based VLP systems: Different from

the PD that relies on the Lambertian channel model, IS-

based VLP systems rely on capturing the images of intensity

modulated the LED luminaire and using image processing

algorithms to determine the required position of objects and

people [40]. The information on the LED light in the image

is provided based on the image coordinates. A wide usage

of cameras including those in smart devices can be used

in IS-based VLPs. The IS-based VLPs have several unique

features compared to PD-based systems, such as a larger field

of view and spatial and wavelength separation of light [140].

A complementary metal-oxide semiconductor (CMOS) camera

is typically used in IS-based VLP systems. The rolling shutter

exposure model of CMOS camera can help decode the VLC

information by capturing black and white stripes. Additionally,

the camera can also capture the visual information of the LED

luminaires for analyzing the geometric relationship between

the LED luminaires and the receiver. This characteristic has

been taken into account by several recent works [226]–[229].

For instance, Huang et al. [226] proposed to use camera to

capture reflected lights of a single LED luminaire from the

floor, and the highlights were regarded as the projections

formed by virtual LEDs and deriving a geometric relationship

between two virtual LEDs for final position estimation. In

addition, there are also the contour shapes of the luminaire

considered for VLP when an IS-based receiver is used. Bai

et al. [227] considered exploiting the rectangular features of

a single luminaire an IS-based VLP algorithm. The circular

luminaire features were also used to estimate the orientation

and location of the receiver [228], [229].

A variety of fusion algorithms have emerged to exploit

the advantages of the single PD- and IS-based VLP system

in recent years. Some works focused on fusing RSS and

image sensing to achieve positioning by simultaneously using

PD- and IS-based receivers. For instance, Hua et al. [230]

introduced the fusion VLP system that leveraged ensemble

KF to fuse the measurements from the PD and camera for

real-time positioning. Bai et al. [50], [231] proposed the use

of measurements from the camera to provide incident angle

information to RSSR algorithm so that the receiver can be

located regardless of orientation. In addition, researchers have

tried to fuse AOA and image sensing [232], in which, the

incident angle derived from the image was used by the AOA

algorithm. In [233], a triangulation algorithm based on AOA

and RSS measurements was proposed to estimate the receiver’s

position by implementing the least squares estimator and

trigonometric considerations. Overall, the fusion of different

VLP measurements makes the system more accurate and

practical, such as reducing the required LED luminaires, and

relaxing the orientation limitation of the receiver.

Despite centimeter-level accuracy, VLP still faces the chal-

lenges of industrialization, reliability, and cost challenges.

These include: (i) impact of the transmitter tilting angles;

(ii) limited frame rates of, therefore limited data rates; (iii)

light flickering; (iv) multipath reflections. In practice, VLP is

susceptible to occlusion, ambient light, and other environmen-

tal factors, which may lead to positioning failure. Moreover,

integrating a VLP system necessitates merging with existing

frameworks, such as building management systems or mobile

applications. Table IV shows the IS-based VLP.

I. Hybrid RF-optical

Researchers are advocating the development of a hybrid PS

that combines the advantages of visible light and RF signals to

harvest the advantages of both. The current mainstream fusion

positioning solutions have successfully integrated VLP with

RF technologies such as WiFi, 5G, and Bluetooth, as reported

in the literature [240]–[245].

For instance, a heterogeneous PS incorporating LiFi and

WiFi was conceptualized to enhance indoor PA [240]. In

addition, Shi et al. [242] proposed a 5G IPS centered on

VLC and broadband communications, specifically designed for

museum applications. The system utilized unlicensed visible

light to provide visitors with high-accuracy positioning on a

mobile device, achieving a mean positioning error of 0.18 m.

Combined with Bluetooth, a hybrid PS was introduced in

[244], where the initial location based on VLC proximity was

collected prior to, determining the location of the receiver

using Bluetooth RSS trilateration, yielding a notable accuracy

of up to 0.03 m. Another approach by Luo et al. [243] involved

a spring model based on Bluetooth signals for hybrid VLP and

Bluetooth positioning. The intensity of visible light signals

was detected through the Bluetooth beacon set in advance

to match the fingerprint database. Simulation results showed

that the system can achieve an average PA of 6 cm. Hussain

et al. [245] used a VLC-based indoor mapping application

to facilitate Bluetooth MAC address mapping. In this way,

the advantages of VLC and Bluetooth can be combined to

achieve superior positioning performance. The key features of

the existing positioning technologies are summarized in Table

V.

VI. CHALLENGES

This section summarizes the key challenges of current

PSs. The challenges and pitfalls of PSs require technological

innovation and interdisciplinary integration to improve the link

reliability and achieve PA, which are outlined in the following.

A. Trade Off Between Accuracy and Cost

PA and cost are essential factors in the design of PSs, yet

achieving a satisfactory balance between these two remains

a challenge. For instance, systems such as cellular networks

and WiFi offer the advantage of low-cost positioning by

leveraging the existing infrastructure. However, their accuracy

may not meet the demands of applications like AR/VR that

require centimeter-level accuracy. Conversely, systems like

UWB and VLP can achieve accurate positioning. Nonetheless,
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TABLE IV

IS-BASED VLPS

Scheme PA(cm) Dimension(m) Complexity

OCC [234] 10 2
⊙

RS-OCC & multiple FSK [235] 2 2.6 ●

AoA & RSS with k-nearest neighbors in feature
space algorithm [236]

1.97 0.7 × 0.3 × 0.2 ●

AoA & RSS with a geomagnetic field sensor
and an accelerometer [237]

<10 1× 1× 2.4 ●

LED + RS & piecewise fitting [238]
3.17(2D)
4.45(3D)

1.2
⊙

Inertial measurement unit and IS [239] 16 1.8× 1.8× 2
⊙

∗We roughly categorize KPI values in the table into 3 levels, e.g. ©: Low,
⊙

: Medium, ●: High.

TABLE V

POSITIONING TECHNOLOGY COMPARISON

Technology
Key Performance Indicators (KPI)

Comments

PA (m) Coverage
Power

Consumption
Cost Real-time Computation Availability Robustness

Security and

Privacy
Complexity

Celluar

Networks [246]
1-2 ●

⊙ ⊙
Soft

⊙
●

⊙ ⊙
●

Very High Coverage,

relatively high accuracy

with low power consumption.

WiFi [247] 1-5
⊙

● © Hard
⊙

● ©
⊙ ⊙

Environment dependant,

large database, limited

coverage range and mobility.

Bluetooth [248] 1-5 ● © © Hard/Soft
⊙

● ©
⊙ ⊙

High coverage, low power,

but is unstable and easily

affected by radio interference.

RFID [249] 1-2
⊙

© © Soft ●
⊙

© ©
⊙

Low power consumption,

limited mobility, but low

security and high delay.

UWB [250] 0.1-1
⊙ ⊙

● Hard
⊙

© ● ●
⊙ High costs,

limited coverage range.

mmWave [193] 0.1-10
⊙ ⊙ ⊙

Soft/Hard
⊙ ⊙

©
⊙ ⊙

Also widely used in radar-

based sensing, particularly,

besides positioning.

THz [200] 0.1-10 ©
⊙

● Hard
⊙

© ©
⊙ ⊙

Faces hardware and

synchronization issues, and is

still under experiment.

VLP [211], [213] <0.05 ©
⊙ ⊙

Soft
⊙ ⊙

©
⊙

©
Modifying existing LED

light, blocking.

Hybrid

RF-optical [242]
0.01-1 ©

⊙ ⊙
Soft ●

⊙ ⊙ ⊙
●

Hybrid systems based on VLP

and RF-based systems.

∗We roughly categorize KPI values in the table into 3 levels, e.g. ©: Low,
⊙

: Medium, ●: High.

they necessitate additional infrastructure, leading to higher

costs. In particular, the high deployment cost is a prominent

issue in UWB [251]. As for VLP, while the cost of retrofitting

each light is insignificant, due to the limited coverage range

of each light, the cost of large-scale deployment still needs

further verification. Therefore, the quest to reconcile the trade-

off between accuracy and cost continues to be a daunting task

in the realm of indoor positioning. This trade-off is crucial for

broadening the applicability of positioning technologies across

various sectors.

As the field progresses, it is essential to focus not only on

developing new algorithms but also on enhancing the cost-

effectiveness of the system. It is through this dual approach

that technological advancements will be both practically appli-

cable and economically viable, thus enabling broader imple-

mentation and accessibility. By prioritizing the development

of cost-effective solutions along with cutting-edge algorithmic

improvements, it is possible to drive the widespread adoption

of IPSs. As a result of this strategy, high-precision tech-

nologies will become more accessible to a broad range of

applications, ranging from consumer electronics to industrial

automation, thereby bridging the gap between theoretical

excellence and practical applications.
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B. Trade Off Between Coverage and Accuracy

Positioning environments are often characterized by their

complexity, especially in indoor scenarios. Moreover, these

environments are often cluttered with obstacles such as walls,

furniture, and human movement, which can obstruct signals

and cause issues such as multipath propagation. This com-

plexity means systems with large coverage, such as cellular

networks, tend to suffer from limited accuracy due to the long

propagation path between the transmitter and the receiver. In

contrast, systems such as THz and VLP, which offer limited

coverage are reported to achieve centimeter-level PA. Note that

short propagation paths ensure simple transmission links but

also limit their availability and robustness, making them less

versatile in various scenarios. Therefore, the trade-off between

the coverage and the accuracy limit the applicability of existing

PSs.

To navigate this trade-off, future developments should focus

on innovative approaches that can either extend the effective

coverage of high-accuracy PSs or enhance the PA of wide-

coverage PSs. For instance, by combining multiple positioning

technologies, it may be possible to leverage their respective

strengths in order to achieve promising pathways. In addition,

it is also a possible way to employ advanced signal processing

and ML algorithms to mitigate the effects of signal obstruction

and multipath propagation. The next generation of PSs can

achieve wide coverage and high accuracy by pushing the

boundaries in these areas, thus enhancing their utility across

a broader range of applications.

C. Security and Privacy

Human and device location information is considered as

sensitive data that can expose users to a variety of risks

including stalking, theft, and even security threats. Location

security and privacy are essential components of compre-

hensive cybersecurity efforts. These efforts are dedicated to

safeguarding the confidentiality, integrity, and availability of

geographical information, which is becoming increasingly

pivotal in the development of new applications. However,

security and privacy issues in positioning have not garnered

as much focus as those in the field of communications. Since

PSs often operate within strict energy constraints, they are

unable to employ complex methods for ensuring the privacy

and security of location data. Moreover, PSs may use diverse

technologies based on different methodologies, and each of

them has its own vulnerabilities and security implications. This

diversity complicates the tasks of creating a universal solution

for security and privacy.

From a technological perspective, enhancing location data

security requires a multi-faceted approach. This could involve

the development of lightweight cryptographic algorithms suit-

able for energy-constrained devices, advanced anonymization

techniques to protect user identities, and robust access con-

trol mechanisms. Additionally, standardized security proto-

cols across different positioning technologies should also be

considered to ensure a cohesive and secure framework. By

addressing these challenges, it is possible to foster trust and

promote broader adoption of indoor positioning applications,

balancing the benefits of precise location services with the

imperative of protecting individual privacy and security.

D. Complex and Dynamic Environments

Positioning environments change over time. ML-based

methods have been applied to dynamically update parameters

based on the data for continuous improvement and adaptation

to environmental changes. In addition, ML-based methods are

used to effectively integrate and process data from various

sources. These methods, however, typically require a large

amount of labeled data, which is closely related to the envi-

ronment and can be labor-intensive. Complex and dynamic en-

vironments can adversely affect the performance degradation.

On one hand, the controlled environment in existing methods

can differ from the practical environment. On the other hand,

long-term changes in the environment may lead to inaccurate

tag data, thereby affecting the results of position estimation.

Therefore, positioning methods need to adapt to variable and

complex environments and reduce the reliance on labels.

To overcome these challenges, semi-supervised or unsuper-

vised learning can be used to learn from limited or unlabeled

data. In addition, adaptive models are expected to be developed

for PSs that can dynamically update their parameters in

response to environmental changes, to enhance their effective-

ness in the face of the variability and complexity of real-world

environments. With their powerful ability to understand and

predict environments, large models may play a crucial role in

solving these challenges.

E. Diverse Requirements and Applications

The PSs should be able to cater to a wide array of

applications including those for public utilities, enterprises,

and individuals, as well as applications for online and offline

use, each having its own set of requirements for accuracy,

latency, and scalability. There is a significant challenge in

tailoring PSs to meet these diverse needs without compro-

mising performance. Therefore, it is necessary to develop

flexible positioning techniques that can be tailored to meet the

needs of different users and applications. The integration of

multiple data sources and sensors, for example, could enhance

the ability to sense the environment, so as to meet specific

accuracy, latency, and scalability requirements of different

applications.

VII. CONCLUSION

In this paper, we provided a comprehensive review of

existing positioning technologies. To begin with, we reviewed

the evolution of positioning over wireless networks. Then, we

discussed the applications of positioning technology from the

perspectives of public facilities, enterprises, and individuals.

Next, we have summarized the existing KPIs and measure-

ments for positioning and conducted a detailed comparison.

We further investigated the key techniques of positioning

such as large models, adaptive systems, and RIS, which may

significantly enhance the performance of a PS in the future.

As a step forward, we discussed various typical wireless
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positioning technologies. We not only focused on the progress

of these technologies in the academic community but also

covered their standardization process. Meanwhile, we provided

an in-depth comparison of these technologies and summarized

the KPIs that each technology needs to focus on more. Finally,

we summarized the key challenges of positioning systems.

Although positioning technology currently still faces many

challenges, we firmly believe that positioning will play an

increasingly important role in wireless networks in the future.
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