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Abstract—Stacked intelligent metasurfaces (SIM) are capable
of emulating reconfigurable physical neural networks by relying
on electromagnetic (EM) waves as carriers. They can also per-
form various complex computational and signal processing tasks.
A SIM is constructed by densely integrating multiple metasurface
layers, each consisting of a large number of small meta-atoms
that can control the EM waves passing through it. In this paper,
we harness a SIM for two-dimensional (2D) direction-of-arrival
(DOA) estimation. In contrast to the conventional designs, an
advanced SIM in front of the receiver array automatically carries
out the 2D discrete Fourier transform (DFT) as the incident waves
propagate through it. As a result, the receiver array directly
observes the angular spectrum of the incoming signal. In this
context, the DOA estimates can be readily obtained by using
probes to detect the energy distribution on the receiver array.
This avoids the need for power-thirsty radio frequency (RF)
chains. To enable SIM to perform the 2D DFT, we formulate
the optimization problem of minimizing the fitting error between
the SIM’s EM response and the 2D DFT matrix. Furthermore, a
gradient descent algorithm is customized for iteratively updating
the phase shift of each meta-atom in SIM. To further improve the
DOA estimation accuracy, we configure the phase shift pattern in
the zeroth layer of the SIM to generate a set of 2D DFT matrices
associated with orthogonal spatial frequency bins. Additionally,
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we analytically evaluate the performance of the proposed SIM-
based DOA estimator by deriving a tight upper bound for the
mean square error (MSE). Our numerical simulations verify the
capability of a well-trained SIM to perform DOA estimation and
corroborate our theoretical analysis. It is demonstrated that a
SIM having an optical computational speed achieves an MSE of
10~ for DOA estimation.

Index Terms—Stacked intelligent metasurface (SIM), direction-
of-arrival (DOA) estimation, reconfigurable intelligent surface,
diffractive neural network, wave-based computing.

I. INTRODUCTION

IRECTION-OF-ARRIVAL (DOA) estimation using mul-
tiple antenna technology has long been a crucial task
with compelling applications in areas such as astronomy,
navigation, and the emerging integrated sensing and commu-
nication systems of the sixth-generation (6G) networks [1]-
[8]. Traditionally, DOAs have been estimated using the classic
beamforming method, which can be efficiently implemented
via the fast Fourier transform technique [9], [10]. However, the
angular resolution of this method is fundamentally restricted
by the array aperture [11]. The Rayleigh criterion indicates
that a pair of signal sources can only be distinguished, when
their angular separation exceeds the antenna beamwidth. To
address this problem, several super-resolution DOA estima-
tion approaches have been developed [1]-[4]. The two most
prominent techniques are the multiple signal classification
(MUSIC) [1] and the estimation of signal parameters via
rotational invariance techniques (ESPRIT) [2]. Specifically,
MUSIC leverages the orthogonality of the signal and noise
subspaces to construct a spatial spectrum [1], and then the
DOA parameters of the received signals are identified via spec-
tral peak search. By contrast, ESPRIT exploits the spatial rota-
tional invariance property of the signal subspace [2], avoiding
spectral search and substantially improving the computational
efficiency. Since then, a variety of modifications of MUSIC
and ESPRIT have been proposed for different scenarios [4].
For example, in [12] a second-order statistics-based algorithm
was proposed for two-dimensional (2D) DOA estimation of
coherent signals received by a uniform planar array (UPA).
The authors arranged the signal correlation matrix into a block
Hankel matrix and estimated its signal subspace using an
ESPRIT-like method. Additionally, the authors of [13] inves-
tigated the joint 2D DOA and transmit/receive polarization
angle estimation by combining the parallel factor analysis
(PARAFAC)-based estimator along with ESPRIT. The third-
order structure information was leveraged to achieve better
performance.
While these methods provide significant performance ad-
vantages, they require increased computational and storage
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resources for performing eigenvalue decomposition of the spa-
tial covariance matrix. However, their performance degrades
noticeably, when only a small number of snapshots are avail-
able. Moreover, traditional DOA estimation methods assume
ideal signal conditions and perfect antenna arrays, which
cannot be satisfied in practical systems. Various imperfections
like non-ideal transceiver design, station location errors, and
background radiation significantly degrade the performance of
parametric methods, which are impervious to modeling and
calibration using conventional techniques [14], [15].
Fortunately, advanced machine learning (ML) techniques
provide effective approaches for estimating the DOAs. In
contrast to model-based conventional methods, ML-based ap-
proaches are data-driven and thus have the potential to adapt
to complex electromagnetic (EM) environments and be more
robust against practical array imperfections. For instance, the
authors of [16] introduced a deep neural network (DNN) based
framework having two parts. A multitasking autoencoder first
decomposed the input signals into multiple components falling
into distinct angular intervals. Then the results of multiple
parallel classifiers were combined to reconstruct the angular-
domain spectrum and to estimate the signal directions with
enhanced robustness. Furthermore, the authors of [17] formu-
lated the DOA estimation of multiple sources as a multi-label
classification problem. The phase components of the received
signals’ short-term Fourier transform coefficients were directly
fed into a well-trained convolutional neural network (CNN) to
localize speakers in dynamic acoustic scenarios. Additionally,
in [18] a deep convolution network (DCN) was designed
for learning the transformation from the undersampled ar-
ray covariance matrix to the angular spectrum. In contrast
to conventional sparse recovery methods requiring complex
iterations, the DCN framework has superior computational
efficiency. Leveraging the sparsity also improves the DOA
estimation accuracy. Nevertheless, ML-based methods require
a complex model training phase, resulting in high hardware
and computational complexity [16]. It is also challenging to
obtain a large training dataset covering all possible signal
distributions, especially in the face of high-Doppler scenarios.
Traditional DNNs rely on commercial processors or dedi-
cated chips to perform computations, but their speed is limited
by digital hardware. Recently, a novel diffractive deep neural
network (D?NN) was developed using three-dimensional (3D)
printed diffractive layers [19]. D?NN allows large-scale paral-
lel calculations and analog signal processing to be carried out
at the speed of light [20]. However, once fabricated, the wave-
based D2NN architecture presented in [19] is fixed, hence
limiting its functionality in practice. Motivated by advances
in metasurface technologies [21]-[24], the authors of [25]
customized a reconfigurable D?NN using stacked intelligent
metasurfaces (SIMs). Specifically, a SIM employs an array
of programmable metasurface layers, each containing many
programmable meta-atoms that can manipulate the EM wave
behavior as waves pass through it [26]. Adapting the bias volt-
age via a customized field-programmable gate array (FPGA)
module allows each meta-atom to act as a reprogrammable
artificial neuron having tunable weights. To illustrate, Fig. 1
shows two SIM prototypes from the existing literature [25],
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Fig. 1. The photographs of the existing SIMs. (a) A three-layer SIM in ©IEEE
[27]; (b) A five-layer SIM in ©Nature [25].

[27].

When EM waves pass through a meta-atom within the
SIM, the transmitted wave is determined by multiplying the
incoming wave with the meta-atom’s complex transmission co-
efficient. According to the Huygens-Fresnel principle [19], the
wave propagating through each meta-atom acts as a secondary
source that illuminates all the meta-atoms on the next layer. All
transmitted waves impinging at a neuron on the next layer are
superimposed, acting as the corresponding aggregate incident
wave. This process continues through each metasurface layer
in the SIM. As a consequence, the forward propagation model
in the SIM implicitly defines a fully connected artificial neural
network (ANN), whose architecture can be reconfigured for
realizing sophisticated processing functions [25], [26].

Several pioneering efforts have been made using SIMs
for performing various signal processing tasks in the EM
wave domain. Specifically, the authors of [25] experimentally
evaluated a SIM’s capabilities for image classification. They
built a SIM prototype having five programmable metasurface
layers and used it for recognizing handwritten digits. The first
metasurface layer acted as a digital-to-analog converter (DAC),
converting each input image to greyscale and configuring
its transmission coefficients to match the pixel values. The
remaining four layers formed the image recognition neural
network. Tests based on the MNIST dataset demonstrated
that the well-trained SIM achieved an accuracy of 90.76%
at recognizing the digits 0 ~ 9. In [26], the authors har-
nessed a SIM for implementing multiple-input multiple-output
(MIMO) communications [28]. In contrast to conventional
MIMO transceivers, a pair of SIMs deployed at the transmitter
and receiver can automatically accomplish MIMO-oriented
transmit precoding and receiver combining as the EM waves
propagate through them. This allows each spatial stream to be
directly radiated and recovered from its corresponding transmit
and receive ports, while significantly reducing the number of
radio frequency (RF) chains needed. Furthermore, in [29], [30]
the authors integrated a SIM into the BS to facilitate downlink
multiuser beamforming, while eliminating the conventional
digital beamformer and high-resolution DACs at the BS.

Nevertheless, DOA estimation using an advanced SIM has
hitherto remained unexplored. Hence this is the first paper
on this intriguing subject, in which we design a new SIM-
based physical DOA estimator. The underlying philosophy is
that by appropriately optimizing the SIM to carry out the 2D
discrete Fourier transform (DFT), the incident EM waves can
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be transformed into the angular frequency domain, as they
propagate through the SIM. By detecting the energy levels
of the different receiver probes — each corresponding to a
unique DOA - the signal’s direction can be read from the
probe having the strongest energy. As a result, the receiver
hardware is substantially simplified, since the analog-to-digital
converters (ADC) are no longer needed. Most remarkably, in
contrast to previous DOA estimators relying on array signal
processing, the calculation within the SIM occurs naturally
without incurring extra delay. More specifically, the detailed
contributions of this paper are summarized as follows:

1) We conceive a SIM-based physical estimator to probe
the DOA of radio waves impinging from a single source.
The SIM is made of multiple metasurface layers, each
containing a large number of small meta-atoms having
adjustable EM properties. By manipulating the wave
propagation therein, the SIM becomes capable of per-
forming the desired signal processing naturally, as the
waves pass through each layer, which is significantly
faster than traditional digital calculations. A UPA is
placed at the end of the SIM. By appropriately con-
figuring the SIM, it can transform the radio waves into
the angular domain. Each antenna then corresponds to
a unique signal direction. Therefore, the DOA can be
readily determined by measuring the signal strength at
each antenna in the receiver array.

2) We formulate an optimization problem aimed at mini-
mizing the Frobenius norm of the error between the ideal
2D DFT matrix and the EM response of the SIM, subject
to the constraint that each meta-atom has a constant
transmission level. Due to the non-convex constraint
and cascaded multiplications of phase shifts, finding
the optimal phase shift solution is non-trivial. To tackle
this issue, we develop a gradient descent algorithm for
iteratively updating the SIM’s phase shifts to realize the
desired 2D DFT function.

3) The outputs from the SIM can provide a coarse on-grid
estimate of the DOA for a small number of receiver
probes. To further improve the DOA estimation accu-
racy, we adjust the phase shifts in the zeroth layer of
the SIM for each snapshot to generate a set of 2D DFT
matrices having mutually orthogonal spatial frequency
bins. This allows the SIM to focus the energy of the inci-
dent wave onto the specific grid point perfectly matching
its direction, yielding the strongest magnitude at the
matched point. The number of snapshots determines the
trade-off between the estimation accuracy versus the
observation time.

4) We theoretically evaluate the performance of the pro-
posed DOA estimator by deriving an upper bound for its
mean square error (MSE). As the receiver array directly
observes the angular spectrum of the incident signal, the
proposed DOA estimator differs fundamentally from the
existing techniques relying on phase-sensitive receivers
and array signal processing. Furthermore, using low-
complexity energy detectors significantly reduces the
hardware costs without compromising the DOA estima-

tion accuracy.

5) Numerical results demonstrate the effectiveness of SIM
to perform DOA estimation. Extensive experiments are
conducted to determine the optimal SIM setups for
2D DFT for both (2,2) and (4,4) grid points. We
also verify the convergence behavior of the proposed
gradient descent algorithm and corroborate the accuracy
of our analytical results. Specifically, the SIM using the
advanced wave-based computation conceived is capable
of estimating the DOA with an MSE of 104

The rest of the paper is structured as follows. Section II
introduces the system model of SIM-based DOA estimation.
Section IIT formulates our optimization problem and presents
the gradient descent algorithm designed for optimizing the
SIM to realize 2D DFT. Furthermore, Section IV introduces
the practical estimation protocol as well as the specific
procedures of DOA estimation using the SIM. Section V
analyzes the theoretical performance of the SIM-based DOA
estimator. Additionally, Section VI provides simulation results
to verify our analysis and evaluate the performance of the
proposed estimator. Finally, Section VII concludes the paper
and discusses potential future directions.

Notation: Scalars are denoted by italic letters; Column
vectors and matrices are denoted by boldface lowercase and
uppercase letters, respectively; R {z}, S {z}, and |z| represent
the real part, imaginary part, and modulus of a complex
number z, respectively; For a complex-valued vector v, ||v]]
denotes its Euclidean norm, and diag (v) is a diagonal matrix
with the elements of v along the diagonal; For any gen-
eral matrix M, M*, M*, M", | M]|| -, rank (M), and
[M] ;,; denote its conjugate, transpose, Hermitian transpose,
Frobenius norm, rank, and the (i, j)-th element, respectively;
M ® N represents the Kronecker product of the matrices M
and IN, while vec () represents the vectorization operator;
Iy, denotes an identity matrix of size M; O represents an
all-zero matrix of appropriate dimensions; [x] refers to the
nearest integer greater than or equal to x; mod (z,y) returns
the remainder after division of « by y; Moreover, E {-} rep-
resents the expectation operator; arcsin (-) and arctan (-) are
the four-quadrant inverse sine and inverse tangent functions,
respectively; j is the imaginary unit; C**Y represents the
space of x x y complex-valued matrices; V, f () denotes the
gradient of the function f with respect to (w.r.t.) the vector
x; 0f/0x represents the partial derivative of a function f
w.r.t. the variable x. The distribution of a circularly symmetric
complex Gaussian (CSCG) random vector with mean vector v
and covariance matrix X is denoted by ~ CA (v, X), where
~ stands for “is distributed as”.

II. SIM-BASED ARRAY SYSTEM MODEL

In this section, we present the system model for the SIM-
based array used for performing DOA estimation.

A. Incident Signal Model

As depicted in Fig. 2, we utilize a UPA placed on the
ground (i.e., the z-y plane) to estimate the DOA parameters. In
contrast to conventional array-aided systems, a SIM consisting
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Fig. 2. A SIM-aided array system.

of (L+ 1) metasurface layers is integrated with the UPA
to transform the incident signal into its angular spectrum.
We assume that the SIM is positioned horizontally, with
all metasurface layers parallel to the z-y plane. To avoid
ambiguity, the metasurfaces are labeled by 0 ~ L from the
top to the bottom, as shown in Fig. 3(b). Let ¢ € [0, 27) and
¥ € [0, w/2] represent the physical azimuth angle and elevation
angle of the DOA of the radiation source relative to the zeroth
layer of the SIM, which has N = NN, meta-atoms, with
Ny and Ny representing the number of meta-atoms in the x-
and y-directions, respectively. Additionally, the corresponding
element spacings are dy and dy. Therefore, the electrical angles
1x and vy in the z- and y-directions are given by [31]

1y = kdy sin () cos () , ()
Py = rdy sin (9) sin () , 2

respectively, where k = 2w /A represents the wavenumber,
with A\ being the wavelength.

Hence, the steering vector w.r.t. the zeroth layer of SIM
a (1, 1y) € CV*1 is written as

a (1, wy) = ay (wy) & ax (¢x) ; 3)

and the elements of the vectors ay (¢) € CM*! and

ay (1by) € CM*1 are defined as follows:

>

[a’x (wx)]n = eij(nx_1)7 ny = 17 e 7NX7 (4)
Y ejwy("y_1)7 ny = 17 . 7Ny- (5)

?
«
—
=
«
P
3

>

Let s € C represent the signal transmitted from the radiation
source!, which is modeled as a CSCG random variable with
zero mean and unit variance. Hence, the signal x € CNx1
incident upon the zeroth layer of the SIM can be expressed as

T = a(iﬁxﬂby) S. (6)

I'Since this is the first attempt in this area, we are considering the case of
a single source for the sake of brevity.

Meta-atom: ¢’

Meta-atom: e’

Metasurface with M meta-atoms: Y,

, <

G =W, X, W, - W,X, WY W,

(b) A schematic of SIM.

B. SIM Model

The middle of Fig. 1 shows a schematic diagram of a
SIM device. For the sake of conceptual simplicity, we assume
that the L intermediate metasurface layers are each modeled
as a UPA having isomorphic arrangements. Additionally, we
assume that the (L + 1) metasurfaces are evenly spaced.
Let Tsp represent the thickness of the SIM. As such, the
vertical spacing between the adjacent layers is obtained by
Slayer = Ismv /L. In practice, the SIM is enclosed in a
supporting structure surrounded by wave-absorbing materials,
to prevent interferences from undesired diffraction, scattering,
and environmental noise [25]. As shown in Fig. 3, each
metasurface layer consists of M = M, M, meta-atoms, where
My and M, are the number of meta-atoms in the z- and y-
directions, respectively. Moreover, the corresponding spacings
between the adjacent meta-atoms on the intermediate layers
are set to sy and sy.

As stated earlier, each meta-atom is capable of adjusting the
phase shift of the EM waves passing through it by controlling
the bias voltage of the associated circuit [25], [26], [30].
Let v; = [u1,v52, - a'Ul,M]T e CMx1 | =1,.-- L
represent the complex-valued transmission coefficient vector
for the [-th layer, where v, = e/Stm m=1,--- M, | =
1,---,L with & ,, € [0,27) representing the phase shift
of the m-th meta-atom on the [-th layer [26]. Furthermore,
let ¥; = diag(v;) € CM*M represent the corresponding
transmission coefficient matrix for the [-th layer. In partic-
ular, let vy = [Uo’l,vo’g,-'- 7’UO’N]T € CN*1 and YTy =
diag (vg) € CV*¥N denote the complex-valued transmission
coefficient vector and the corresponding matrix for the input
layer (i.e., the zeroth layer in Fig. 1), respectively, where we
have vg ,, = /0 n =1,--- N and &, denotes the phase
shift of the n-th meta-atom on the zeroth layer.

Furthermore, let W, € CM*M [ =1 ... L —1 charac-
terize the EM wave propagation between the adjacent layers
in the SIM. Specifically, the element at the m-th row and r-th
column of W represents the attenuation coefficient between
the mm-th meta-atom on layer [ and the m-th meta-atom on
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Fig. 3. The top and front views of the SIM-based array systems.
2 2
1+ My 1+ Ny 1+ M, 1+ N,

d’mm = \/[(mx — 5 Sx — [ ngy — 5 de| + || my— 5 Y Sy — | ny — 5 Y dy| + slzayer (11)

layer (I 4 1). Based on the Rayleigh-Sommerfeld diffraction
equation [26], [32], [Wl]mm is determined as follows:

Anmeta-atom COS €m,m

Ird> - j’idm,ﬁz) ej’idm'ma @)

[Wl]m,ﬁz = (1
where Aper-atom denotes the area of each meta-atom, €, .,
represents the angle between the propagation direction and
the perpendicular direction of the metasurface layer, and
d . denotes the corresponding propagation distance, which
is calculated as follows:

Aman = \/(mX —1hx)? 82 + (my — 1hy)? 2+ Spyerr  (8)
with my and my being defined by
[m/MX] )

my £m — (my — 1) M.

A

€))
(10)

My

Similarly, 7, and 7y are obtained by replacing m in (9)
and (10) with 7. Thus, we have cOS€mm = Siayer/dm,m
characterizing the signal loss across each metasurface layer.

Furthermore, let W, € CMxN represent the attenuation
coefficient matrix between the input layer and the first layer.
The (m, n)-th entry of W, denoted by [W)],, ., is obtained
by replacing d,, ,» in (7) with the corresponding propagation
distance d,,, ,,, which is calculated using (11), as shown at the
top of this page, where we have

Ty £ [n/N«],

nx =n — (ny — 1) Ny.

12)
(13)

Similarly, let W € CN*M represent the attenuation
coefficient matrix between the L-th metasurface layer and the
output layer, i.e., the receiver antenna array. The receiver is
a UPA arranged in the same pattern as the zeroth layer of
SIM, and it is placed at siuyer meters away from layer L. It
is clear that W and W exhibit symmetry. Thus, we have
W, =w{¢.

As a result, the overall forward propagation process through
the SIM G € CV*¥ s described as

G=W; X Wi i - WX W, T W,. (14)

C. Received Signal Model

As mentioned earlier, the receiver is a UPA consisting of
N = NyNy receiver antennas. For a single source transmitting
a waveform s, the complex signal vector » € CN*! received
at the array can be expressed as

r=oGYox +u=,/0GYoa (V) s+ u, (15)
where o denotes the SNR, and u € CN*1 is the measurement
noise vector at the receiver array, which is modeled as a CSCG
random vector satisfying u ~ CN (0, Iy). It is also assumed
that s and w are uncorrelated.

Remark 1: In contrast to the conventional array-aided sys-
tem, the received signal in (15) has undergone a controllable
analog transformation using the SIM. By appropriately config-
uring the SIM’s phase shifts, the receiver antenna array may
directly observe the angular spectrum of the incident signal.
This would substantially simplify both the hardware design
and the subsequent signal processing, while also reducing the
energy consumption.

Remark 2: The actual attenuation coefficients between ad-
jacent metasurface layers may deviate from those specified
in (7) due to the real-world manufacturing imperfections
[25]. Additionally, it should also be noted that the Rayleigh-
Sommerfeld equation may not accurately characterize the
wave propagation, when the metasurface layers inside the SIM
are placed very closely together [33]. As a result, it may be
necessary to calibrate these transmission coefficients before
practically implementing the SIM.

Remark 3: Although G in (14) involves a large number
of matrix multiplication operations, it is important to note
that these calculations are carried out at the speed of light
as the incoming signal passes through each layer of the SIM.
This advanced wave-based computing paradigm enables the
calculations to be completed in nanoseconds during the on-
line DOA estimation stage. Additionally, the inherent parallel
processing capability of the SIM means that the calculation
time is independent of the number of meta-atoms per layer.
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III. SIM OPTIMIZATION FOR REALIZING 2D DFT

To achieve the expected DOA estimation capability, we need
to guide the SIM to output the angular spectrum. In this sec-
tion, we formulate an optimization problem for implementing
the 2D DFT in the wave domain and devise a gradient descent
algorithm to find a high-quality near-optimal solution for the
phase shifts.

A. Optimization Problem

Specifically, for the 2D DFT matrix F € CV*N of N =
NNy grid points, its (n, 77)-th entry is defined as follows:

ny—1)(fx—1 o (ny—1)(ity—1)
(=D=1) o s

fri = [F, 5 & e e ;

n,n

(16)

where ny and ny are as defined in (12) and (13), while 7, and
75 are obtained upon replacing n by 7.

To evaluate the accuracy of the SIM’s response fitting the
2D DFT matrix, we employ the Frobenius norm of the fitting
error between each target entry and the EM response of the
SIM. Specifically, the loss function £ is defined as

L =G ~ Fllz, (17)
where 8 € C represents the scaling factor used for keeping
the SIM’s response at the required normalized value.

Remark 4: Note that in (17) we are not actually multiplying
the received signal by an extra coefficient 5. Multiplying G
by a scaling factor is only used for ensuring that the error is
normalized to the same level for a fair comparison.

To minimize the loss function in (17), the optimization
problem of matching the SIM’s response to the 2D DFT matrix
is formulated as

min £ = [|fG - F|}, (18a)

,m
S.t. G = WLTLWLfl"'W2T2W1’r1W[), (18b)
Y, = diag <[ej51,1’ej§z,27 . ’ejﬁz,M]T) , (18¢)

gl,me [07277),771:1,"' 7M7l:15"' aL7 (lgd)
BeC. (18¢)

Note that due to the non-convex constant modulus constraint
and the fact that the phase shifts associated with different
metasurface layers are highly coupled, the problem in (18)
is non-trivial to solve optimally. In the subsequent subsection,
we customize a gradient descent method for efficiently finding
a near-optimal solution to (18).

B. Proposed Gradient Descent Algorithm

The popular gradient descent algorithm iteratively adjusts
the phase shifts of the SIM for gradually minimizing the loss
function in (18a). Specifically, gradient descent involves two
main procedures: i) calculating the derivative; and ii) updating
the parameters.

1) Derivative Calculation: For a tentative SIM model, the
gradient of the loss function £ w.r.t. the phase shift vector §;
of the [-th layer in a SIM is calculated by

N
Ve£=2Y S{#x/'Pl, (8g.~ f.)}. (19
n=1

forl=1,---,L,whereg, € CN*! n=1,--- Nand f, €
CN*! n=1,---, N represent the n-th column of G and F,
respectively. Furthermore, P;,, € CN*M pn=1,... N, [ =
1,---, L denotes the equivalent coefficient matrix associated
with the [-th metasurface layer activating the n-th meta-atom
on the input layer, satisfying P, ,,v; = g,,. Specifically, P;,
is defined as

P, =W X Wi i W1 X1 Widiag (q;,,) , (20)

with g, ,, € CM*1 representing the complex signal component
illuminating the [-th layer of the SIM from the n-th meta-atom
in the zeroth layer, defined as

QG =Wia X W o WyXo Wi T1wo 0,

forn = 1,---,N, |l = 1,---,L, where wy,, € CM*!
represents the n-th column of W . Please refer to Appendix
A for the detailed procedures showing the derivation of (19).

Remark 5: Note that the derivative of the cost function w.r.1.
each layer in (19) depends on an intermediate variable that is a
product of the phase shift matrix and the attenuation coefficient
matrix, starting from the final layer and moving backward
to the current layer. By storing and recursively updating this
intermediate variable, we can prevent redundant calculations
of the multiplications and efficiently determine the derivatives
for all layers.

2) Parameter Update: Once all the gradients w.r.t. the
SIM’s phase shift vectors have been calculated, we simultane-
ously update the phase shift values &; in the specific direction
that decreases the loss function value. At each iteration, the
update formula is as follows:

£ < & —nVe, L,

where 17 > 0 represents the learning rate. To ensure a stable
convergence, the learning rate 7 also decreases over time.
Specifically, we have

21

(22)

n < n¢, (23)

with ¢ representing the decay parameter.

Additionally, the auxiliary scaling factor 5 also has to
be updated during each iteration to maintain the required
normalized level. Specifically, given a tentative SIM response
matrix G, the optimal value of S can be readily obtained by
utilizing the least squares method, yielding

-1
s=1(g"9) ¢"f,

where we have g = vec (G) and f = vec (F)).

The phase shift values are updated repeatedly until either the

loss function £ converges or the number of iterations achieves

the maximum tolerable value. To summarize briefly, the gen-

eral procedure of the proposed gradient descent algorithm is
outlined in Algorithm 1. Note that the complexity of Algorithm

(24)
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Algorithm 1 The Gradient Descent Algorithm Proposed for
Optimizing the SIM’s Phase Shifts.
1: Input: ¥, W;, 1 =0,1,--- L.
2: Randomly initialize all phase shift values §;, [l =1,--- ,L
by sampling from a uniform distribution.

3: Calculate the current loss function L.

4: Repeat

5: Calculate the derivatives for each layer using (19).

6: Update the phase shift vectors §;, l = 1,---, L using
(22);

7: Adjust the learning rate 7 using (23);

8: Adjust the scaling factor 3 using (24);
9: Until the fractional reduction in £ falls below a preset
threshold or the maximum number of iterations is reached.

10: Output: {&,,&,,--- , &}

1 is primarily determined by the calculation of the derivatives
in (19), which involves two matrix manipulations. Due to the
fact that Y is diagonal, the complexity order for each iteration
is O (MN + M). As a result, the overall complexity order of
the gradient descent algorithm is O (ILM N (N + 1)), where
I represents the number of iterations.

C. The Choice for M

In this subsection, we briefly discuss the SIM parameter
selection for achieving the desired 2D DFT functionality.

Theorem 1: A necessary condition for achieving £ = 0 is
that M > N.

Proof: If M < N, the rank of G will be limited to
rank (G) < rank (W) < min(N,M) = M < N. As a
result, the SIM’s response matrix G having arbitrary phase
shift values can no longer accurately fit the 2D DFT matrix
F, whose rank is rank (F') = N. This proves the theorem. [J

Remark 6: By employing a SIM to implement the 2D DFT
in the wave domain, the system can directly generate the
angular spectrum at the receiver array and provide an on-
grid estimate of the DOA parameters for the incident signal.
However, this may result in a coarse estimate with limited
precision for a small value of N. To achieve high DOA
estimation accuracy, this requires employing a large number of
probes at the receiver, which is not practical due to both the
physical space and cost limitations. Additionally, accurately
implementing the 2D DFT associated with arbitrary grid points
requires a huge number M of meta-atoms on each layer. While
the unit price is reasonable, the entire SIM would be costly.
Fortunately, the zeroth layer provides an extra design degree
of freedom (DoF), which can be exploited for generating a
set of 2D DFT matrices associated with different frequency
bins. This has the potential of substantially improving the
DOA estimation accuracy of a moderate-size SIM, as it will
be discussed further in Section IV.

IV. SIM-BASED DOA ESTIMATION

In this section, we first introduce the proposed SIM-based
DOA estimation protocol by appropriately configuring the
phase shift values of the zeroth layer, i.e., Y. We then

present the specific DOA estimation procedure based on this
configuration.

A. Estimation Protocol

As shown in Fig. 3, the proposed protocol divides the total
observation time 71" into Ty blocks, each of length T}, so that
T = T,Ty. The phase shift vectors for the first to the L-th
layers are determined by employing the optimization process
described in Section III-B and remain the same during T
snapshots. By contrast, the phase shift vector for the zeroth
layer of the SIM is reconfigured at each time slot in order
to generate a set of DFT matrices having orthogonal spatial
frequency bins. Specifically, at the t-th snapshot, the phase
shift of the n-th meta-atom on the zeroth layer is configured
as

(=D (t=1) (=1t~ 1)
N, T N,T,

where ny and ny are defined by (12) and (13), ¢, and iy
represent the block index and the time slot index within that
block, respectively, which are defined by

t)’é [t/TXW7
te=t—(ty —

§O,TL,t = =27 , (25)

(26)

)T Q7

Note that upon right-multiplying G (i.e., the well-fitted
version of F') by Y, the SIM implicitly characterizes a set
of 2D DFT matrices whose frequency bins are all mutually
orthogonal to each other.

B. SIM-Based DOA Estimator

Under the noiseless received signal model, the EM waves
propagating through the optimized SIM are automatically
focused on the specific antenna index and snapshot index
corresponding to the on-grid DOA estimate and spatial fre-
quency offset component of the incoming signal, respectively.
As a result, the DOA parameters of the incoming signal can
be readily estimated by measuring the energy distribution
across the receiver antenna array, which is in contrast to
conventional DOA estimation algorithms relying on phase-
sensitive receivers and array signal processing.

Specifically, let r, ; represent the signal received at the n-
th probe in the t¢-th snapshot. After collecting the received
signals over 7' snapshots, we then search for the index of
the strongest signal magnitude. The 2D index of the peak is
obtained as follows:

Lo 2
[7,t] = arg | nax |Pnt]” - (28)

t=1,---,T

Therefore, the corresponding electrical angles of the inci-
dent signal are obtained by

. y—1 f—1
. = mod |2 + +1,2] —1, (29)
dommod 2 (M R ) 1)

- Ay —1  fy—1
=mod |2 = >
o2 (e

)+1,2} ~1, (30
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Fig. 4. The proposed SIM-based DOA estimation protocol, where different colors refer to non-overlapping spatial frequency bins associated with different
snapshots. This is achieved by adjusting the phase shifts of the input metasurface layer. The vertical and horizontal lines correspond to vx and 1)y, respectively.

respectively, where 7, and fi, are obtained by substituting 7
into (12) and (13), respectively, while fy and {, are obtained
by substituting { into (26) and (27), respectively.

Based on (29) and (30), the estimated azimuth and elevation
angles ¢ and V are given by

d
¢ = arctan dfy ,
wxdy

¥ = arcsin

€2V

(32)

Remark 7: The parameter 1" strikes a flexible tradeoff
between the estimation accuracy and the number of snapshots
needed. Increasing the number of snapshots can enhance the
estimation accuracy, but this requires increasing the switching
speed of the FPGA controlling the zeroth layer in order to
collect more observations within a given period. In practice,
one could collect a sufficient number of snapshots to estimate
the DOA for a stationary target. By contrast, for a moving
target, the DOA has to be estimated frequently with fewer
snapshots available at each block.

Remark 8: In conventional radar systems, the antenna ar-
rays first receive signals and down-convert them to baseband
signals before estimating the DOAs. Again, the SIM operates
in a fundamentally different way by directly processing the
received RF signals, without the need for an individual RF
chain and ADC at each antenna element. This substantially
mitigates both the hardware cost and energy consumption,
which has great potential for onboard applications such as
employing a SIM on a drone to probe the DOA of ground
targets.

Remark 9: Although only a single radiation source is con-
sidered, the proposed SIM-based estimator could also estimate
the DOAs of multiple targets following similar principles to
the digital DFT-based estimator, albeit its angular resolution is
constrained by the Rayleigh limit [11]. Moreover, by viewing
the SIM as a fully connected neural network in the wave
domain, one could connect it to a digital neural network to
create a hybrid optical-electronic neural network (HOENN) to
estimate multiple DOAs with high accuracy [34]. However,
the specific training process of a HOENN and the estimation
protocol are beyond the scope of this paper and will be
reserved for future research.

V. PERFORMANCE ANALYSIS

Due to the measurement noise at the receiver array, the peak
index may be incorrectly identified, leading to estimation error.
In this section, we analyze the performance of the proposed
SIM-based DOA estimator by theoretically deriving the upper
bound for its MSE?. Specifically, let ), and 1/_)y represent the
true electrical angles of the incident signal. Hence, the MSE
of the SIM-based DOA estimator is calculated by

N T B R 2
MSE,, = >3 (wx - wx,n,t) Pr(n,t), (33)

n=1t=1

N T
MSEy, = 33 (% - z&y,n,t)Z Pr(n,t),  (34)

n=1t=1

where @Exm,t and @/Ajy%t represent the estimated values of
and 1)y, respectively, for the case when r,; has the highest
energy, and Pr (n, t) represents the probability of detecting 7, ;
having the highest magnitude, which is defined as

. ‘N)
i=1,...,T

Pr(n,t) = P1r{|rn7t|2 = max |Tﬁ,£|2} . (35)

Furthermore, the upper bounds for MSE,, and MSE,;, are
summarized in Theorem 2.

Theorem 2: The analytical expressions for (33) and (34) are
upper-bounded by:
N T K 9
MSEl/)x S Z Z ('l/)x - wx,n,t)
n=1 1

t

9hn,t Y % - ghn,t +2
xQ > SN
N T B 5
MSE¢y S Z Z <¢y - ¢y,n,t)
n=1t=1
Ot 3 12 — Ol g + 2
xQ > SNET

2For notational brevity, we evaluate the MSE of the electrical angles instead
of the azimuth and elevation values. The MSE of the azimuth and elevation
angles can be readily obtained by substituting those estimated values according
to (31) and (32) into (36) and (37).
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TABLE I
THE NORMALIZED LOSS FUNCTION VALUE (IN DB) OF UTILIZING A SIM TO FIT 2D DFT MATRIX WITH (2, 2) GRID POINTS.

The first-round experiment with coarse granularity

S

=Sy = 2)\/6

) Sy = sy = 2)\/3 Sy = 8y = 2)\/9
M| Tom L=3 =5 ‘ L=9 L=3 L=56 L=9 L=3 =5 ‘ L=9
3\ —9.04 —9.22 —5.10 —2.34 —3.10 —3.82 —1.40 —2.67 —1.28
9 [ 6x —3.72 —15.39 —10.59 —1.33 —1.39 —1.75 —1.10 —1.25 —1.25
[S2) —2.03 —5.34 —12.16 —1.22 —1.27 —1.25 —0.91 —1.25 —1.25
3\ —21.40 —17.70 —6.44 —19.89 —27.84 —14.24 —4.98 —4.64 —3.00
36 [ 6 —16.43 —51.35 —77.43 —3.98 —7.35 —3.94 —2.12 —2.42 —1.29
X —12.16 —21.44 —45.99 —2.11 —2.44 —3.88 —1.40 —1.36 —1.25
3\ —32.90 —19.59 —5.42 —20.93 —15.51 —32.51 —11.39 —8.93 —1.22
81 [ 6 —34.65 | —186.34 | —174.09 —11.17 —21.12 —11.03 —71.02 —6.64 —5.23
2N —20.34 | —183.78 | —149.94 —4.40 —7.17 —11.21 —1.80 —3.32 —2.81
The second-round experiment with moderate granularity
Sx = Sy = 2\ Sx = S8y = 2)\/3 Sx = 8y = 2\/b
M T L =14 =5 L=28 L =1 =5 ‘ L=28 L=1 = ‘ L =238
ax —1.58 —0.56 —0.38 —38.69 —27.79 —19.27 —22.74 —67.44 —19.13
49 [ 6 —8.24 —2.11 —0.83 —2T.11 —64.99 —41.89 —13.64 —13.34 —41.31
8X —23.36 —13.06 —2.18 —21.03 —39.62 —50.57 —6.39 —10.69 —15.80
ax —1.66 —0.52 —0.38 —39.88 —27.21 —28.59 —39.46 —49.97 | —143.56
81 [ 6A —9.47 —2.48 —0.96 —40.76 | —186.34 —55.88 —23.20 | —176.10 —20.38
X —21.78 —5.61 —3.37 —31.07 —71.25 | —182.64 —11.90 —33.63 —9.54
4N —1.28 —0.54 —0.36 —32.92 —74.72 —16.65 | —183.27 | —115.42 | —182.88
121 [ 6X —10.29 —2.46 —1.40 —62.48 | —179.98 | —179.26 —15.93 —96.04 | —199.67
gX —24.44 —8.73 —3.35 —61.87 | —199.91 | —192.93 —28.65 | —194.52 —35.18
The third-round experiment with fine granularity
Sy = 8y = 27 /2 Sx = 8y = 2A/3 Sx = 8y = 27\ /4
M| T —p— A =7 =5 =5 / =7 = i =
X —34.33 —31.57 —40.62 —52.49 | —183.68 | —185.46 —78.29 | —174.16 —65.66
100 [ 8X | —181.78 | —141.26 —65.18 —47.77 | —190.77 | —100.66 | —194.17 | —114.11 | —182.10
2N —75.05 | —186.58 —28.49 —52.09 —59.48 | —188.36 —40.13 —68.04 | —192.96
o) —43.44 —36.41 —17.11 —66.08 | —188.02 | —181.77 | —194.05 | —188.23 | —187.96
121 [ 8x —72.48 —82.82 | —180.05 —78.40 | —199.91 | —194.52 —93.94 | —192.73 | —177.78
2N —165.68 | —103.64 | —185.65 —39.28 —78.45 | —183.62 | —117.50 | —183.12 | —208.78
2} —35.95 | —163.67 —34.67 | —195.45 | —191.91 | —192.13 | —186.43 | —188.46 | —179.55
144 [ 8X —84.74 | —181.21 —91.63 —72.60 | —183.46 | —201.35 —52.73 | —183.36 | —178.34
OX | —183.27 | —105.71 | —186.88 | —111.27 | —174.52 | —199.73 —4456 | —180.33 | —178.95
where we have A. Ablation Study
Pt = :u“g,n,t / M%_nﬁ (38) Eirst, we con.duct extepsive simqlations to examine t}.le
' optimal SIM designed for implementing 2D DFT having grid
b —h , — Bt (39) points of (2,2) and (4,4), respectively. Specifically, a SIM
n,t n,t H1n,t ) . . ..
M2, n,t has four key parameters: i) The thickness Tsp of the SIM; ii)

. _ 2
fhime = (—1)" (2 +1i ‘\/QQQ;?TQ{CL (Ux, by) s’ )
_ 2
+24|V205 Youa (b thy)s| . (40)
for i = 1,2,3, gl € C'*N and g € C'*V represent the
n-th and n-th rows of G, respectively. Moreover, 7 and i
represent the antenna and snapshot indices associated with the

highest energy under the noiseless condition, defined by

N - - - 2

[0,] = arg_max_ g,/ Yora (¥x )| . @D
t=1,---,T

Proof: Please refer to Appendix B. (|

VI. SIMULATION RESULTS

In this section, we report on our numerical simulations to
evaluate the performance of the SIM-based DOA estimator.
The system layout for estimating the DOA is shown in Fig. 1.
The system operates at 60 GHz. Unless otherwise specified,
we consider a square UPA having Ny X Ny elements. The array
spacing is set to dx = dy = A\/2.

The number L of metasurface layers; iii) The number M of
meta-atoms per layer; and iv) The spacing between elements
in the x and y directions, namely sx and sy. For brevity,
we characterize a SIM using a four-tuple (s, L, M, sx),
assuming sy = sy. Since testing over all four parameters across
many possible values would be extremely time-consuming,
we design a three-round ablation study having successively
improved granularity. Taking the number of layers L as an ex-
ample, in the first round we consider L = 3, 6,9 along with a
step size of 3. After identifying the best SIM configuration, we
narrow the search range around the optimal value and reduce
the step size to 2. Similarly, the step size is further reduced
to 1 in the third round. The other parameters are listed in the
following tables. For brevity, we assume uy = uy = A/2.
Table I shows the results of a SIM fitting the 2D DFT matrix
having (2,2) grids. All results are obtained by averaging
100 independent experiments. The optimal solution found in
the first round of experiments is used as the center point
for the second-round experiment associated with moderate
granularity. The same process is repeated for the third-round
experiment. After the three rounds, it is observed that the
optimal SIM designed for fitting the 2D DFT matrix having
(2,2) grids is (9A, 7, 121, 2)\/4), achieving a normalized
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TABLE II
THE NORMALIZED LOSS FUNCTION VALUE (IN DB) OF UTILIZING SIM TO FIT 2D DFT MATRIX WITH (4,4) GRID POINTS.

The first-round experiment with coarse granularity

sy = sy = 4\/9

sy = sy = 4\/6 sx = sy = 4A/12
M| To L=6 L=9 L =12 L=6 L=9 L =12 L=6 L=9 L =12
6\ —3.90 —4.07 —3.81 —3.13 —4.36 —4.76 —1.58 —1.75 —1.32
36 ERY —4.27 —5.95 —6.22 —2.04 —3.00 —3.42 —1.24 —1.45 —1.11
12X —3.43 —6.14 —6.71 —1.91 —2.19 —2.13 —0.88 —1.04 —0.59
6 —7.65 —7.97 —4.55 —8.26 —11.80 —11.24 —5.00 —5.62 —5.15
81 R —9.21 —10.82 —10.06 —6.64 —10.02 —10.83 —3.71 —3.94 —2.74
12X —8.71 —11.69 —11.13 —5.12 —8.15 —9.44 —2.46 —2.83 —2.72
6 —11.03 —10.41 —5.83 —13.60 —15.94 —15.41 —10.73 —11.31 —6.99
144 9N —12.38 —15.41 —13.55 —12.65 —17.24 —18.01 —8.32 —9.08 —9.12
12X —12.20 —15.09 —15.87 —9.66 —14.86 —15.91 —6.12 —7.93 —8.38

The second-round experiment with moderate granularity

M T sy = sy = 4\/7 Sx = sy = 4\/9 sy = sy = 4\/11
SMUTT =10 | L=12 | L=14 | L=10 | L=12 | L=14 | L=10 | L=12 | L=14
A —15.16 —14.05 —14.25 —12.63 —13.66 —13.82 —9.42 —8.45 —8.49
100 9IA —14.44 —15.22 —14.62 —12.40 —12.02 —14.92 —7.83 —6.44 —3.23
11X —14.35 —15.21 —15.28 —11.96 —11.69 —12.18 —6.71 —4.90 —4.00
A —15.31 —16.06 —15.45 —17.70 —19.31 —17.58 —13.06 —12.42 —8.87
144 ERY —14.38 —17.73 —17.49 —17.88 —18.01 —17.93 —14.08 —12.55 —10.60
11X —15.51 —17.38 —18.73 —16.42 —17.26 —19.75 —11.81 —10.89 —6.55
N —15.73 —15.81 —16.27 —20.95 —17.34 —19.12 —16.46 —17.67 —16.87
196 R —16.43 —17.37 —20.88 —19.07 —21.38 —19.48 —15.01 —17.81 —14.50
11X —18.23 —19.42 —19.43 —19.94 —22.20 —21.04 —16.34 —17.60 —16.35

The third-round experiment with fine granularity

, sy = sy = 4\/8 sy = 8y = 4A/9 sy = sy = 42/10
M AT =97 [ =12 [ L=13 [ L=11 [ L=12 [ L=13 | L=11 -T2 [ L=13
10X —19.48 —17.72 —17.97 —16.58 —19.43 —22.67 —15.92 —16.34 —17.18
169 11X —17.69 —19.86 —20.27 —16.04 —19.74 —17.21 —17.31 —18.26 —14.77
12X —18.47 —17.58 —21.00 —18.26 —19.80 —18.34 —13.74 —15.71 —14.44
10X —18.17 —21.06 —22.02 —20.05 —24.15 —20.46 —20.03 —18.22 —19.07
196 11X —18.87 —19.10 —18.82 —17.20 —22.20 —20.37 —17.49 —19.92 —16.18
12X —20.52 —18.69 —20.56 —21.07 —20.95 —19.14 —19.42 —18.69 —17.27
10X —19.65 —20.32 —20.24 —21.69 —20.79 —22.17 —17.59 —20.13 —18.84
225 11X —20.23 —19.69 —22.92 —22.16 —19.80 —22.52 —19.28 —19.62 —20.61
12X —19.94 —21.87 —20.15 —20.58 —18.60 —24.17 —21.41 —20.27 —19.90

MSE of —208.78 dB. Furthermore, we also mark those SIM
setups that achieve satisfactory results (defined as £ < —170
dB) in bold blue font. As the experiments progress, more
SIM setups are examined to achieve NMSE values lower
than the target. This verifies that the optimal SIM setup is
not exclusively determined and a practical system needs to
adaptively design the SIM.

Moreover, Table II shows the results for the 2D DFT
having (4,4) grid points. Those SIM setups that achieve an
NMSE less than —15 dB are marked in bold blue font. After
three rounds of experiments, the optimal SIM design for the
2D DFT having (4,4) grid points is found to be around
(12X, 13, 225, 41/9). It is important to note that due to the
challenge of fitting a larger 2D DFT matrix, the fitting NMSE
in Table II is higher than that in Table 1. Nevertheless, later
we will demonstrate that this has a negligible effect on the
DOA estimation performance.

Based on the results in Tables I and II, there exist fundamen-
tal tradeoffs between the four parameters of the SIM. More
specifically, we summarize our pivotal findings as follows:

o For a fixed number of layers L, the inter-layer propaga-
tion matrix W; may become singular, as the thickness of
the SIM Tspv increases without limit, while a very thin
SIM causes W, to become nearly diagonal, both lacking
the diversity for accurately fitting the 2D DFT matrix.

For a fixed thickness Ty, increasing the number of
layers L results in a denser metasurface arrangement,
rendering W, nearly diagonal. Too few metasurface

layers may lack the adequate DoF to leverage all wave
propagation components in the SIM.

An excessive number of meta-atoms would result in
unnecessary links within the SIM and even introduce
adverse wave propagation components to fit the 2D
DFT matrix. However, too few meta-atoms may violate
Theorem 1 and restrict the SIM to fit F' accurately.

For an excessive element spacing sy, the inter-layer
propagation matrix W tends towards diagonal, while a
low element spacing may result in identical values across
all entries, resulting in a rank-one matrix unable to fit the
2D DFT matrix of rank V.

Therefore, we should carefully design the SIM for practical
applications. Note that due to the complex tradeoffs between
these hardware parameters and the danger of getting stuck
in a local optimum, the loss function values may not change
smoothly. Instead, Tables I and II aim to provide a feasible
range of parameter values that achieve satisfactory DOA
estimation accuracy. The rigorous evaluation of the fitting
capability of SIM may involve complex matrix decomposition
theory, warranting future efforts.

B. Convergence Behavior of the Proposed Gradient Descent
Algorithm

Fig. 5 evaluates the convergence behavior of the proposed
gradient descent algorithm for optimizing a SIM to fit a
2D DFT matrix of (2,2) grid points. According to Table
I, the optimal SIM is constructed by inserting L 7
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Fig. 5. The convergence behavior of the proposed gradient descent algorithm
for optimizing a SIM to fit a 2D DFT matrix with (2,2) grid points.

0 T 0
10 o .Mwa& — 10! ]
e i
SS o0, [
<102 < = i
N I
N [}
(=090 Q /
—(=095 ’ W/
e l2099 102 =7
10
0 50 100 150 200 0.7 0.8 0.9 1
Number of iterations ¢

(a) The normalized loss function value £ (b) The normalized loss function value £
versus the number of iterations; versus the decay parameter .

Fig. 6. The convergence behavior of the proposed gradient descent algorithm
for optimizing a SIM to fit a 2D DFT matrix with (4,4) grid points.

layers into a cube having a thickness of Ts;vy = 9A. Each
square metasurface contains M = 121 meta-atoms associated
with s, = s, = A/2 element spacing. First, Fig. 5a plots
the normalized loss function value £ versus the number
of iterations for three cases with different decay parameter
values, namely ¢ = 0.75, 0.80, 0.90. It demonstrates that as
the iterations proceed, the proposed gradient descent method
gradually converges for a moderate decay parameter value,
such as 0.80. For a value of ¢ close to 1, the algorithm may
overshoot frequently and need a higher number of iterations to
converge. While the gradient descent method may reduce the
loss function rapidly, namely within less than 50 iterations for
¢ = 0.75, it may get stuck at a locally optimal point. To further
demonstrate the effect of decay parameters, Fig. 5b examines
the resultant loss function value of £ after 100 iterations
versus the decay parameter (. Specifically, 50 independent
experiments are conducted, and both the average value and
potential range (shown as the red zone) are plotted. It can
be seen that as ( increases, the SIM’s fitting performance
first improves and then degrades, which is consistent with our
analysis. A decay parameter of about ¢ = 0.80 achieves the
best performance under the worst-case condition.
Furthermore, Fig. 6 verifies the convergence behavior of
the gradient descent algorithm for leveraging a SIM to fit
a 2D DFT matrix of (4,4) grids. The SIM hardware pa-
rameters are set to (12, 13, 225, 4A/9) based on the re-
sults in Table II. Three different decay parameter values of
¢ = 0.90, 0.95, 0.99 are considered. As shown in Fig. 6a, a
moderate decay parameter value, such as ¢ = 0.95, is capable
of accurately fitting the 2D DFT matrix at an NMSE of less
than 10~3 after about 200 iterations. Larger or smaller decay
parameters would deteriorate the performance of the gradient
descent method, and this trend is similar to Fig. 5a. Again,
due to the challenge of utilizing a SIM to fit the 2D DFT
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Fig. 7. Angular spectrum of the incoming signal using a (2 x 2) receiver
array, where we have ¢x = 0.48 and vy = 0.23. The red cross represents
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Fig. 8. Angular spectrum of the incoming signal using a (4 x 4) receiver
array, where we have ¢x = —0.58 and ¢y = —0.28. The red cross represents
the true DOA position on the spectrum.

matrix with more grid points, the resultant fitting performance
is poorer than that for the (2,2)-grid scenario, even though
a larger SIM is used. Moreover, Fig. 6b evaluates the effects
of ( in this scenario by running 50 independent experiments.
The optimal ¢ that minimizes the normalized loss function
value within 100 iterations is about ( = 0.95. This validates
the necessity to judiciously adjust the learning rate during
iterations. In summary, in early iterations, a lower ¢ would
be preferred to allow for larger phase shift changes, and then
it should be appropriately increased for maintaining a smooth
learning rate update to fine-tune the SIM’s response.

C. 2D DFT Capability of SIM

To demonstrate the 2D DFT’s capability in the SIM, we
next examine the angular spectrum of the incoming signal by
first considering the case of Ny = Ny = 2 and T} = Ty = 64.
Specifically, following the protocol outlined in Section IV-A,
we collect the received signal passing through a well-trained
SIM in each snapshot. The SIM has been pre-optimized using
the gradient descent method along with ¢ = 0.8 over 200
iterations. We then use the outputs from 7' = 4096 snapshots’
to generate the angular spectrum of the incoming signal, as
shown in Fig. 7a. The spectrum peak is normalized. Moreover,
the electrical angles corresponding to the = and y directions
are set to ¢)x = 0.48 and 1), = 0.23, respectively, as marked
by a red cross in the figure. Note that the spectrum generated
by the SIM succeeds in focusing the beam toward the true

3For the sake of illustration, here we use a large value of 1" for visualizing
the angular spectrum at high resolution, but later we will evaluate the DOA
estimation performance of the SIM using a moderate number of snapshots to
ensure a reasonable observation period.
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Fig. 10. Performance comparison of the SIM-based DOA estimator and the conventional approach via a 2D digital DFT.

DOA position. This allows estimating the DOA parameters
by simply searching for the antenna and snapshot having the
strongest received magnitude. Furthermore, Fig. 7b plots the
spectrum using 2D DFT in the digital domain under the same
protocol. Upon comparing Figs. 7a and 7b, we note that the
SIM outputs almost the same signal spectrum as the 2D digital
DFT. Nevertheless, the wave-based computing paradigm is
totally different from the conventional digital approach. As
the computations are carried out naturally as signals propagate
through the SIM, the computing delay is significantly reduced
and the hardware design can also be accordingly simplified.

Moreover, Figs. 8a and 8b show the angular spectra using
the SIM and the 2D digital DFT, respectively, considering
a (4 x 4) receiver array and Ty = Ty = 32. The angular
spectrum of the incoming signal is generated by collecting
the received signals passing through the SIM over T' = 1024
snapshots. The SIM adopts the optimal hardware parameters
listed in Table II and it is optimized through 200 iterations
with a decay parameter of ( = 0.95. The electrical angles
in the x and y directions are set to ¢, = —0.58 and
1/3y = —0.28, respectively. Thanks to the increased array
aperture, the angular spectra in Fig. 8 have reduced leakage

compared to those in Fig. 7. As such, one can obtain a more
accurate DOA estimate under noiseless conditions. Again, we
note that the SIM is capable of generating the same angular
spectrum as the 2D digital DFT for the (4 x 4) array and
perfectly concentrating the received signal onto the antenna
and snapshot corresponding to the true DOA value.

D. Validation of Theoretical Analysis

Next, we verify the accuracy of our analytical results by
examining the MSE of using a SIM for DOA estimation. For
brevity, we estimate the electrical angles, which can be mapped
to the true elevation and azimuth angles using a bijection.
Firstly, Fig. 9a plots the MSE versus the effective SNR, which
is defined as pB2. We also consider different numbers of
snapshots: Ty = Ty = 2 and Ty = Ty = 4. For each
setup, we perform 1,000 independent experiments, where the
DOA parameters of the single radiation source are uniformly
distributed in the upper half-space of the SIM, as shown
in Fig. 2. The SIM hardware parameters are appropriately
selected as in Table I, while the phase shifts are optimized
leveraging the gradient descent with ( = 0.8. Moreover,
the theoretical MSE values are obtained by averaging 1,000
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corresponding values calculated from Theorem 2. As expected,
the estimation accuracy improves for all scenarios, as the SNR
increases. However, due to the discrete nature of the SIM,
which can only return the on-grid estimate of DOA parameters,
the proposed SIM-based estimator eventually reaches an error
floor determined by the resolution in terms of angular bins.
Nevertheless, the estimation performance can be further im-
proved by collecting more snapshots. For example, increasing
the number of snapshots from 7" = 4 to T' = 16 provides
about a 20 dB gain in terms of the SNR. Additionally,
the performance bound analytically derived from Theorem 2
serves as an upper bound in both cases. As the SNR increases,
the gap between the simulation and analytical results gradually
narrows, since the scaling in (47) becomes tight.

Fig. 9b evaluates the MSE of the SIM-based estimator
versus the effective SNR, considering a (4 x 4) receiver array.
The SIM’s hardware parameters and phase shifts remain the
same as in Fig. 8. Additionally, two different numbers of
snapshots are considered: Ty, = Ty, = 4 and T} = Ty = 8.
As seen in Fig. 9b, both the theoretical and simulation results
indicate that the MSE improves as the SNR and the number of
snapshots increase. Specifically, when increasing the number
of snapshots from 7" = 16 to 7' = 64 at an effective SNR of
10 dB, the MSE is reduced from 1.5 x 1073 to 0.75 x 1073,
resulting in a 3 dB MSE improvement. Further increasing the
effective SNR to 30 dB provides an extra 3 dB of performance
gain. At high SNRs, the theoretical upper bound (i.e., green
curves in Fig. 9) becomes asymptotically tight. Moreover,
compared to Fig. 9a employing a (2 x 2) receiver array with
T, = Ty = 4, doubling the array aperture reduces the MSE
from 0.6 x 1072 to 1.3 x 1073, providing about a 6 dB gain
in MSE.

E. Performance Comparison with Conventional Beamforming
Methods

Furthermore, we compare the performance of the proposed
SIM-based DOA estimator to the conventional beamforming-
based method, which matches the steering vector to an esti-
mated array response. The simulation results shown in Fig.
10 consider the cases of Ny = Ny = 2 and Ny = Ny = 4,
respectively, while keeping all other parameters the same as
in Fig. 9. Moreover, the corresponding numbers of snapshots
are set to 7' = 16 and T' = 64, respectively. Fig. 10 shows
that the proposed SIM-based estimator performs similarly well
to the digital beamforming-based method under all setups.
However, the digital method requires phase-sensitive receivers
and digital signal processing, while the SIM-based estimator,
relies on energy detection and wave-based signal processing.
Additionally, Fig. 10a also plots the MSE of an (8 x 8)
receiver array in a single snapshot, which provides a lower
bound for the SIM-based scheme. Observe that the gap grad-
vally narrows as the effective SNR increases. Similarly, the
receiver array of (32 x 32) in a single snapshot characterizes
the lower bound of the SIM-based estimator using a (4 x 4)
receiver array and T = 64 snapshots, as shown in Fig. 10b.
Although the digital method with a (32 x 32) array is capable
of accurately estimating the DOA across all SNR regions,
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Fig. 11. A SIM-aided array system.
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Fig. 13. The effects of the receiver array arrangement: a 4 X 4 array.

it requires a large array aperture, whereas the SIM-based
system estimates the DOA with a smaller array and a moderate
number of snapshots.

F. Effects of Receiver Array Arrangement

Finally, we evaluate the effects of the receiver array ar-
rangement on the SIM’s capability of performing 2D DFT. As
shown in Fig. 11, we consider two main parameters: i) the
antenna spacing uyx = uy; and ii) the rotation angle w. Fig.
12a shows the fitting NMSE versus the antenna spacing ux,
assuming Ny = Ny = 2 and w = 0°. In each case, the SIM
phase shifts are optimized by performing 100 iterations with a
decay parameter of ¢ = 0.8. The SIM’s hardware parameters
are the same as in Fig. 7, while we also consider different
numbers of layers: L = 1, 3, 7. The results are obtained by
averaging 50 independent experiments, with the ranges also
plotted. Fig. 12a demonstrates that a SIM of seven metasurface
layers is capable of accurately performing 2D DFT when
ux > A/2. By contrast, a SIM having fewer layers cannot fit
the 2D DFT matrix well and requires a larger antenna spacing
for the receiver array. Furthermore, Fig. 12b evaluates the
effects of the rotation angle of the receiver array, considering
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ux = A/2 and different numbers of meta-atoms on each layer:
M =9, 49, 121. Fig. 12b shows that a SIM having a small
number of meta-atoms lacks sufficient inference capability.
For a SIM having M = 121 meta-atoms per layer, the fitting
performance becomes insensitive to the rotation angle of the
receiver array. Nonetheless, for a rotation angle near w = 45°,
the SIM using the proposed gradient descent may have poorer
robustness. In summary, this verifies the effectiveness of our
previous setups adopting uy = uy = A/2 and w = 0°.

Fig. 13a evaluates the effects of the antenna spacing uy
in the receiver array on the SIM’s capability of performing
2D DFT with (4,4) grid points. The SIM has the same
hardware parameters as in Fig. 8, while the SIM phase shifts
are optimized through 100 iterations with a decay parameter
of ¢ = 0.95. We consider different numbers of layers:
L = 1,5, 13. Similarly, a SIM with fewer layers cannot
fit the 2D DFT matrix well, while a SIM with L = 13
metasurface layers is capable of accurately performing 2D
DFT when u, > A/2. Moreover, Fig. 13b evaluates the effects
of the rotation angle w of the receiver array, considering
ux = A/2 and different numbers of meta-atoms on each
layer: M =9, 81, 225. A small number of meta-atoms results
in poor inference capability. For a SIM having an adequate
number of meta-atoms (such as M = 225) per layer, the fitting
performance becomes less sensitive to w. Again, this verifies
that the optimal receiver array should have an isomorphic
arrangement with the input layer of the SIM.

VII. CONCLUSIONS

A novel SIM architecture has been proposed for estimating
the 2D DOA parameters of a single radiation source. This new
design allows for a significant improvement in computation
speed and hardware complexity. By customizing a gradient
descent method to guide the SIM to perform a 2D DFT,
the spatial EM waves can be automatically transformed into
their angular domain as they propagate through the SIM.
Furthermore, we have developed a protocol to generate a
set of angular spectra with orthogonal spatial frequency bins.
As a result, the DOA can be estimated by searching for
the antenna and snapshot having the strongest magnitude.
Also, we theoretically evaluated and numerically verified the
MSE of the proposed SIM-based DOA estimator. Extensive
simulation results were provided to examine the optimal SIM
hardware parameters and hyperparameters for the gradient
descent method. In particular, we summarize our main findings
as follows:

e A SIM having 9\ thickness and 7 metasurface layers,
with 121 A\/2-spaced meta-atoms per layer, is capable
of minimizing the loss function for fitting the 2D DFT
matrix of (2,2) grid points. For the (4, 4)-grid scenario,
the optimal SIM design has a thickness of 12\ and 13
layers, each with 225 meta-atoms spaced 4\ /9 apart.

o The optimal decay parameter for the gradient descent
method when fitting the 2D DFT matrix of (2,2) and
(4,4) grid points are ¢ = 0.8 and ¢ = 0.95, respectively.

o A well-trained SIM is capable of generating the angular
spectrum of incoming signals and providing a DOA es-
timate with an MSE of 10~* under moderate conditions.

o The spacing between adjacent antennas in the receiver
array should be no less than /2, while an isomorphic
arrangement between the receiver array and input layer
achieves the most robust performance.

Since this is the first paper on SIM-aided DOA estimation,
there remain several open issues that deserve further explo-
ration. Firstly, further investigations are required to leverage
SIM technology to realize more sophisticated DOA estimation
algorithms, such as super-resolution and compressed sensing
methods in the wave domain. The general scenario of multiple
signal sources should also be considered. Secondly, by inte-
grating amplifiers into each meta-atom and operating them in
the non-linear regime, SIMs may be capable of fully realizing
DNNs, while using electromagnetic waves for forward compu-
tation. Beneficially leveraging the EM coupling among closely
packed meta-atoms and metasurfaces may further enhance the
generalization capability of a SIM. Additionally, leveraging
deep reinforcement learning-based optimization strategies may
be beneficial for training the SIM by interacting with the
environment [35]. Moreover, the transmission coefficient of
each meta-atom cannot be continuously adjusted in practice. It
is crucial to design appropriate algorithms for optimizing the
discrete phase shifts and to evaluate the SIM’s performance
under more realistic response models. The complex tradeoffs
between the energy savings provided by SIM and the penetra-
tion losses caused by multiple metasurface layers should be
considered at a system level [36].

Before concluding, we note that the inverse system of the
SIM presented in this paper can be utilized for implementing
angular division multiplexing. By employing a SIM as a multi-
user precoder at the base station, the signal for each user
can be transmitted directly from the corresponding antenna.
This would substantially simplify the hardware design of
wireless communication systems. Motivated readers also might
like to refer to [26], [29]. Moreover, the SIM-enabled near-
field positioning has been discussed in [37]. In a nutshell,
the advanced SIM technology offers a new computational
paradigm by directly processing EM waves, which would
profoundly influence future system designs for both wireless
communication and radar sensing applications.

APPENDIX A
PROOF OF (19)

First, we note that the gradient of the loss function £ w.r.t.
the phase shift vector of the [-th layer &, can be expressed as

N
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Furthermore, the m-th entry of the gradient in (42) is
obtained by taking the partial derivative of ||3g,, — f,,||° w.rt.
&1,m- Applying the chain rule of derivatives yields
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form =1,--- ,M, | = 1,--- L, where (i) holds due to
the fact that g,, = P; ,v;, and Py, is defined in (20), eﬁ
represents the m-th row of the identity matrix I ;.

By gathering the M partial derivatives in (43) into a vector,
the gradient in (42) can be obtained by

Ve, 189, — £.° =25 {8 Y[ P, (89, - .0} @4

Substituting (44) into (42) completes the proof. J

APPENDIX B
PROOF OF THEOREM 1

Before proceeding further, we first provide a pair of relevant
lemmas.

Lemma 1: (The Three-Moment x? Approximation) Consider
a non-singular linear transformation X in the general form of

K

X = i, (9F)

k=1

(45)

where ), are the non-zero coefficients, and x7 (03), k =
1,---, K represent a set of independent noncentral y? vari-
ables with hy, DoF and noncentrality parameter 7. The three-
moment x? approximation for the distribution of X is given
by:

X = &(Xi_h)‘FHM

5 (46)

where we have h = p3/u3 such that both sides in (46) have
equal third moments [38], and ; £ Zle Mo (hi +167) , i =
1,2,3.

The three-moment approximation can be used when p3 > 0
[38]. Otherwise, the approximation can instead be applied to
the distribution of —X.

Lemma 2: (The Wilson-Hilferty Transformation) For a chi-
square variable X with DoF h (i.e., X ~ X%), taking the cube
root of X divided by h (i.e., ¥/ X/h) results in a value that is
approximately normally distributed with mean of 1 — 2/ (9h)
and variance of 2/ (9h) [39].

Now we continue by deriving an upper bound of the MSE.
Note that the MSEy, in (33) and the MSE,, in (34) only
depend on the probability of detecting the corresponding index
as the peak position, which is defined as

Pr(n,t) £ Pr{ |rp.|” = nax |7"’FL75’2
T
2 2
<Pr{lraal® = [ryfl*}
= Pr{\Tn,t|2 —|"x t‘2 a 0}
=Pr {Dn,t > 0} ) @7)

where we have D, ; = |rn,t|2 — rﬁ’tvf, and |rn,t\2 and

2 i . .
T ¢| are distributed according to the noncentral chi-squared
distribution, satisfying

_ 2
2|l ~ 23 (\\/2995 Yosa () 5 ) )
_ 2
radl” ~ X3 (\\/2995 Yo i (B ) 5 ) .

According to Lemma 1, the three-moment x? approximation
of 2D, ; is obtained by

2 49)

2Dn,t ~ M2 n.t ( 2

Tont Xhpt — hn,t) + H1nt, (50

where h,, ; and p; ¢, @ = 1,2,3 are defined as in (38) and
(40), respectively.
Hence, the probability Pr{D,, ; > 0} amounts to taking

Pr{D,; >0} = Pr {Dn,t > bn,t}

where we have Dmt ~ Xi%n . and by, ; is defined in (39).
Upon applying the Wilson-Hilferty approximation in
Lemma 2, we have

2 2
- . 52
th,t7 9hn,t> ( )
Therefore, we arrive at
PI'{ \3/ Dn,t/hn,t Z \3/ bn,t/hn,t}
—q [ Yot ot Ins (53)

2 \ oy 2

Upon substituting (45) and (53) into (33) and (34), the proof
is completed. (]
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