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1 Electrical Engineering Department, Princeton University, Princeton, NJ, USA,{saad,poor}@princeton.edu.

2 Electrical and Computer Engineering Department, University of Houston, Houston, TX, USA, zhan2@mail.uh.edu.

3 Coordinated Science Laboratory, University of Illinois atUrbana-Champaign, USA, Email: basar1@illinois.edu.

4 College of Electronics and Information, Kyung Hee University, South Korea, Email: jsong@khu.ac.kr.

Abstract

This paper introduces a novel approach that enables a numberof cognitive radio devices that are observing the

availability pattern of a number of primary users (PUs), to cooperate and useBayesian nonparametrictechniques to

estimate the distributions of the PUs’ activity pattern, assumed to be completely unknown. In the proposed model,

each cognitive node may have its own individual view on each PU’s distribution, and, hence, seeks to find partners

having a correlated perception. To address this problem, a coalitional game is formulated between the cognitive devices

and an algorithm for cooperative coalition formation is proposed. It is shown that the proposed coalition formation

algorithm allows the cognitive nodes that are experiencinga similar behavior from some PUs to self-organize into

disjoint, independent coalitions. Inside each coalition,the cooperative cognitive nodes use a combination of Bayesian

nonparametric models such as the Dirichlet process and statistical goodness of fit techniques in order to improve the

accuracy of the estimated PUs’ activity distributions. Simulation results show that the proposed algorithm significantly

improves the estimates of the PUs’ distributions and yieldsa performance advantage, in terms of reduction of the average

achieved Kullback-Leibler distance between the real and the estimated distributions, reaching up to36.5% relative the

non-cooperative estimates. The results also show that the proposed algorithm enables the cognitive nodes to adapt their

cooperative decisions when the actual PUs’ distributions change due to, for example, PU mobility.
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I. INTRODUCTION

Cognitive radio has been proposed as a novel communication paradigm that allows an efficient sharing of the

under-utilized radio spectrum resources between licensedor primary users (PUs) and unlicensed or secondary

users (SUs) [1], [2]. Cognitive radio networks are based upon flexible spectrum management techniques that

allow licensed and unlicensed users to share the spectrum, while avoiding collisions with one another. The

main enablers of such cognitive communications are smart SUdevices that can intelligently and dynamically

monitor the spectrum, operating only when the PUs are inactive and making sure to vacate the spectrum

whenever a PU starts its transmission. Hence, one of the key challenges faced in the design of cognitive

radio networks is to ensure dynamic spectrum sharing while maintaining a conflict-free coexistence between

primary and secondary users [2]–[10].

In order to detect the PUs’ activity, the SUs are typically equipped with sensing capabilities (e.g., energy

or cyclostationarity detectors) that enable them to autonomously detect unoccupied spectrum and transmit

opportunistically - e.g., [5]–[11] (see [10] for a comprehensive review). Spectrum sensing is a key step

for deploying robust cognitive radio networks and has received significant attention [5]–[19]. In particular,

advanced spectrum sensing techniques such ascooperative sensinghave been proposed in [9], [12]–[19] so

as to improve the SU’s detection capability. The main idea ofcooperative sensing is to combine different SU

observations so as to have a better decision on whether a PU ispresent or not, at a given time instant. In [12],

the authors propose centralized schemes enabling the SUs toshare their sensing decisions given a known

PU distribution. The work in [13] studies the impact of reporting channel errors on collaborative sensing. In

[14] and [15], the use of relaying techniques for improving cooperative sensing is thoroughly analyzed. Other

performance aspects of cooperative sensing are studied in [9], [16]–[19].

However, performing cooperative or non-cooperative sensing is known to be a time consuming process that

can affect the access performance of the SUs, notably in multi-channel networks [2], [3], [7]. To overcome this

problem, recent research activities brought forward the idea of providing, usingcontrol channels, spectrum

monitoring assistance to the SUs so as to improve their performance [20]–[24]. These channels can be used

in conjunction with advanced techniques such as cooperative spectrum sensing so as to provide additional

information to the SUs that can improve their sensing decisions. For example, the authors in [20] studied how

a Common Spectrum Coordination Channel (CSCC) can be used toannounce radio and service parameters

to the SUs. More recently, the Cognitive Pilot Channel (CPC)has been introduced [21]–[24] as a control
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channel that can convey critical information to the SUs, allowing them to enhance their sensing and access

decisions, notably in the presence of multiple channels (i.e., PUs) and access technologies.

Essentially, the CPC is a channel that can carry different information such as estimates of the activity of

the PUs, frequency or geographical data, that the SUs can useto improve their sensing, to avoid scanning the

entire spectrum for finding spectral holes, and to get a better perception of their environment (e.g., locations

and frequencies of the PUs) [21] and [22]. Deploying the CPC in a practical network can be done either

using existing infrastructure (e.g., existing cognitive users or base stations) or by installing dedicated nodes

that carry CPC data, i.e.,CPC nodes. For transmitting the CPC data, a variety of methods can be used, as

proposed in [21]–[23].

The use of CPCs and cooperative spectrum sensing have received considerable attention in the research

community. However, on the one hand, most of the existing work on CPC deployment such as [3], [21]–[23]

has focused on implementation and transmission aspects. Onthe other hand, existing cooperative spectrum

sensing techniques such as in [12]–[14], [16]–[19] often assume that the PU’s activity follows a certain known

or assumed distribution. However, no work seems to have investigated how cognitive device such as CPC

nodes can be used to provide information on the activity of the PUs in a practical cognitive network. This

primary user activity information can be used, subsequently, to improve the decisions of both cooperative

and non-cooperative spectrum sensing. To operate efficiently, the SUs must obtain a good overview of the

activity of the PUs, so as to access the spectrum at the right time and for a suitable duration. Moreover, this

information is important to improve the cooperative decisions for collaborative sensing techniques such as

in [12]–[14], [16]–[19]. The objective of this paper is to leverage the use of control channels such as the CPC

in order to convey to the SUs accurate estimates of the distribution of the activity of the PUs, which is often

sporadic and unknown. In addition, a given PU channel can be seen differently by CPC nodes positioned

in different locations of a cognitive network. In most cooperative sensing or CPC literature, these different

PU views are often simplified or assumed to be fixed. However, in practice, this assumption may not hold

due to a variety of factors such as the locations of the PU transmitters or their power capabilities. Therefore,

developing efficient schemes that allow the cognitive nodesto obtain (e.g., through a CPC) accurate estimates

of the PUs’ channel availability patterns is a challenging task that is of central importance in maintaining

a conflict-free environment between SUs and PUs. To the best of our knowledge, this paper is the first that

treats this problem, notably from a cooperative approach that uses Bayesian nonparametric inference as well
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as game theoretic techniques.

The main contribution of this paper is to introduce a novel cooperative approach between cognitive devices

such as CPC nodes that allows them to share their observations on the distributions of the PUs’ activity, and,

subsequently, build an accurate estimate of these distributions. In particular, given a number of PUs whose

availability is perceived differently by a number of CPC nodes, we propose a scheme that allows these nodes

to cooperate in order to estimate the distributions of the PUs’ activity, assumed to be completely unknown.

In this context, we formulate a coalitional game between theCPC nodes and we develop a suitable coalition

formation algorithm. The proposed game allows the CPC nodesto decide, in a distributed manner, on whether

to cooperate or not, based on a utility that captures the gainfrom cooperation, in terms of an improved estimate

of the PUs’ distributions, and a cost for coordination. Eachgroup of CPC nodes that decides to cooperate and

form a coalition will subsequently useBayesian nonparametric techniques, based on the Dirichlet process, as

well as goodness of fit statistical tests, to cooperatively infer the perceived distributions of the PUs’ activity.

We show that, by performing coalition formation, the CPC nodes self-organize into a network of disjoint

and independent coalitions that form a Nash-stable partition in which each node has a significantly improved

estimate of all the PUs’ activity. Simulation results show that the proposed cooperative approach yields a

significant performance improvement.

The remainder of this paper is organized as follows: SectionII presents the system model. In Section III,

we present the proposed cooperative Bayesian nonparametric scheme and we model it using coalitional game

theory. In Section IV, we propose an algorithm for distributed coalition formation. Simulation results are

analyzed in Section V and conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider a network ofN cognitive radio devices that are seeking to transmit, opportunistically, over

K channels that represent a number of PUs. These devices can beeither SUs, fixed secondary base stations,

or other fixed or mobile cognitive radio nodes. One typical example of these devices would be a number

of cognitive nodes dedicated to provide information to the SUs, e.g., CPC-carrying nodes. Hereinafter, for

brevity, we use the term CPC or CPC node to refer to any such cognitive node. The set of all CPCs is denoted

by N while the set of PUs is denoted byK. At any point in time, from the perspective of any CPC node

i ∈ N (and the SUs in its vicinity), every PUk ∈ K is considered to be active, i.e., its channel is occupied,

with a probabilityθik. For a given PUk ∈ K, two distinct CPC nodesi, j ∈ N , i 6= j can see a different
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value of the probability thatk is active, i.e.,θik 6= θjk, depending on various factors such as the distance to

the PU, wireless channel fading, or the PU’s transmission capabilities. For example, from the perspective of

a CPCi that is in the vicinity of a PUk, even when the PU uses a small power for transmission, PUk’s

channel is still seen as being occupied due to the small path loss (or fading) between CPCk and PUi. In

contrast, from the point of view of another CPCj that is located far away from the same PUk, the channel

used by PUk appears to be vacant whenever PUk’s transmit power is low. The main reason behind these

different observations is that, unlike CPC nodei, CPC nodej and the SUs that it serves experience a low

interference from a PUk located at a relatively large distance and whose transmit power is attenuated by

a reasonably significant channel fading. As a result, from the perspective of CPC nodej, PU k channel’s

would be seen as vacant even when it appears occupied to CPC node i. In such an illustrative scenario, for

the same PUk, we would haveθik > θjk.

Often, the PUs can change their pattern of activity depending on many random parameters, e.g., due to

their nature or capabilities. For example, when the PUs represent the mobile nodes of a wireless system (e.g.,

an LTE or 3G system), they may frequently change their activity depending on the time of the day or the

region in which they operate. Hence, for a given PUk, the value of the probabilityθik from the perspective

of any CPCi ∈ N , can be seen as a random variable having a certain probability distributionPik(θik) which

is a probability density function over the state spaceΘ = [0, 1] of θik, ∀i ∈ N , k ∈ K. Moreover, we

consider that the CPCs inN haveno prior knowledge on the distribution of the PUs’ activity. Thus, forany

CPC i ∈ N and any PUk ∈ K, the actual real distributionPik(θik) is completely unknownby the CPC.

Hereinafter, for brevity, we use the term the expressiondistribution of the PUsor PUs distributionto refer

to the distribution of the PUs’ activity/availability.

Each CPCi ∈ N performs a limited number ofLik observationsLik = {θ1ik, . . . , θ
Lik

ik } for every PU

channelk ∈ K so as to get an estimate of the distributionsPik(θik). Each observationθtik ∈ Lik is a value

for the probabilityθik observed at a time periodt. To obtainLik for a channelk, a CPC needs to monitor,

over a given period of timet, the activity of PUk and record the resulting probabilityθtik. This process can

be seen as a sampling of the PU’s activity distribution. We note that the time periodt during which a single

observation is recorded must be reasonably large so as to enable the cognitive device to record a reasonably

accurate observation. In practice, the exact value for thisperiod is dependent on the cognitive network’s

implementation, the nature of the PU (whether it is a television transmitter, a mobile device, a base station,
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etc.) and can be adjusted by the CPC accordingly. Due to this,the number of observationsLik for each PU

channelk is, in practice, small, due to the time consuming nature of this process. The small value ofLik

is further corroborated by the fact that, in addition to PU activity estimation, a CPC also needs to perform

other tasks such as acquiring frequency and geographical information, and, hence, it cannot dedicate all of

its resources to the PU activity estimation process. We notethat, in a given time period, the observationsLik

are the only information that a CPC nodei has about the behavior of PUk.

Having recorded the observationsLik, each CPCi ∈ N must infer the distribution of every PUk ∈ K.

GivenLik, a CPCi can predict the distribution of the next observationθLik+1
ik using the following expression:

Hik(θ
Lik+1
ik ∈ A|θ1ik, . . . , θ

Lik

ik ) =

∑Lik

l=1 δθlik
(A)

Lik

, (1)

whereA ⊆ Θ is a subset of the spaceΘ and δθl
ik

is the point mass located atθlik such thatδθt
ik
(A) = 1 if

θtik ∈ A and0 otherwise.

When acting non-cooperatively, each CPC can compute the distribution of θLik+1
ik using (1) which is discrete.

Given the limited number of observationsLik, using (1) can yield a large inaccuracy in the estimation. Inorder

to get a more accurate, continuous estimateH̃ik of the distributionHik in (1), each CPCi can adoptkernel

density estimationor kernel smoothing techniques [25]–[27]. As explained in [25], kernel density estimation

methods are popular nonparametric estimators used to draw inferences about a certain distribution based on

finite data samples. Kernel density estimation methods aim at smoothing a discrete function in four main steps

[26]: (i)- Choosing akernel function which is a symmetric but not necessarily positive continuous function

that integrates to one and a scaling factor commonly known asbandwidthwhich controls the smoothness of

the estimate, (ii)- Placing the center of the chosen kernel over each observed data point, (iii)- Spreading the

influence of each data point over its neighborhood, and, (iv)- Summing the contributions from each data point

in order to generate the final estimate.

One popular kernel density estimator is the Gaussian kernelestimator in which the kernel is chosen as

a Gaussian distribution whose bandwidth is its mean [26]. Then, this kernel is convoluted to the discrete

function (or the observations) so as to generate the densityestimate. While a detailed treatment of kernel

density estimation techniques is beyond the scope of this paper,1 for the proposed model, we assume that,

when acting non-cooperatively, the CPCs utilize the generic kernel density estimation via the linear diffusion

1The interested reader is referred to [25] or [26] for furtherinformation.
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Fig. 1. An illustration showing a cognitive radio network with 8 cooperative CPC nodes that form coalitions and can jointly estimate the distributions

of 3 primary users.

approach of [27], in order to obtain a continuous versionH̃(θLik+1
ik ∈ A|θ1ik, . . . , θ

Lik

ik )) of (1) which constitutes

the non-cooperativekernel estimate. Note that other kernel estimation techniques can also be adopted, without

loss of generality.

Non-cooperatively, the kernel estimate is the most reasonable estimate that any CPCi ∈ N can obtain, given

its limited number of observations. However, as the numberLik of available observations is generally small,

the kernel estimate of the PUs distributions may not performas well as required by the cognitive network.

Therefore, the CPCs need to seek alternative methods to improve their estimate of the PUs distributions

without a need for continuous and real-time observation of the PUs’ behavior. One approach to solve this

problem, which we introduce in this paper, is to let the CPCs interact and cooperate, when possible, in

order to improve their perception of the PUs distributions.In particular, CPCs that are observing similar PUs

distributions would have an incentive to form cooperative groups, i.e., coalitions, so as to share observations

and improve their estimates.

In Figure 1, we illustrate how cognitive nodes that have a somewhat similar view on the existing PUs group

together into coalitions, so as to perform cooperative estimation of the PUs’ distributions, for a network with

8 CPCs and3 different PUs. For example, in Figure 1, as CPCs6 and 7 are located almost symmetrically

around the3 PUs, they find it beneficial to cooperate and share their observations. Similarly, the other CPCs
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in Figure 1 make their cooperative decisions, depending on the correlation between their perceived PUs

distributions as well as the potential of having a better estimate. To perform cooperative estimation such

as in Figure 1, several challenges must be overcome such as correctly determining whether the cooperative

CPCs are observing similar distributions as well as identifying the benefits and costs from cooperation. In

this respect, the next section will propose novel solutionsto the aforementioned challenges.

III. COOPERATIVE BAYESIAN NONPARAMETRIC ESTIMATION OF PRIMARY USERS’ A CTIVITY

To model the problem illustrated in Figure 1, we will use the analytical tools of coalitional game theory [28],

[29]. In particular, we are interested in formulating the proposed CPC cooperation problem as a coalitional

game with a non-transferable utility defined as follows [28,Chap. 9]:

Definition 1: A coalitional game withnon-transferable utilityconsists of a pair(N , V ) in which N

represents the set of players andV is a mapping that assigns for any coalitionS ⊆ N a set of payoff

vectors that the members ofS can achieve.V (S) is a closed and convex subset ofR
S .

In the proposed model, one can see that the set of playersN is the set of CPC nodes. In order to completely

describe the coalitional game between the CPCs, our next step is to determine the mappingV which reduces

to proposing a utility function that captures the gains and costs that each CPC achieves when cooperating

within a certain coalitionS ⊆ N . To determine this utility function, we must first provide a cooperative

procedure that the CPCs belonging to any potential coalition S can adopt. First, whenever the CPC nodes

decide to form a coalitionS ⊆ N , the CPCs inS would be able to share their kernel estimates of the PUs

distributions generated non-cooperatively based on (1). Hence, within any potential coalitionS, each CPC

can obtain the PUs distribution estimates from its partnersand, if deemed suitable, use these distributions as

prior distributionsso as to generate new estimates. Inherently, for a given coalition S ⊆ N , each CPCi ∈ S

must be able to perform the following three stepsfor every PUk ∈ K:

1) Step 1 - Check Priors Validity: The first step for each CPCi ∈ S is to determine, for every PUk,

whether the prior distributions received from its cooperative partners inS \ {i} come from the same

distribution as CPCi’s own estimate (based on its own set of observationsLik for PU k).

2) Step 2 - Generate New Estimate:Once a CPCi ∈ S generates, for any PUk, a list of received priors

that come from the same distribution as its own estimate (i.e., from CPCs inS that perceive PUk’s

activity analogously to CPCi), its next step is to generate a procedure for combining these received

prior distributions with its non-cooperative kernel estimate.
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3) Step 3 - Assess the Accuracy of the New Distribution:Given the new estimates generated in Step 2,

the last step for CPCi ∈ S is to assess the accuracy of the resulting distributions.

We will approach the first step using concepts from statistics known as goodness of fit tests while the second

step will be performed using a Bayesian nonparametric inference method based on the Dirichlet process.

Then, the third step is approached using the concept of a Kullback-Leibler (KL) distance. Finally, all three

steps will be combined in a single utility function which completes the coalitional game formulation.

A. Priors Validity Check

Given a coalitionS ⊆ N , any CPCi ∈ S can usegoodness of fittechniques [30], [31] to assess whether

the set of kernel estimates received from the CPCs inS \ {i} regarding the distributions of any PUk come

from the same distribution as CPCi’s own set of observationsLik. The goodness of fit of any statistical

model provides a description of how well a certain model fits aset of observations or samples [30], [31].

Goodness of fit tests are one of the most common methods that can be used for identifying whether two sets

of observations or samples come from the same distribution or not2.

For the proposed CPC cooperation model, given a CPCi member of a coalitionS that receives, from

another CPCj ∈ S, a certain kernel estimatẽHjk for the distribution of PUk’s activity, CPC i needs to

determine whether̃Hjk and its own estimatẽHik are estimates of the same distribution. In other words, each

CPC i must identify whether a given cooperating partner CPCj is observing a similar distribution regarding

the activity of a certain PUk. To do so, CPCi first generates two sets of samplesHik andHjk from H̃ik

and H̃jk, respectively. The samples inHik can simply be the original observationsLik of CPC i or newly

generated samples using the continuous kernel estimateHik. Here, sampling refers to the process of obtaining

samples from a distribution function which does not requireobserving the PU behavior and is commonly

performed in wireless networks.

Then, in order to identify whetherHik andHjk come from the same distribution, CPCi uses thetwo-sample

Kolmogorov-Smirnov goodness of fit test, defined as follows [30], [31]:

Definition 2: Consider two sets of observationsHik andHjk having, respectively,hik = |Hik| andhjk =

|Hjk| samples. TheKolmogorov-Smirnov statisticis defined as

Dhik,hjk
= sup

x

|Fhik
(x)− Fhjk

(x)|, (2)

2Goodness of fit tests can also be used for other purposes such as comparing an empirical and a theoretical model (see [30] for more details.)
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whereFhik
andFhjk

represent the empirical cumulative distribution functions of the samples inHik andHjk,

respectively. GivenDhik,hjk
, the two-sample Kolmogorov-Smirnov (KS) goodness of fit testdecides that the

hypothesis: “The samples inHik andHjk come fromsamedistribution” is true with a significance levelη, if
√

hikhjk

hik + hjk

Dhik,hjk
≤ Mη, (3)

with Mη a critical value that can be set according to well-defined tables [30].

Thus, the two-sample KS test determines whether two sets of samples come from the same distribution

or not, without the need for any information on what that distribution actually is. A variety of goodness

of fit tests exist, each of which has its own characteristics and practical applications. We have adopted the

two-sample KS test due mainly to two reasons [30], [31]: (i)-It is one of the tests that are most sensitive to

differences in both the location and the shape of the empirical cumulative distribution functions of any two

sets of observations being compared, and (ii)- It provides agood balance between the complexity and the

accuracy of the decision [30], [31]. For the CPC cooperationproblem, this test will be used by each CPCi, a

member of a coalitionS, in order to determine whether the estimates received from the CPCs inS \{i} come

from the same distribution as CPCi’s own estimate.3 As a result, a cooperative CPCi can decide whether a

received estimate is valid to be used as aprior distribution in order to improve its estimate for some PUk.

Subsequently, given any coalitionS and any CPCi ∈ S, we letSKS
ik ⊆ {S \ {i}} denote the set of CPCs in

S \ {i} whose estimates regarding the distribution of the activityof PU k have been approved as valid priors

by CPCi, using the two-sample KS test. Note that, if, for a PUk, CPCi could not find any valid prior inS,

thenSKS
ik = ∅. After the KS test, the next step for any CPCi ∈ S is to choose the priors that can potentially

improve its estimate of the PUs distributions.

B. A Bayesian Nonparametric Approach for Cooperative Estimate Generation

Once a CPCi member of a coalitionS determines the setSKS
ik for every PUk using the KS test, this CPC

would build a|S| × 1 vectorH̃k whose elements are the validated priors as received from theCPCs inSKS
ik .

Given the vectorH̃k, the next step for CPCi is to combine these priors with its own estimateH̃ik in order to

find the posterior distribution, i.e., a new estimateHS
ik(θ

Lik+1
ik |θ1ik, . . . , θ

Lik

ik ). To do so, we propose an approach

based on Bayesian nonparametric models, namely, using the concept of aDirichlet process[32]–[34]. The

3The CPCs can easily generate a number of samples good enough to ensure the accuracy of the KS test.
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use of such a Bayesiannonparametricmodel, based on Dirichlet processes, is motivated by the following

properties [32]–[34]: (i)- Dirichlet processes are known to be one of the most accurate models that can be

applied for modelingunknown distributions, (ii)- Dirichlet processes provideflexible modelsthat enable one

to control the impact of each set of information used in estimation (e.g., the impact of the validated priors),

and (iii)- Bayesian nonparametric models can automatically infer an adequate distribution model from a

limited data set with little complexity and without requiring an explicit model comparison such as in classical

Bayesian approaches.

Before formally defining the Dirichlet process, we must introduce the concept of aDirichlet distribution

as follows [32]:

Definition 3: Consider a set of events(X1, . . . , XM) that are observed with probabilities(p1, . . . , pM). A

Dirichlet distributionof orderM ≥ 2 with parameters(α1, . . . , αM), αi > 0, i ∈ {1, . . . ,M} has a probability

density function given by:

Dir(α1, . . . , αM) = f(p1, . . . , pM ;α1, . . . , αM) =
1

Z(α1, . . . , αM)

M
∏

i=1

pαi−1
i , (4)

whereαi−1 can be interpreted as the number of observations of eventXi andZ(α1, . . . , αM) is a normalization

constant given by:

Z(α1, . . . , αM) =

∏M

i=1 Γ(αi)

Γ(
∑M

i=1 αi)
, (5)

whereΓ(·) is the gamma function.

A Dirichlet distribution Dir(α1, . . . , αM) is the conjugate prior of a multinomial distribution with probabili-

ties (p1, . . . , pM) and can also be seen as a generalization of the beta distribution to the multivariate case [32].

In contrast to a Dirichlet distribution, aDirichlet processis a stochastic process that is a distribution over

probability measures, which are functions that can be interpreted as distributions over a spaceΘ. A draw

from a Dirichlet process can be seen as a random probability distribution over the spaceΘ [32]–[34]. A

distribution over probability measures that is drawn from aDirichlet process has a marginal distribution that

constitutes a Dirichlet distribution. Formally, given a probability distributionH over a continuous spaceΘ

and a positive real numberα, the Dirichlet process is defined as follows [32]:

Definition 4: A random distributionG on a continuous spaceΘ is said to be distributed according to a

Dirichlet processDP(α,H) with base distributionH and concentration parameterα, i.e.,G ∼ DP(α,H), if

(G(A1, . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)), (6)
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for every finite measurable partition{A1, . . . ,Ar} of Θ. The base distributionH represents the mean of the

Dirichlet process, i.e.,E[G(A)] = H(A) for any measurable setA ⊂ Θ while α is a parameter that highlights

the strength of a DP when it is used as a nonparametric prior.

The Dirichlet process is thus a stochastic process that can be seen as a distribution over distributions, as

every draw from a DP represents a random distribution overΘ. The base distributionH of a DP(α,H) is

often interpreted as a prior distribution overΘ. For the proposed game, the CPCs can use the DP as a means

for generating estimates of the PUs distributions by using the validated priors that they received from their

cooperating partners. As the real distributions of the PUs are unknown to the CPCs, the CPCs will assume

these PUs distributions to be distributed according to a Dirichlet process. Subsequently, each CPCi, member

of a coalitionS, needs to combine its own observations about a PUk with the Dirichlet processes received

from other cooperating CPCs in the set of validated priorsSKS
ik .

It is known, from Bayesian nonparametrics, that the combination of a number of independent Dirichlet

processes can also be modeled as a Dirichlet process with a strength parameter
∑

l∈SKS
ik
αlk being the sum of

the individual parameters and a prior being the weighted sumof the different priors [32]–[34]. Thus, from the

perspective of any cooperative CPCi the distributionGik of any PUk is modeled using a Dirichlet process

that combines the received estimates from the CPCs inSKS
ik into a single prior, as follows:

Gik ∼ DP





∑

l∈SKS
ik

αlk,

∑

l∈SKS
ik
αlkH̃lk

∑

l∈SKS
ik
αlk



 , (7)

where H̃lk is the non-cooperative kernel estimate of PUk that CPCi received from a CPCl ∈ SKS
ik and

validated using the two-sample KS goodness of fit test. In (7), the combined strength parameter
∑

l∈SKS
ik
αlk

represents the total confidence level (e.g., trust level in the accuracy of this estimation) in using (7) as a

nonparametric prior for inferring on the final distribution. Further, the prior
∑

l∈SKS
ik

αlkH̃lk

∑
l∈SKS

ik
αlk

used in (7) represents

a weighted sum (convex combination) of the priors received from the coalition partners. In this combined

prior, each weight represents the relative confidence levelof a certain priorH̃lk with respect to the total

strength parameter level
∑

l∈SKS
ik
αlk. Note that, the control and setting of the parametersαlk in (7) will be

discussed in detail later in this section.

Subsequently, for any coalitionS ⊆ N , each CPCi ∈ S can use the Dirichlet process model in (7) in

order to compute a new estimate of the distribution of any PUk ∈ K that combines, not only CPCi’s own

data, but also the data received from CPCi’s cooperating partners inS. Hence, for every CPCi member
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of a coalitionS having its set of observationsLik and its vector of validated priors̃Hk, using the Dirichlet

process model in (7), the predictive distribution on any newobservationθLik+1
ik conditioned onLik with Gik

marginalized out can be given by [33, Eq. (5)]

HS
ik(θ

Lik+1
ik ∈ A|θ1ik, . . . , θ

Lik

ik ) =
1

Lik +
∑

l∈SKS
ik
αlk





∑

l∈SKS
ik

αlkH̃lk(A) +

Lik
∑

l=1

δθl
ik
(A)



 , (8)

whereA ⊆ Θ. The first term in the parentheses on the right hand side of (8)represents the contribution

of the priors to the distributionHS
ik while the second term represents CPCi’s kernel estimate based on the

observationsLik. Equation (8) can be re-arranged as follows:

HS
ik(θ

Lik+1
ik ∈ A|θ1ik, . . . , θ

Lik

ik ) =
∑

l∈SKS
ik

wlH̃lk(A) + w0H̃ik(A), (9)

wherew0 =
Lik∑

l∈SKS
ik

αlk+Lik
is a weight that quantifies the contribution of CPCi’s own kernel estimate in the

predictive distributionHS
ik andwl =

αlk∑
l∈SKS

ik
αlk+Lik

represent weights that identify the strength or impact of

the contribution of the priors̃Hlk in the final distributionHS
ik. The resulting posterior distribution in (9) is

composed mainly of two terms: a first term related to the received estimates and a second term related to

the contribution of CPCi’s own observations. The first term in (9) reflects the impact of the validated priors

received byi (on PU k) from the members inS over the final resulting estimate. The second term in (9)

highlights the contribution of CPCi’s own perception of the PU activity. In essence, the weightsof both terms

in (9) are proportional to the length of the observationsLik and to the strength parametersαlk, l ∈ SKS
ik , of

the combined estimate.

One can clearly see from (9) that the parametersαlk, ∀l ∈ SKS
ik , allow the CPCs to control the effect of

each prior (as well as the own estimate) on the resulting distribution HS
ik, depending on the properties of

each prior and the confidence that each CPC has in this prior. For example, a CPCi can set the Dirichlet

process parameters so as to assign weights of zero to priors that failed the two-sample KS test (i.e., priors

outsideSKS
ik ) and, then, it can still use (9) for predicting the resultingdistribution. Moreover, from (9), one can

clearly see that by setting all weightswl = 0, ∀l ∈ SKS
ik , we obtain the original non-cooperative distribution

as estimated by CPCi when acting on its own, i.e., the kernel density estimate of (1).

In practice, each CPC has an incentive to give a higher weightto priors that were generated out of a larger

number of observations, as such priors are more trusted. Hence, in this work, we allow each cooperative CPC

i ∈ N to set the parametersαlk, ∀l ∈ SKS
ik such that the corresponding weights in (9) are proportionalto the
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number of observations, i.e.,

w0 =
Lik

∑

j∈S Ljk

andwl =
Llk

∑

j∈S Ljk

, ∀l ∈ SKS
ik . (10)

Clearly, by using the definition of the weights as highlighted in (9), each CPCi can compute the parameters

αlk, ∀l ∈ SKS
ik from (10).

We note that, in the model studied so far, we assumed that the CPCs have no knowledge of the PU’s

locations and/or capabilities (beyond a limited number of observations). However, the proposed model can

easily extend to the case in which each CPCi ∈ N has additional information about the PUs. For example,

whenever the CPCs have their own measures of the PUs’ locations, they can convert this knowledge into

an additional prior that can be combined with the final estimate in (8) so as to improve the accuracy of the

learning process.

C. Utility Function

Given any coalitionS ⊆ N we define, for every CPCi ∈ S and for every PUk ∈ K, the following metric

as a measure of the utility yielded from a given estimate of the distribution of PUk:

uik(S) = −ρ
(

HS
ik(θ

Lik+1
ik |θ1ik, . . . , θ

Lik

ik ), HS
ik(θ

(1+∆ik)Lik+1
ik |θ1ik, . . . , θ

(1+∆ik)Lik

ik )
)

, (11)

whereHS
ik is given by (9),0 < ∆ik ≤ 1 is a real number, andρ(P,Q) is the Kullback-Leibler distance

between two probability distributionsP andQ, given by [35]:

ρ(P,Q) =

∫ ∞

−∞

P (x) log
P (x)

Q(x)
dx, (12)

where the log is taken as the natural logarithm, hence, yielding a KL distance innats4. The KL distance

in (12) is a nonsymmetric measure of the difference between two probability distributionsP and Q. In a

communications environment, the KL distance can be interpreted as the expected number of additional bits

needed to code samples drawn fromP when using a code based onQ rather than based onP [35]. Note that

the minus sign is inserted in (11) for convenience in order toturn the problem into a utility maximization

problem (rather than cost minimization).

For the proposed game, the utility in (11) measures, using (12), the distance between an estimate of the

distribution of PUk when CPCi computes this distribution usingLik observations and an estimate of the

4Alternatively, one can use a base2 logarithm to get the results in bits.
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distribution of PUk when CPCi uses an extra∆ikLik set of observations to find the estimate. The extra

observations∆ikLik can be either observations generated and saved at the beginning of CPCi’s operation or

newly observed samples. The rationale behind (11) is that, as the estimate of the distribution becomes closer to

the real unknown distribution, the KL distance in (11) woulddecrease, since adding a few more observations

to an already exact estimate would yield a little change in this estimate. Hence, as the accuracy of the estimate

HS
ik improves, the KL distance in (11) would decrease, since the extra ∆ikLik observations have a smaller

impact on the overall distribution. This method is analogous to iterative techniques used in several statistical

domains in which one would stop iterating after observing that a few more iterations have little impact on

the final result. As a result, the objective of each CPCi ∈ N is to cooperate and join a coalitionS so as to

maximize (11) by reducing the KL distanceρ(HS
ik(θ

Lik+1
ik |·), HS

ik(θ
(1+∆ik)Lik+1
ik |·)), on every PU channelk. It

is interesting to note that (11) allows the CPCs to evaluate the validity of their distribution estimates without

requiringany knowledgeon the actual or real distribution of the PU.

While cooperation allows the CPCs to improve the estimates of the distributions as per (9) and (11), these

gains are limited by inherent costs that accompany any cooperative process. These extra costs can be captured

by a cost functionc(S) which will limit the gains from cooperation obtained in (11). Consequently, for every

CPCi member of a coalitionS, we define the following utility or payoff function that captures both the costs

and benefits from cooperation:

φi(S) =
∑

k∈K

uik(S)− c(S), (13)

whereuik(S) is given by (11) andφ(∅) = 0. The first term in (13) represents the sum of KL distances over

all PU channelsk ∈ K, as given in (11), while the second term represents the cost for cooperation. Although

the analysis done in the remainder of this paper can be applied for any type of cost functions, hereinafter,

we consider a cost function that varies linearly with the coalition size, i.e.,

c(S) =











κ · (|S| − 1), if |S| > 1,

0, otherwise,
(14)

with 0 < κ ≤ 1 representing a pricing factor. The motivation behind the function in (14) is that, in order

to perform joint estimation of the PUs’ activity, the CPCs that are members of a single coalitionS must

be able to synchronize their communication and maintain an open channel among themselves to exchange

information, share their different observations over time, update the priors of one another, and so on. This
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synchronization and coordination cost is, indeed, an increasing function of the coalition size such as in (14).

The nature of this cost is dependent on the implementation and technology of the CPC network (e.g., whether

it is wired, wireless, or heterogeneous). In essence, the linear overhead model would adequately capture most

implementations since our approach requires that each CPCi ∈ S provide a small amount of data. For

example, if the nodes are exchanging the data over a wirelesschannel, each CPCi ∈ S can broadcast its

signalling packet once, to the farthest CPC inS. Due to the broadcast nature of the wireless channel, all other

members ofS would receive this packet. In this case, each CPCi ∈ S needs simply to wait for the data of the

other |S| − 1 coalition members, and this number would increase linearlywith S. A similar reasoning can be

applied for a wired exchange of data using multicast. Nevertheless, we note that, while the choice of a linear

overhead in (14) is well-justified, the proposed approach can handle any other models for communication

overhead. Note that, whenS is a singleton (13) would highlight the non-cooperative utility of the CPC inS

with no cost. Given (13), we can now formally characterize the coalitional game between the CPCs:

Proposition 1: The proposed CPC cooperation problem is modeled as a coalitional game with non-

transferable utility(N , V ) in which N is the set of CPCs andV (S) is a singleton set (hence, closed and

convex) that assigns for every coalitionS a singlepayoff vectorφ whose elementsφi(S) are given by (13).

Unlike in classical coalitional games, the formation of a single grand coalition encompassing all the CPCs

is not guaranteed due to the cooperation costs, as seen in (13). In fact, the different CPCs can have their own

distinct view of the PUs’ activity, and, hence, these CPCs may have no benefit in cooperation. As a result,

the proposed CPC coalitional game is classified as a coalition formation game [29] in which the objective is

to develop an algorithm that enables the CPCs to cooperate and form coalitions such as in Figure 1.

Note that we are interested in coalition formation games in which the outcome is a set of disjoint CPC

coalitions as in Figure 1. The motivation for having disjoint coalitions is two-fold. On the one hand, in a

cognitive network, neighboring CPCs having similar views on the PUs’ activity would have an incentive to

cooperate, and, often, these groups would be disjoint from other groups that have a different PU view (e.g.,

due to different locations). Moreover, forming disjoint coalitions enables one to exploit significant gains from

cooperative estimation as shown later in this paper, while avoiding the significant overhead and complexity

associated with having each CPC belong to multiple coalitions. On the other hand, finding low-complexity

solutions for coalition formation games with non-disjoint, overlapping coalitions remains an open problem that

is, recently, a subject of considerable research in the gametheory community [28], [36]–[38]. The main reason
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is that performing coalition formation with multiple membership yields a combinatorial complexity order due

to the need for distributing the capabilities of a user amongmultiple coalitions. In a cognitive network, this

translates into a significant degree of complexity for locating and forming coalitions. In a nutshell, forming

disjoint coalitions enables one to devise a coalition formation process that optimizes the tradeoff between

benefits from cooperation and the accompanying complexity.

IV. A D ISTRIBUTED COALITION FORMATION ALGORITHM

The CPC coalitional game formulated in Proposition 1 can be modeled usinghedonic coalition formation

games[29], [39], [40] which are a class of coalition formation games in which: (h1)- The players’ payoffs

dependonly on the identity of the members in each player’s coalition, and (h2)- The formation of coalitions

results from a set ofpreferencesthat the players build over their potential set of coalitions.

By looking at (13), we can see that the payoff of any CPCi ∈ S is dependent solely on the identity of

the CPCs of coalitionS, since the behavior of the CPCs outsideS, i.e., inN \S, does not impact the utility

achieved by the members ofS as per (13). Thus, the proposed game verifies the first hedoniccondition,

i.e., condition (h1). In order to cast our game into a hedoniccoalition formation game, we need to define

preferences for the CPCs, over their possible coalitions. To do so, it is useful to define the concept of a

preference relation or order as follows [39]:

Definition 5: For any CPCi ∈ N , a preference relationor order �i is a complete, reflexive, and transitive

binary relation over the set of all coalitions that CPCi can possibly belong to, i.e., the set{Sk ⊆ N : i ∈ Sk}.

Hence, for any CPCi ∈ N , given two coalitionsS1 ⊆ N and,S2 ⊆ N such thati ∈ S1 and i ∈ S2,

the preference relationS1 �i S2 implies that CPCi prefers to join coalitionS1 rather than coalitionS2, or

is indifferent betweenS1 andS2. When using the asymmetric counterpart≻i of �i, S1 ≻i S2 implies that

CPC i strictly prefers joiningS1 rather thanS2. For the proposed model, the preferences of each CPC must

capture this CPC’s two, often conflicting, objectives: (i)-Maximize its own individual benefit as quantified

by (13) and (ii)- Ensure that the overall network benefit, i.e., the social welfare, is maintained at a reasonable

level. Inherently, this implies that although the CPCs are mainly interested in optimizing their own utilities

as per (13), they are also required to ensure that the network’s overall performance, i.e., the estimation of the

PUs’ activity in the whole network, stays at an acceptable level. This second objective is motivated by the

fact that, if each CPC acts completely selfishly, the possibility of having inaccurate estimates propagating in

the network can increase, which can potentially lead to increased interference to the PUs which can decide,



17

for example, to take specific action against the concerned SUs (e.g., stop them from using the spectrum).

This increased interference due to inaccurate estimation may become a detrimental effect that can propagate

to all of the cognitive network. Moreover, the CPCs are oftenowned by the same cognitive network operator,

and, thus, they have an incentive not only to improve their own benefit but also the overall network’s social

welfare. Hence, we propose the following preference relation for any CPCi ∈ N :

S1 �i S2 ⇔ qi(S1) ≥ qi(S2) andv(S1) + v(S2 \ {i}) > v(S1 \ {i}) + v(S2), (15)

whereS1, S2 ⊆ N , are any two coalitions containing CPCi, i.e., i ∈ S1 and i ∈ S2, v(S) =
∑

j∈S φj(S) is

the total utility generated by any coalitionS, andqi : 2N → R is a preference function defined as follows:

qi(S) =











φi(S), if (φj(S) ≥ φj(S \ {i}), ∀j ∈ S \ {i}

−∞, otherwise,
(16)

whereφi(S) is the payoff of a CPCi as given by (13). The preference function in (16) implies that the

preference value that a CPC assigns to a certain coalitionS is equal to the payoff thati achieves inS, if the

payoffs of the CPCs inS \ {i} do not decrease wheni cooperates with them. Alternatively, the preference

value is set to−∞ to convey the fact that if, by being part of a coalitionS, a CPCi decreases any of the

payoffs of the other coalition members inS \ {i}, then, CPCi will be rejectedby the members ofS \ {i}

and, hence, these players will decide not to form coalitionS. The usefulness of (16) in capturing the CPCs

objectives will become clearer as we define the following rule that will be subsequently used for developing

a coalition formation algorithm:

Definition 6: Join Coalition Rule - Given a network partitionΠ = {S1, . . . , SM} of the CPCs’ setN ,

a CPCi chooses to move from its current coalitionSm, for somem ∈ {1, . . . ,M}, and join a different

coalition Sk ∈ Π ∪ {∅}, Sk 6= Sm, hence formingΠ′ = {Π \ {Sm, Sk}} ∪ {Sm \ {i}, Sk ∪ {i}}, if and only

if Sk ∪ {i} ≻i Sm,Π. Hence,{Sm, Sk} → {Sm \ {i}, Sk ∪ {i}} andΠ → Π′. The strict preference≻i is

formally given by (15) with strict inequality.

The join coalition rule enables every CPC to autonomously decide whether or not to leave its current

coalition Sm and join another coalitionSk ∈ Π, as long asSk ∪ {i} ≻i Sm as per (15). Based on (15), a

CPC would move to a new coalition if this move can strictly improve its individual payoff and increase the

overall utility generated by the two involved coalitionswithout decreasing the payoff of any member of the

newly joined coalition (given theapprovalof these other members) as per (15) and (16).
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Subsequently, we develop a coalition formation algorithm consisting of three main phases: PUs monitoring

phase, distributed coalition formation phase, and cooperative Bayesian nonparametric estimation phase. In

the first phase, before any cooperation occurs, each CPC monitors the activity of all the PUs in its area

and records a limited number of observations. Based on theseobservations, the CPCs use kernel density

estimation techniques to generate a non-cooperative estimate on the distributions of the PUs’ activity. Once

the PUs monitoring phase is complete, the CPCs begin exploring their neighbors in order to identify potential

cooperation possibilities. Thus, the distributed coalition formation phase of the algorithm begins. In this phase,

the CPCs attempt to identify potential join operations by participating in pairwise negotiations with CPCs (or

coalitions of CPCs) in their neighborhood. As soon as a CPC identifies a join operation, based on (15), it

can decide, in a distributed manner, to switch to the more preferred coalition. We assume that in the coalition

formation phase, the CPCs perform their join operations in an arbitrary yet sequential order. This order, in

general, depends on the time during which a given CPC requests to perform a join operation. In essence,

performing a join operation implies that a CPC leaves its current coalition and coordinates the joining of the

new, preferred coalition. The members of the new coalition must give their consent on the joining of every

new CPC as captured by (15) and (16). The distributed coalition formation phase is guaranteed to converge

to a final partition, as follows:

Theorem 1: Consider any initial partitionΠinit that is in place in the cognitive network. The distributed

coalition formation phase of the proposed CPC cooperation algorithm will always converge to a final network

partitionΠfinal that consists of a number of disjoint coalitions, irrespective of the initial partitionΠinit .

Proof: Given any initial network partitionΠinit , the proposed coalition formation process can be mapped

into a sequence of join operations performed by the CPC and which transform the network’s partition as

follows (as an example):

Π0 = Πinit → Π1 → Π2 → . . . , (17)

whereΠl = {S1, . . . , SM} is a partition composed ofM coalitions that emerges after the occurrence ofl join

operations. As per (15), every join operation performed by aCPC that moves from a coalitionS1 ∈ Πl−1 to

a coalitionS2 ∈ Πl, yields:

∑

j∈S1

φj(S1 \ {i}) +
∑

j∈S2

φj(S2 ∪ {i}) >
∑

j∈S1

φj(S1) +
∑

j∈S2

φj(S2). (18)
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As the proposed game is hedonic, i.e., the payoff of any CPCi ∈ S depends only on the identity of the

members inS, (18), implies that any join operation is accompanied by an increase in the overall social welfare

of the network, i.e.,Πl−1 → Πl yields
∑

S∈Πl

v(S) >
∑

S′∈Πl−1

v(S ′). (19)

In this context, (19) implies that each join operationΠl−1 → Πl constitutes a transitive and irreflexive order.

Given that the number of partitions of the setN is finite (given by the Bell number [36]), then, the sequence

in (17) is guaranteed to converge to a final partitionΠfinal which completes the proof.

Following the convergence of the distributed coalition formation phase, the CPCs begin the last phase of

the algorithm which is the cooperative Bayesian nonparametric estimation phase. In this phase, the CPCs

monitor, periodically, the PUs’ activity while continuously communicating with their cooperative partners

and performing the three steps described in Section III for cooperative Bayesian nonparametric estimation of

the PUs distributions. In this phase, the CPCs will continueto update their own observations on the PUs’

activities while coordinating with their coalition partners so as to constantly improve their estimates of the

PUs distributions. Consequently, whenever the CPC detect that the PUs’ activity has changed drastically ( e.g.,

due to mobility of the PUs), the involved CPCs can assess whether to reengage in the distributed coalition

formation phase in order to adapt the network partition to these environmental changes. A summary of the

proposed algorithm is given in Table I.

We can study the stability of any network partitionΠfinal resulting from the distributed coalition formation

phase of the algorithm in Table I, using the concept of a Nash-stable partition defined as follows [39]:

Definition 7: A partition Π = {S1, . . . , SM} of a setN is said to beNash-stableif ∀i ∈ N s. t. i ∈

Sm, Sm ∈ Π, (Sm,Π) �i (Sk ∪{i},Π′) for all Sk ∈ Π∪{∅} with Π′ = (Π\{Sm, Sk}∪{Sm \{i}, Sk ∪{i}}).

In other words, a partitionΠ is Nash-stable, if no CPC prefers to leave its current coalition and join another

coalition inΠ. For the proposed CPC coalitional game, we have the following result:

Proposition 2: Any partitionΠf resulting from the proposed algorithm in Table I is Nash-stable.

Proof: First, as shown in Theorem 1, the distributed coalition formation phase of the proposed algorithm

is guaranteed to converge to a partitionΠfinal. Assume that this partitionΠfinal is not Nash-stable, then, there

exists a CPCi ∈ S1, S1 ∈ Πfinal and a coalitionS2 ∈ Πfinal, such thatS2∪{i} ≻i S1\{i}, i.e., a join operation

is possible. Such a case contradicts with the the result of Theorem 1 which ensures that no join operations

are possible inΠfinal. Thus,Πfinal must be Nash-stable.



20

TABLE I
THE PROPOSEDCPCS COALITION FORMATION ALGORITHM

Starting Network

The network is governed by a partitionΠinit = {S1, . . . , SM} (initially Πinit = N = {1, . . . , N}

with non-cooperative CPCs).

The algorithm consists of three phases

Phase 1 - PUs monitoring phase:

a) Each individual CPC discovers its neighboring PUs,

b) Each CPC records, over a period of time, a number of observations Lik regarding the

activity of each PUk.

Phase 2 - Distributed Coalition Formation:

repeat

a) Each CPCi ∈ N performs pairwise negotiations with its surrounding CPCs,

to identify potential join operations.

b) Each CPCi ∈ N can identify a join operation by estimating the utility in (13)

that results, for every PUk ∈ K, from joining any potential coalition using the

three steps of Section III:

b.1) CPCi ∈ S checks the validity of the priors on each PUk using the two-sample

Kolmogorov-Smirnov test.

b.2) CPCi combines the priors that verify the two-sample Kolmogorov-Smirnov

test using a Dirichlet process as in (9).

b.3) CPCi computes its potential utility using the Kullback-Leiblerdistance in (13).

Once the potential utility is found, CPCi identifies whether a join is possible using (15).

If a join coalition operation is possible:

a) CPCi leaves its current coalitionSm.

b) CPCi joins a new coalitionSk with the consent of the members ofSk as guaranteed

by (15).

until guaranteed convergence to a Nash-stable partitionΠfinal.

Phase 3 - Cooperative Bayesian Nonparametric Estimation:

This phase occurs inside every formed coalitionSm ∈ Πfinal.

a) Each CPC continues to periodically monitor the PUs’ activity.

b) The CPCs part of a same coalition constantly share their updated distribution estimates.

c) The CPCs in everySm perform cooperative Bayesian nonparametric estimation ofthe

PUs distributions using the methods of Section III.

Based on the results of Phase 3, the CPCs can decide to repeat,periodically, the coalition

formation process to adapt to environmental changes such aschanges in PU behavior.
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The proposed algorithm in Table I can be implemented by the CPCs of a practical cognitive network, in a

distributed manner. Each CPC can discover its neighbors andthe surrounding PUs (e.g., using the backbone

when the CPC nodes are stations, or, otherwise, by using well-known methods such as those in [41]). Then,

each CPC can start negotiating with its neighboring CPCs, ina pairwise manner, either over the backbone or

over a temporary wireless ad hoc control channel, in order toidentify potential join operations. Each CPC

can, on its own, determine whether a join operation is possible using (15), by performing the three steps

for cooperation detailed in Section III. These steps are based on standard mathematical methods that require

reasonable computation time. Moreover, implementing these steps does not require any knowledge about

the real PU distributions. Once a join operation is identified, the CPC would signal to the new coalition its

intention to join. The new coalition is guaranteed to acceptthis request as (15) ensures this approval. Hence,

the CPCs would interact, performing distributed join decisions, until reaching a Nash-stable partition. Finally,

for any partitionΠ = {S1, . . . , SM} of N that is in place in the network, the computational complexity of

finding a potential partner, i.e., identifying a join operation, can be easily seen to beO(|Π|) and its worst

case scenario is when all the CPCs are acting alone inΠ in which case|Π| = N .

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a square area of2 km × 2 km in which the CPC nodes and the PUs are

randomly deployed. The model proposed in this paper does notmake any assumptions on the distributions

of the PUs’ activity, and, thus, it can be applied to any such distributions. In the simulations, we will use

beta distributions[32] with parametersβik and γik to describe the activity of a PUk as seen by a CPCi.

These distributions are generated in such a way that each CPCperceives a different distribution depending

on its location with respect to the PU. For the considered beta distributions,βik − 1 and γik − 1 can be

interpreted as the number of times PUk is observed to be active and inactive, respectively [32]. Togenerate

these distributions, we need to determine values forβik and γik such as each CPCi would see a different

beta distribution, depending on its location with respect to PU k. To do so, first, we assume that, in an ideal

case, over a period ofB consecutive discrete time instants (e.g., time slots), each PUk transmits for a period

of τkB such that0 < τk ≤ 1 and is idle for the remaining period. Therefore, in the idealcase, the parameters

of PU k’s beta distribution can be set toτkB + 1 and (1− τk)B + 1.

However, even when the PU is transmitting, depending on the path loss and fading, some CPCs might still

see this PU asinactive, e.g., if it is already far away and, hence, is not likely to interfere with the SUs that
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these CPCs are serving. Hence, we consider that a PUk ∈ K appears to beactiveat a CPC nodei ∈ N if its

received SNRνik at CPCi is above a certain target thresholdν0. Otherwise, PUk is considered asinactive

by CPCi, even if it is, in fact, transmitting. Thus, in order to find how the distributions of the PUs’ activity

appear to each CPC in the network, the parameters of the beta distributions must be computed as a function

of the received SNRνik of the PU signal at any CPCi ∈ N .

In this respect, assuming Rayleigh faded wireless channels, we denote byχik = exp(− ν0
νik

) the probability

that the average SNRνik as received by CPCi when PUk transmits is larger than a target valueν0. The

average received SNR from PUk to CPC i is given byνik = Pkgik
σ2 wherePk is the transmit power of the

PU, σ2 is the variance of the Gaussian noise, andgik = 1
d
µ
ik

is the path loss withµ the path loss exponent

and dik the distance between PUk and CPCi. Consequently, the effective number of times that a PUk

is seen to beactive by a CPCi would be given byχikτkB. From the perspective of a CPCi, in addition

to being effectively inactive for a period of(1 − τk)B, a PUk is also considered to beinactive whenever

its SNR drops belowν0, i.e., with a probability of1 − χik. Hence, to generate different, yet correlated beta

distributions that describe the PUs’ activity as perceivedby each CPCi ∈ N , we set the parameters of the

distributions toβik = χikτkB + 1 andγik = (1− τk)B + (1− χik)τkB + 1.

It is important to note that: (i)- The above procedure is assumed to be completelyunknownto the deployed

CPCs, i.e., the CPCs have no knowledge on how they view the distributions of the PUs, and (ii)- The results

in this section can also be reproduced for any other types of PUs’ activity distributions as well as for other

methods for generating these distributions as the proposedmodel is distribution-independent.

The parameters of the simulations are consequently set as follows. The number of PUs is set toK = 4

and the pricing factorκ = 10−3, unless stated otherwise. We let∆ik = 0.5, ∀i ∈ N , k ∈ K. The number of

observationsLik for a CPCi is assumed to be uniformly distributed over the integers in the interval[5, 20].

The KS significance level is set to a typical value ofη = 0.05 [30]. For the generated distributions, we set

B = 10 and letτk be randomly chosen by each PUk using a uniform distribution over[0.4, 0.9]. The transmit

power of any PUk ∈ K is assumed to bePk = 100 mW while the path loss exponent, the Gaussian noise,

and the target SNR are, respectively, set toµ = 3, σ2 = −90 dBm, andν0 = 10 dB. All statistical results are

averaged over the random locations of the CPCs and the PUs.

Further, while a body of work (e.g., [9], [12]–[19]) deals with cooperative spectrum sensing techniques,

most of this existing work assumes a certain given PU activity distribution. In contrast, in this paper we provide
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Fig. 2. A snapshot showing a network partitionΠ = {S1, S2, S3, S4} consisting of4 coalitions and resulting from the proposed coalition formation

algorithm for a network withN = 9 CPC nodes andK = 2 primary users.

a scheme for learning and estimating the activity distribution of the PUs, from the perspective of a number

of cognitive users. In fact, the work done in this papercomplementscooperative sensing as the distribution of

the PUs’ activity patterns can serve as an important factor to improve the prediction of cooperative sensing

techniques. Thus, given the fundamental difference between the problem solved in this paper and the abundant

works on cooperative sensing such as in [12]–[19], a direct comparison of the results is not possible. For

instance, to our best knowledge, no existing work has addressed the problem of learning and estimating the

statistical distribution of the PUs’ activity using cooperative approaches. Thus, we use the commonly used

non-cooperative kernel estimation technique as a comparison benchmark. Further, we also compare our results

with the real, yet unknown distribution of the PUs’ activityso as to provide an additional benchmark for

evaluating how close our solution is with respect to an optimal perfect estimate.

In Figure 2, we present a snapshot of a partitionΠ = {S1, S2, S3, S4} resulting from the proposed coalition

formation game for a randomly generated network havingN = 9 CPC nodes andK = 2 PUs. Figure 2

demonstrates how the nodes that are experiencing somewhat similar PUs’ activity can decide to form a

coalition. For example, consider coalitionS1 that consists of CPC nodes1, 3, and 8. In this coalition, the

distribution of PU1 is seen by CPC nodes1, 3, 8 as beta distributions with parameters(β11 = 4.71, γ11 =

7.29), (β31 = 3.72, γ31 = 8.28), and(β81 = 4.6, γ81 = 7.4), respectively while the distribution of PU2 is seen

by CPC nodes1, 3, 8 as beta distributions with parameters(β12 = 8.21, γ12 = 3.79), (β32 = 8.23, γ32 = 3.77),
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Fig. 3. The actual real distribution of PU1 as seen by CPC node1 in the network of Figure 2 compared to the distributions resulting from the

proposed cooperative Bayesian nonparametric approach andfrom the non-cooperative kernel estimate.

and (β82 = 8.27, γ82 = 3.73). Clearly, CPC nodes1, 3, and 8 have a benefit to use cooperative Bayesian

nonparametric estimation to improve their estimate of the distribution of PU 2 which is seen by all three

CPCs with an almost similar distribution (i.e., it passes the KS test for all three CPCs). However, for PU1,

although CPCs1 and8 see a comparable distribution, CPC3 has a different view on PU1’s activity. In fact,

the KS test fails when CPC node3 uses it to compare its samples of PU1’s distribution to samples from

CPCs1 or 8. Nonetheless, all three CPCs find it beneficial to join forcesand form a single coalitionS1 as

it significantly improve their KL distance as per (13), on both PUs for CPCs1 and8, and only on PU2 for

CPC 3. InsideS1, CPC3 discards the priors received from1 and 8 regarding PU1’s distribution and only

utilizes the received priors related to PU2 in order to compute its Dirichlet process estimate as in (9) for PU

2. Note that, the partitionΠ in Figure 2 is clearly Nash-stable as no CPC can improve its utility by switching

from its current coalition to another coalition withinΠ.

For the network of Figure 2, we show, in Figure 3, a plot of the real distribution of PU1 as seen by CPC node

1, compared with the estimates generated from the proposed cooperative Bayesian nonparametric approach

and with the non-cooperative kernel estimate. Figure 3 clearly shows that, by performing cooperative Bayesian

nonparametric estimation, CPC1 was able to significantly improve its non-cooperative kernel estimate of PU

1’s distribution by operating within coalitionS1. We note that, in Figure 2, the number of non-cooperative

observations that CPCs1, 3, and 8 record regarding the distribution of PU1 are L11 = 10, L31 = 8 and
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Fig. 4. Performance assessment showing the average KL distance (per CPC and per PU) between the real distributions (thatare unknown to the

CPCs) and the estimates generated by the CPCs for a network with K = 4 PU channels as the number of CPCsN varies.

L81 = 20 observations. Therefore, Figure 3 demonstrates that by using the proposed cooperative Bayesian

nonparametric approach while sharing observations (mainly with CPC8 in S1), CPC1 was able to obtain an

almost perfect estimate of PU1’s distributionwithout any prior knowledge of this distributionand by using

only L11 = 10 own observations. Note that, analogous results can be seen for all CPCs in Figure 2 as well

as for all other simulated networks.

In Figure 4, we assess the performance of the proposed cooperative approach by plotting the average

achieved KL distance between the real, yet unknown (by the CPCs), distributions of the PUs and the estimates

computed by the CPCs for a network withK = 4 PUs as the number of CPCs,N , varies. This KL distance

allows us to assess how accurate the computed estimate is with respect to the actual real PUs’ distributions. The

results in Figure 4 show the average KL distance per CPC and per PU. Figure 4 shows that, as the number

of CPCsN increases, the average KL distance between the estimates and the real distributions decreases

for the proposed approach and remains comparable for the non-cooperative case. This result demonstrates

that, for the proposed approach, asN increases, the CPCs become more apt to find partners with whomto

cooperate and, thus, their performance improves as their estimates become more accurate, i.e., closer to the

actual PUs’ distributions. Figure 4 shows that, at all network sizes, the proposed cooperative approach reduces

significantly the KL distance between the real and estimateddistributions relative to the non-cooperative case.
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This performance advantage is increasing with the network size N and reaching up to36.5% improvement

over the non-cooperative kernel estimation scheme atN = 30 CPCs. Figure 4 also shows that our approach

allows the average KL distance (average per PU and per CPC) toapproach the ideal case of0, as more

cooperative partners exist in the network, i.e., as the network sizeN increases.

Figure 5 shows the average and average maximum coalition size resulting from the proposed algorithm

as the number of CPCs,N , varies forK = 4 PUs. In this figure, we can see that both the average and

average maximum coalition size are increasing with the network size as cooperation becomes more likely for

large networks. From Figure 5, we can deduce that the resulting networks are composed of coalitions having

small to moderate sizes. In fact, the average and average maximum coalition size vary from around1.67 at

N = 2 CPCs to around3.5 and 5.3, respectively, atN = 30 CPCs. Hence, Figure 5 shows that the CPCs

self-organize into networks composed of a large number of relatively small coalitions.

In Figure 6, we show the impact of the pricing factorκ on the performance of the proposed algorithm

in terms of the average KL distance (per CPC and per PU) between the real distributions of the PUs and

the estimates computed by the CPCs for a network withN = 15 CPCs andK = 4 PUs. Figure 6 shows

that. as the pricing factorκ increases, the average KL distance increases as cooperation becomes more costly,

hence, limiting the cooperative gains. Nonetheless, Figure 6 shows that, at all pricing factors, the proposed
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Fig. 6. Performance assessment showing the average KL distance (per CPC and per PU) between the real distributions and the estimates generated

by the CPCs for a network withN = 15 CPCs andK = 4 PU channels as the pricing factorκ varies.

algorithm maintains a performance advantage relative to the non-cooperative scheme. This advantage, in terms

of reduced KL distance with respect to the real PUs’ distributions, ranges from around28.9% at κ = 5 · 10−3

to about7.6% at κ = 10−1. The value ofκ is, in practice, related to the implementation of the network

such as the type of backhaul interconnecting the nodes (wired or wireless), the capabilities of the devices,

among others. For example, if the PU monitoring is being performed by CPCs connected through a high-speed

backhaul, the value ofκ is expected to be small, e.g., within the range of10−3 to 10−2. In contrast, if the PU

activity monitoring is being done by devices with limited capabilities such as cognitive femtocells connected

through a DSL backhaul, the cost for information exchange would have a bigger impact andκ can have values

above5%. We also note that, while the network implementation is the most significant factor in determining

κ, the network operator can use the results of Figure 6 to have some control over the pricing factor so as to

optimize a tradeoff between the potential gains from cooperation and the costs that this cooperation entails,

in terms of increased control traffic, communications delay, and overhead. For example, depending on the

nature of the CPC nodes’ network (e.g., wired or wireless) and their capabilities, the operator can decide to

tweak the value ofκ so as to maintain a certain target QoS requirement during information exchange (e.g.,

target delay or overhead for signalling) or reserve some backhaul resources for alternate functions.

In Figure 7, we show the average and average maximum join operations attempted per CPC before

convergence of coalition formation as the network sizeN varies. In Figure 7, we can see that as the number
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Fig. 7. Average and average maximum number of join operations attempted per CPC for a network withK = 4 PU channels as the number of

CPCsN varies.

of CPCsN increases, both the average and average maximum number of join operations per CPC increase.

This is due to the fact that, as the network sizeN grows, the possibilities for cooperation increase, and,

hence, the coalition formation process yields a larger number of join operations per CPC. Figure 7 shows

that the average and average maximum number of join operations per CPC vary, respectively, from0.2, and

0.4 at N = 2 CPCs to1.9 and4.7 at N = 30 CPCs. The results in Figure 7 can also be combined with the

coalition sizes in Figure 5 so as to corroborate that the complexity of determining a partner for forming a

coalition grows linearly with the size of the network partition in place.

The convergence of the algorithm is further assessed in Figure 8 which shows the average and maximum

number of iterations required until convergence to a Nash-stable partition. Each iteration consists of a number

of join operations performed by the CPCs. In Figure 8, we can see that as the network sizeN increases, a

larger number of iterations is needed for the CPCs to reach a Nash-stable partition. In this respect, the average

and maximum number of iterations range from around2 at N = 2 CPCs to6.94 and 12, respectively, at

N = 30 CPCs. Figures 7 and 8 clearly show that the proposed algorithm has a low complexity as it enables

the CPCs to cooperate, in a distributed manner, while requiring a very reasonable number of iterations and

join operations.

To show how the proposed approach can handle changes in the environment, in Figure 9, we plot, as a
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Fig. 8. Average and maximum number of iterations required till convergence to a Nash-stable partition for a network withK = 4 PU channels

as the number of CPCsN varies.

function of the speed of the PUs, the frequency in terms of average total number of join operations per minute

resulting, over a period of5 minutes, from a network withK = 4 mobile PUs and different number of CPCs

N . In this figure, the PUs move using a basic random walk mobility model with a constant speed given by the

x-axis in Figure 9. Periodically, once the CPCs detect that their view of a certain PU’s activity has changed,

e.g., due to mobility, they reengage in the coalition formation phase of the algorithm proposed in Table I. As

a result, the CPCs may decide to break from their current coalitions and join other coalitions. The increase in

the frequency of join operations with the PUs’ velocity as seen in Figure 9 is due to the fact that, for more

dynamic environments, i.e., higher mobility, the likelihood of the occurrence of join operations increases.

Figure 9 shows that the average frequency of join operationsper minute ranges, respectively forN = 7 CPCs

andN = 15 CPCs, from2.2 and 5.4 operations per minute at10 km/h to about3.9 and 8.8 operations per

minute at100 km/h. Note that similar results can be seen for other environmental changes such as mobility

of CPCs or changes in the PUs transmission patternτk (for any PUk).

In Figure 10, we show how the average KL distance between the real and estimated distributions varies for

a network in which the PUs are moving with different speeds. Figure 10 shows that, as the speed increases,

the average KL distance achieved by the proposed approach increases. This increase is due to the fact that, as

the mobility becomes higher, the CPCs become more apt to change their coalitions and, thus, their average KL
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Fig. 10. Average KL distance between the real distributionsand the estimates generated by the CPCs as the speed of the PUsvaries over a period

of 5 minutes.

distance increases due to these changes. Nonetheless, Figure 10 shows that the proposed approach maintains

its performance advantage, compared to the non-cooperative case, at all PUs’ speeds.
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VI. CONCLUSIONS

In this paper, we have introduced a novel cooperative approach between the CPC nodes of a cognitive

radio network that is suitable for modeling the activity of primary users which is often unknown in practice.

Using the proposed cooperative scheme, the CPC nodes can cooperate and form coalitions in order to

perform joint Bayesian nonparametric estimation of the distributions of the primary users’ activity. We

have tackled this problem by formulating a coalitional gamebetween the CPCs and proposing an algorithm

for coalition formation. The proposed algorithm allows theCPC nodes to autonomously self-organize into

disjoint, independent coalitions. Within each formed coalition, the CPC nodes exchange their non-cooperative

distribution estimates and use a combination of Bayesian nonparametric models such as the Dirichlet process

and statistical goodness of fit techniques such as the two-sample Kolmogorov-Smirnov test, in order to improve

the accuracy of the estimated distributions. We have shown the convergence of the proposed algorithm to

a Nash-stable partition and we have assessed the propertiesof the resulting partitions. Simulation results

have shown that the proposed algorithm allows a significant improvement in the estimated distribution as

quantified by a significant reduction in the Kullback-Leibler distance between the real, yet unknown (to the

CPCs), distributions and the estimates inferred using Bayesian nonparametric techniques. The results also show

that the proposed approach enables the CPCs to cope with dynamic changes in their environment. Future work

can consider applying the proposed approach for estimating, not only the activity of the primary users, but also

the duration of such activity by considering the PUs activity distribution over time. In a nutshell, by marrying

concepts from game theory, Bayesian nonparametric estimation, and statistical goodness of fit techniques, we

have proposed a novel model for cooperative data estimationthat is suitable for many practical applications

beyond cognitive networks such as wireless weather services or cooperative multimedia data reconstruction.
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