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Abstract

This paper introduces a novel approach that enables a nuafilEgnitive radio devices that are observing the
availability pattern of a number of primary users (PUs), tmperate and usBayesian nonparametritechniques to
estimate the distributions of the PUs’ activity patternsuased to be completely unknown. In the proposed model,
each cognitive node may have its own individual view on eatks Rlistribution, and, hence, seeks to find partners
having a correlated perception. To address this problerattional game is formulated between the cognitive device
and an algorithm for cooperative coalition formation is gweed. It is shown that the proposed coalition formation
algorithm allows the cognitive nodes that are experien@ngimilar behavior from some PUs to self-organize into
disjoint, independent coalitions. Inside each coalititg cooperative cognitive nodes use a combination of Bagesi
nonparametric models such as the Dirichlet process anidti&tak goodness of fit techniques in order to improve the
accuracy of the estimated PUs’ activity distributions. Slation results show that the proposed algorithm signitigan

improves the estimates of the PUs’ distributions and yialgerformance advantage, in terms of reduction of the aeerag
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achieved Kullback-Leibler distance between the real aedetimated distributions, reaching up3@5% relative the
non-cooperative estimates. The results also show thatrtpoped algorithm enables the cognitive nodes to adapt thei

cooperative decisions when the actual PUs’ distributidrenge due to, for example, PU mobility.
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. INTRODUCTION

Cognitive radio has been proposed as a novel communicati@ujgm that allows an efficient sharing of the
under-utilized radio spectrum resources between licens@dimary users (PUs) and unlicensed or secondary
users (SUs)J1],.[2]. Cognitive radio networks are basednuitexible spectrum management techniques that
allow licensed and unlicensed users to share the spectriiite avoiding collisions with one another. The
main enablers of such cognitive communications are smartl&lites that can intelligently and dynamically
monitor the spectrum, operating only when the PUs are wacind making sure to vacate the spectrum
whenever a PU starts its transmission. Hence, one of the kalfleages faced in the design of cognitive
radio networks is to ensure dynamic spectrum sharing whdetaining a conflict-free coexistence between
primary and secondary usefs [2]]10].

In order to detect the PUs’ activity, the SUs are typicallyipged with sensing capabilities (e.g., energy
or cyclostationarity detectors) that enable them to autumesly detect unoccupied spectrum and transmit
opportunistically - e.g.,[[5]=[11] (see [10] for a compreb&e review). Spectrum sensing is a key step
for deploying robust cognitive radio networks and has rambisignificant attention [5]=[19]. In particular,
advanced spectrum sensing technigues suatoaperative sensingave been proposed in![9], [12]-]19] so
as to improve the SU’s detection capability. The main ideacafperative sensing is to combine different SU
observations so as to have a better decision on whether a pgsent or not, at a given time instant. [nl[12],
the authors propose centralized schemes enabling the Selsate their sensing decisions given a known
PU distribution. The work in[[13] studies the impact of rejooy channel errors on collaborative sensing. In
[14] and [15], the use of relaying techniques for improvimgperative sensing is thoroughly analyzed. Other
performance aspects of cooperative sensing are studié],ifilB]-[19].

However, performing cooperative or non-cooperative sgn& known to be a time consuming process that
can affect the access performance of the SUs, notably in-chdnnel networks [2]/]3]/]7]. To overcome this
problem, recent research activities brought forward tleaidf providing, usingontrol channelsspectrum
monitoring assistance to the SUs so as to improve their peeoce [20]-4[24]. These channels can be used
in conjunction with advanced techniques such as cooperafpectrum sensing so as to provide additional
information to the SUs that can improve their sensing deoisiFor example, the authors in [20] studied how
a Common Spectrum Coordination Channel (CSCC) can be usadntounce radio and service parameters
to the SUs. More recently, the Cognitive Pilot Channel (CIR@3 been introduced [21]-[24] as a control



channel that can convey critical information to the SUspwallhg them to enhance their sensing and access
decisions, notably in the presence of multiple channets, (RUs) and access technologies.

Essentially, the CPC is a channel that can carry differefatrination such as estimates of the activity of
the PUs, frequency or geographical data, that the SUs catous®rove their sensing, to avoid scanning the
entire spectrum for finding spectral holes, and to get a bpteception of their environment (e.g., locations
and frequencies of the PUs) [21] arid [[22]. Deploying the CRG ipractical network can be done either
using existing infrastructure (e.g., existing cognitiveers or base stations) or by installing dedicated nodes
that carry CPC data, i.eGPC nodesFor transmitting the CPC data, a variety of methods can led,uss
proposed in[[21][23].

The use of CPCs and cooperative spectrum sensing have edosiwnsiderable attention in the research
community. However, on the one hand, most of the existingkveor CPC deployment such as [3], [21]23]
has focused on implementation and transmission aspectshéather hand, existing cooperative spectrum
sensing techniques such aslin![12]+[14],][16]+{19] oftesuaze that the PU’s activity follows a certain known
or assumed distribution. However, no work seems to havestigated how cognitive device such as CPC
nodes can be used to provide information on the activity ef RtUs in a practical cognitive network. This
primary user activity information can be used, subsequetdl improve the decisions of both cooperative
and non-cooperative spectrum sensing. To operate effigighe SUs must obtain a good overview of the
activity of the PUs, so as to access the spectrum at the figletdnd for a suitable duration. Moreover, this
information is important to improve the cooperative demisi for collaborative sensing techniques such as
in [12]—-[14], [16]-[19]. The objective of this paper is tovkrage the use of control channels such as the CPC
in order to convey to the SUs accurate estimates of the hliston of the activity of the PUs, which is often
sporadic and unknown. In addition, a given PU channel caneea slifferently by CPC nodes positioned
in different locations of a cognitive network. In most coogtere sensing or CPC literature, these different
PU views are often simplified or assumed to be fixed. Howewvepractice, this assumption may not hold
due to a variety of factors such as the locations of the PUstndgtiters or their power capabilities. Therefore,
developing efficient schemes that allow the cognitive nddesbtain (e.g., through a CPC) accurate estimates
of the PUs’ channel availability patterns is a challengiagktthat is of central importance in maintaining
a conflict-free environment between SUs and PUs. To the Westiroknowledge, this paper is the first that

treats this problem, notably from a cooperative approaah ukes Bayesian nonparametric inference as well



as game theoretic techniques.

The main contribution of this paper is to introduce a noveperative approach between cognitive devices
such as CPC nodes that allows them to share their obsersatiothe distributions of the PUs’ activity, and,
subsequently, build an accurate estimate of these distii®si In particular, given a number of PUs whose
availability is perceived differently by a number of CPC Bedwe propose a scheme that allows these nodes
to cooperate in order to estimate the distributions of the’Ridtivity, assumed to be completely unknown.
In this context, we formulate a coalitional game betweenG@R& nodes and we develop a suitable coalition
formation algorithm. The proposed game allows the CPC ntaldscide, in a distributed manner, on whether
to cooperate or not, based on a utility that captures thefgaim cooperation, in terms of an improved estimate
of the PUs’ distributions, and a cost for coordination. Egobup of CPC nodes that decides to cooperate and
form a coalition will subsequently udggayesian nonparametric techniquémsed on the Dirichlet process, as
well as goodness of fit statistical tests, to cooperativefgrithe perceived distributions of the PUs’ activity.
We show that, by performing coalition formation, the CPC emdelf-organize into a network of disjoint
and independent coalitions that form a Nash-stable pamtin which each node has a significantly improved
estimate of all the PUs’ activity. Simulation results shdvattthe proposed cooperative approach yields a
significant performance improvement.

The remainder of this paper is organized as follows: Sediipmesents the system model. In Section I,
we present the proposed cooperative Bayesian nonpararsetreme and we model it using coalitional game
theory. In Sectiori 1V, we propose an algorithm for distrémlitcoalition formation. Simulation results are

analyzed in SectiohlV and conclusions are drawn in Se€tidn VI

1. SYSTEM MODEL

Consider a network ofV cognitive radio devices that are seeking to transmit, opastically, over
K channels that represent a number of PUs. These devices athbe SUs, fixed secondary base stations,
or other fixed or mobile cognitive radio nodes. One typicahraple of these devices would be a number
of cognitive nodes dedicated to provide information to thésSe.g., CPC-carrying nodes. Hereinafter, for
brevity, we use the term CPC or CPC node to refer to any suchittagnode. The set of all CPCs is denoted
by A/ while the set of PUs is denoted Wy. At any point in time, from the perspective of any CPC node
i € N (and the SUs in its vicinity), every PW € K is considered to be active, i.e., its channel is occupied,

with a probability#,;;,. For a given PUk € K, two distinct CPC nodeg j € N, ¢ # j can see a different



value of the probability that is active, i.e.¢;; # 6;;, depending on various factors such as the distance to
the PU, wireless channel fading, or the PU’s transmissiqraloidities. For example, from the perspective of
a CPC; that is in the vicinity of a PUk, even when the PU uses a small power for transmissionkBU
channel is still seen as being occupied due to the small jpsth (for fading) between CPE and PUi. In
contrast, from the point of view of another CPQGhat is located far away from the same RUthe channel
used by PUkL appears to be vacant whenever RW transmit power is low. The main reason behind these
different observations is that, unlike CPC nogeCPC node; and the SUs that it serves experience a low
interference from a PW: located at a relatively large distance and whose transmitepas attenuated by

a reasonably significant channel fading. As a result, from ghrspective of CPC nodg PU k& channel’s
would be seen as vacant even when it appears occupied to CiRCi.no such an illustrative scenario, for
the same PU:, we would haved;, > 0.

Often, the PUs can change their pattern of activity dependim many random parameters, e.g., due to
their nature or capabilities. For example, when the PUsesst the mobile nodes of a wireless system (e.qg.,
an LTE or 3G system), they may frequently change their agtidepending on the time of the day or the
region in which they operate. Hence, for a given PUhe value of the probability,, from the perspective
of any CPCi € NV, can be seen as a random variable having a certain progatigiribution P;;(6;,) which
is a probability density function over the state spate= [0,1] of 6, Vi € N, k € K. Moreover, we
consider that the CPCs i haveno prior knowledge on the distribution of the PUs’ activity. (&) forany
CPCi € N and any PUk € K, the actual real distributio®;,(6;;) is completely unknowty the CPC.
Hereinafter, for brevity, we use the term the expresslmtribution of the PUsor PUs distributionto refer
to the distribution of the PUs’ activity/availability.

Each CPCi € N performs a limited number of,;, observations’;, = {O}k,...,ef,;k for every PU
channelk € K so as to get an estimate of the distributidRg(;.). Each observatiod!, € L;. is a value
for the probabilityd;, observed at a time period To obtainZ,, for a channelk, a CPC needs to monitor,
over a given period of time, the activity of PUL and record the resulting probability,. This process can
be seen as a sampling of the PU’s activity distribution. Weertbat the time period during which a single
observation is recorded must be reasonably large so as bbeeti@ cognitive device to record a reasonably
accurate observation. In practice, the exact value for pleisod is dependent on the cognitive network’s

implementation, the nature of the PU (whether it is a telewigransmitter, a mobile device, a base station,



etc.) and can be adjusted by the CPC accordingly. Due tottlesnumber of observations;, for each PU
channelk is, in practice, small, due to the time consuming nature of pnocess. The small value df;,
is further corroborated by the fact that, in addition to PUWiaty estimation, a CPC also needs to perform
other tasks such as acquiring frequency and geographifmimation, and, hence, it cannot dedicate all of
its resources to the PU activity estimation process. We tiatk in a given time period, the observatiobg
are the only information that a CPC nodéas about the behavior of Pkl

Having recorded the observatiodfs;,, each CPC € N must infer the distribution of every PW € K.
Given L;;, a CPCi can predict the distribution of the next observat&i(fgﬂ“rl using the following expression:
> S, (A)

Lik ’

where A C O is a subset of the spa¢e and d,. is the point mass located . such thatyy (A) = 1 if

Hip (054 € A6, ... 05%) = (1)

¢!, € A and0 otherwise.

When acting non-cooperatively, each CPC can compute thrgbdigon of 95;‘“1 using [1) which is discrete.
Given the limited number of observationsg,, using [1) can yield a large inaccuracy in the estimatiorartier
to get a more accurate, continuous estimAte of the distributionH;;, in (@), each CPG can adoptkernel
density estimatiomwr kernel smoothing techniques [25]-[27]. As explained2B][ kernel density estimation
methods are popular nonparametric estimators used to aifanences about a certain distribution based on
finite data samples. Kernel density estimation methods asmaothing a discrete function in four main steps
[26]: (i)- Choosing akernelfunction which is a symmetric but not necessarily positieatcuous function
that integrates to one and a scaling factor commonly knowaasiwidthwhich controls the smoothness of
the estimate, (ii)- Placing the center of the chosen kermet each observed data point, (iii))- Spreading the
influence of each data point over its neighborhood, and; 8umming the contributions from each data point
in order to generate the final estimate.

One popular kernel density estimator is the Gaussian kerstaator in which the kernel is chosen as
a Gaussian distribution whose bandwidth is its mean [26fnThhis kernel is convoluted to the discrete
function (or the observations) so as to generate the demstiynate. While a detailed treatment of kernel
density estimation techniques is beyond the scope of thpergaor the proposed model, we assume that,

when acting non-cooperatively, the CPCs utilize the genleginel density estimation via the linear diffusion

1The interested reader is referred [fol[25] [or[26] for furtirdprmation.
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Fig. 1. An illustration showing a cognitive radio networktkvg8 cooperative CPC nodes that form coalitions and can joirsliyrete the distributions

of 3 primary users. ~
approach ofi[2]7], in order to obtain a continuous versib’,* ™ € A|dL., ..., 65*)) of (@) which constitutes

the non-cooperativiernel estimateNote that other kernel estimation techniques can also bptad, without
loss of generality.

Non-cooperatively, the kernel estimate is the most redserestimate that any CPC= A can obtain, given
its limited number of observations. However, as the nunihgrof available observations is generally small,
the kernel estimate of the PUs distributions may not perfasnwell as required by the cognitive network.
Therefore, the CPCs need to seek alternative methods toowapheir estimate of the PUs distributions
without a need for continuous and real-time observationhef RUs’ behavior. One approach to solve this
problem, which we introduce in this paper, is to let the CPteract and cooperate, when possible, in
order to improve their perception of the PUs distributidnsparticular, CPCs that are observing similar PUs
distributions would have an incentive to form cooperativeups, i.e., coalitions, so as to share observations
and improve their estimates.

In Figure[1, we illustrate how cognitive nodes that have aemihat similar view on the existing PUs group
together into coalitions, so as to perform cooperativarestion of the PUs’ distributions, for a network with
8 CPCs and3 different PUs. For example, in Figuké 1, as CRCand 7 are located almost symmetrically

around the3 PUs, they find it beneficial to cooperate and share their @agens. Similarly, the other CPCs



in Figure[1 make their cooperative decisions, dependinghencorrelation between their perceived PUs
distributions as well as the potential of having a betteineste. To perform cooperative estimation such
as in Figurd 11, several challenges must be overcome suchr@stty determining whether the cooperative
CPCs are observing similar distributions as well as idgimif the benefits and costs from cooperation. In

this respect, the next section will propose novel solutimnghe aforementioned challenges.

[[l. COOPERATIVE BAYESIAN NONPARAMETRIC ESTIMATION OF PRIMARY USERS ACTIVITY

To model the problem illustrated in Figurke 1, we will use thalgtical tools of coalitional game theory [28],
[29]. In particular, we are interested in formulating thepossed CPC cooperation problem as a coalitional
game with a non-transferable utility defined as follows| [28ap. 9]:

Definition 1: A coalitional game withnon-transferable utilityconsists of a paifN\,V) in which A/
represents the set of players alidis a mapping that assigns for any coalitiShC N a set of payoff
vectors that the members 6f can achieveV/(9) is a closed and convex subsetRf .

In the proposed model, one can see that the set of playéassthe set of CPC nodes. In order to completely
describe the coalitional game between the CPCs, our ngxtiste determine the mapping which reduces
to proposing a utility function that captures the gains andtx that each CPC achieves when cooperating
within a certain coalitionS C N. To determine this utility function, we must first provide aoperative
procedure that the CPCs belonging to any potential coaliiccan adopt. First, whenever the CPC nodes
decide to form a coalitiort’ C N, the CPCs inS would be able to share their kernel estimates of the PUs
distributions generated non-cooperatively based[én (&ndd, within any potential coalitio§, each CPC
can obtain the PUs distribution estimates from its partaeid if deemed suitable, use these distributions as
prior distributionsso as to generate new estimates. Inherently, for a giveitiooab C N, each CPG € S
must be able to perform the following three stépsevery PUkL € K:

1) Step 1 - Check Priors Validity: The first step for each CPCe S is to determine, for every PW,
whether the prior distributions received from its coopegeapartners inS \ {i} come from the same
distribution as CPG’s own estimate (based on its own set of observatiépsfor PU k).

2) Step 2 - Generate New EstimateOnce a CPG € S generates, for any PW, a list of received priors
that come from the same distribution as its own estimate, frem CPCs inS that perceive PUW’s
activity analogously to CP@), its next step is to generate a procedure for combiningetheseived

prior distributions with its non-cooperative kernel esdte



3) Step 3 - Assess the Accuracy of the New DistributionGiven the new estimates generated in Step 2,
the last step for CPC € S is to assess the accuracy of the resulting distributions.
We will approach the first step using concepts from staistimown as goodness of fit tests while the second
step will be performed using a Bayesian nonparametric émieg method based on the Dirichlet process.
Then, the third step is approached using the concept of eb&ehtLeibler (KL) distance. Finally, all three

steps will be combined in a single utility function which cpletes the coalitional game formulation.

A. Priors Validity Check

Given a coalitionS C N, any CPCi € S can usegoodness of fitechniques[[30],[[31] to assess whether
the set of kernel estimates received from the CPCS in{:} regarding the distributions of any PkJcome
from the same distribution as CP& own set of observationg;,. The goodness of fit of any statistical
model provides a description of how well a certain model fitsed of observations or samples [30], [[31].
Goodness of fit tests are one of the most common methods thdiecased for identifying whether two sets
of observations or samples come from the same distributiarog.

For the proposed CPC cooperation model, given a GR@ember of a coalitionS that receives, from
another CPCj € S, a certain kernel estimatél;;, for the distribution of PUk’s activity, CPCi needs to
determine whetheﬁjk and its own estimaté/,;. are estimates of the same distribution. In other words, each
CPCi must identify whether a given cooperating partner CPi€ observing a similar distribution regarding
the activity of a certain PU:.. To do so, CPG first generates two sets of samplisg, and #,;, from Hy,
and ij, respectively. The samples iH;, can simply be the original observatiods, of CPCi or newly
generated samples using the continuous kernel estithatdHere, sampling refers to the process of obtaining
samples from a distribution function which does not requbserving the PU behavior and is commonly
performed in wireless networks.

Then, in order to identify whethét;;, and#;,, come from the same distribution, CR@ses théwo-sample
Kolmogorov-Smirnov goodness of fit tedéfined as follows [30], [31]:

Definition 2: Consider two sets of observatiofs;, and ;. having, respectivelyh;, = |Hx| and hj, =

|H;| samples. Thé&olmogorov-Smirnov statistis defined as

Dhik,h]‘k = Sup ‘Fhik (SL’) - thk (.T)‘, (2)

2Goodness of fit tests can also be used for other purposes summaring an empirical and a theoretical model (Sek [30irfore details.)



where F,,, and F,, represent the empirical cumulative distribution functiaf the samples ifi;;, and H

respectively. GivenD,, the two-sample Kolmogorov-Smirnov (KS) goodness of fit desides that the

ikohjk
hypothesis: “The samples iH,, and#;, come fromsamedistribution” istrue with a significance leved, if

%Dhik,hjk < M,, (€))
with M, a critical value that can be set according to well-definedeta0].

Thus, the two-sample KS test determines whether two setsraples come from the same distribution
or not, without the need for any information on what that riisition actually is. A variety of goodness
of fit tests exist, each of which has its own characteristios practical applications. We have adopted the
two-sample KS test due mainly to two reasans [30]] [31]: Iiys one of the tests that are most sensitive to
differences in both the location and the shape of the engbidamulative distribution functions of any two
sets of observations being compared, and (ii)- It providepad balance between the complexity and the
accuracy of the decision [30], [31]. For the CPC cooperagimblem, this test will be used by each CRG
member of a coalitiord, in order to determine whether the estimates received fr@CPCs inS'\ {i} come
from the same distribution as CPG own estimatg. As a result, a cooperative CPCGcan decide whether a
received estimate is valid to be used agrior distribution in order to improve its estimate for some RU

Subsequently, given any coalitighand any CPG € S, we letSXS C {S\ {i}} denote the set of CPCs in
S\ {i} whose estimates regarding the distribution of the actieftiU & have been approved as valid priors
by CPCi, using the two-sample KS test. Note that, if, for a RUCPC: could not find any valid prior irt,
then SKS = (). After the KS test, the next step for any CR€ S is to choose the priors that can potentially

improve its estimate of the PUs distributions.

B. A Bayesian Nonparametric Approach for Cooperative EstinGeneration

Once a CPG member of a coalitiors determines the setX® for every PUk using the KS test, this CPC
would build a|S| x 1 vector H; whose elements are the validated priors as received fror€B@s inSkS,
Given the vectoH ;, the next step for CPZis to combine these priors with its own estimatg, in order to
find the posterior distribution, i.e., a new estimatg (#* (6L, ... 6%*). To do so, we propose an approach

based on Bayesian nonparametric models, namely, usingotieept of aDirichlet process[32]-[34]. The

3The CPCs can easily generate a number of samples good ermegisure the accuracy of the KS test.
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use of such a Bayesiamonparametricmodel, based on Dirichlet processes, is motivated by thevioig
properties [3R]-+[34]: (i)- Dirichlet processes are knownhte one of the most accurate models that can be
applied for modelingunknown distributions(ii)- Dirichlet processes providiexible modelghat enable one
to control the impact of each set of information used in eatiom (e.g., the impact of the validated priors),
and (iii)- Bayesian nonparametric models can automayicalfer an adequate distribution model from a
limited data set with little complexity and without requig an explicit model comparison such as in classical
Bayesian approaches.

Before formally defining the Dirichlet process, we must adtnce the concept of Birichlet distribution
as follows [32]:

Definition 3: Consider a set of events\;, ..., X)) that are observed with probabiliti€s;, ..., py). A
Dirichlet distributionof order M > 2 with parametersa;, ..., ay), a; > 0,7 € {1,..., M} has a probability

density function given by:
M

. 1 .
Dir(as, ..., an) = f(p1s- -, pasan, .o an) = )sz g (4)

Z(Oél, o, Qg i1

whereq;—1 can be interpreted as the number of observations of e¥gahdZ (a4, . . ., ays) is a normalization

constant given by: y
[[iZ: I'(ew)

, 5
F(Zi]\il ;) ©

Z(Oél,...,OéM) =

whereI'(-) is the gamma function.

A Dirichlet distribution Dir{«, . . ., aip) IS the conjugate prior of a multinomial distribution withotrabili-
ties(p1,...,pup) and can also be seen as a generalization of the beta digiriiatthe multivariate casé [32].
In contrast to a Dirichlet distribution, Birichlet processis a stochastic process that is a distribution over
probability measures, which are functions that can be pnéded as distributions over a spaée A draw
from a Dirichlet process can be seen as a random probabiktyiliition over the spac® [32]-34]. A
distribution over probability measures that is drawn frorDiechlet process has a marginal distribution that
constitutes a Dirichlet distribution. Formally, given aopability distribution H over a continuous spade
and a positive real number, the Dirichlet process is defined as follows |[32]:

Definition 4: A random distributionG on a continuous spad® is said to be distributed according to a

Dirichlet processDP(«, H) with base distributiond and concentration parameter i.e., G ~ DP(«, H), if

(G(Ay,...,G(A,)) ~Dir(aH(A,),...,aH(A,)), (6)
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for every finite measurable partitiopd,, ..., A, } of ©. The base distributioi/ represents the mean of the
Dirichlet process, i.e E[G(A)] = H(A) for any measurable set C © while « is a parameter that highlights
the strength of a DP when it is used as a nonparametric prior.

The Dirichlet process is thus a stochastic process that easebn as a distribution over distributions, as
every draw from a DP represents a random distribution &vefThe base distributiol/ of a DR, H) is
often interpreted as a prior distribution over For the proposed game, the CPCs can use the DP as a means
for generating estimates of the PUs distributions by ushegualidated priors that they received from their
cooperating partners. As the real distributions of the Ptésumknown to the CPCs, the CPCs will assume
these PUs distributions to be distributed according to &bliet process. Subsequently, each CR@ember
of a coalitionS, needs to combine its own observations about akPith the Dirichlet processes received
from other cooperating CPCs in the set of validated prigffS.

It is known, from Bayesian nonparametrics, that the contimnaof a number of independent Dirichlet
processes can also be modeled as a Dirichlet process witkragst parametezlesfks oy, being the sum of
the individual parameters and a prior being the weighted stithe different priors[[32]-+[34]. Thus, from the
perspective of any cooperative CRGhe distributionG,;, of any PUk is modeled using a Dirichlet process

that combines the received estimates from the CPC&iinto a single prior, as follows:

ZZESKS oy, Hyg
G, ~ DP E Ay — =
lESKS ZlESKS Ak

(7)

where H, is the non-cooperative kernel estimate of RUhat CPCi received from a CPQ € SKS and
validated using the two-sample KS goodness of fit test[lnt{® combined strength parame@lesfkS Qup
represents the total confidence level (e.g., trust leveh@ dccuracy of this estimation) in using (7) as a
nonparametric prior for inferring on the final distributidfurther, the prlow used in[(¥) represents
a weighted sum (convex combination) of the priors receivednfthe coalltlon partners. In this combined
prior, each weight represents the relative confidence lef/el certain priorf,, with respect to the total
strength parameter Iev@jleszf ay,. Note that, the control and setting of the parametegsin () will be
discussed in detail later in this section.

Subsequently, for any coalitiof € N, each CPCi € S can use the Dirichlet process model b (7) in
order to compute a new estimate of the distribution of any#P& K that combines, not only CPCs own

data, but also the data received from CP€ cooperating partners i§. Hence, for every CPGC member
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of a coalitionS having its set of observations;, and its vector of validated prioré[k, using the Dirichlet
process model ir({7), the predictive distribution on any ruxfmservation9f,;"chl conditioned onZ;; with G

marginalized out can be given by [33, Eq. (5)]

Lin
. , 1 ~ .

H (057 € Alf)y, ..., 05%) = > anHy(A) +> 5 (A) ] (8)
=1

L, + «
ik ZlEkas lk ZGSZKkS

where A C ©. The first term in the parentheses on the right hand sidé]lofgi@jesents the contribution
of the priors to the distributiori7;;, while the second term represents CPEkernel estimate based on the

observationsC;;,. Equation[(8) can be re-arranged as follows:

Hi (055 € Alfl, .. 05%) = Y wiHi(A) + woHa(A), (9)
1esk?
wherew, = m is a weight that quantifies the contribution of CP€ own kernel estimate in the
les; g
predictive distributionf/;; andw, = <——%—— represent weights that identify the strength or impact of

> e oks Quk+Lig
15K

the contribution of the priorgdy, in the final distribution/Z5. The resulting posterior distribution ifl(9) is
composed mainly of two terms: a first term related to the xeckiestimates and a second term related to
the contribution of CPG’s own observations. The first term i] (9) reflects the impddhe validated priors
received byi (on PU k) from the members i’ over the final resulting estimate. The second term(in (9)
highlights the contribution of CPCs own perception of the PU activity. In essence, the weigltsoth terms

in @) are proportional to the length of the observatidns and to the strength parameters, [ € S&°, of

the combined estimate.

One can clearly see froni](9) that the parameters VI € S&°, allow the CPCs to control the effect of
each prior (as well as the own estimate) on the resultingibiigton /;;, depending on the properties of
each prior and the confidence that each CPC has in this pooreXample, a CPC can set the Dirichlet
process parameters so as to assign weights of zero to phatrgatiled the two-sample KS test (i.e., priors
outsideSX®) and, then, it can still us€l(9) for predicting the resultdistribution. Moreover, fron{9), one can
clearly see that by setting all weights = 0, VI € SX°, we obtain the original non-cooperative distribution
as estimated by CPCwhen acting on its own, i.e., the kernel density estimatdIpf (

In practice, each CPC has an incentive to give a higher weggptiors that were generated out of a larger
number of observations, as such priors are more trusteccdsl@mthis work, we allow each cooperative CPC

i € N to set the parameters,,, VI € SK> such that the corresponding weights[ih (9) are proportitmahe
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number of observations, i.e.,

L, Ly, KS
Wy == andw, = =———, Vl e S;;”. (20)
’ Zjes ij ZjeS ij g

Clearly, by using the definition of the weights as highlighte (9), each CPG can compute the parameters
i, VI € SKS from (Z0).

We note that, in the model studied so far, we assumed that B@sCave no knowledge of the PU’s
locations and/or capabilities (beyond a limited number lo$ayvations). However, the proposed model can
easily extend to the case in which each CPEN has additional information about the PUs. For example,
whenever the CPCs have their own measures of the PUs’ losattbey can convert this knowledge into
an additional prior that can be combined with the final estéma (8) so as to improve the accuracy of the

learning process.

C. Utility Function
Given any coalitionS C N we define, for every CPC < S and for every PUk € K, the following metric
as a measure of the utility yielded from a given estimate efdlstribution of PUE:
win(S) = =p (HEOF 0k, 050), HE(OGSDE ) gt ) )

where H;, is given by [9),0 < A, < 1 is a real number, ang(P, Q) is the Kullback-Leibler distance

between two probability distribution® and @, given by [35]:

pP.Q) = [ Pla)los 5 3d, (12)

where the log is taken as the natural logarithm, hence, inigld KL distance innatQ. The KL distance

in (I2) is a nonsymmetric measure of the difference betweengrobability distributionsP and Q. In a
communications environment, the KL distance can be inéepr as the expected number of additional bits
needed to code samples drawn fréthnwhen using a code based @hrather than based oR [35]. Note that
the minus sign is inserted in_(11) for convenience in ordetuto the problem into a utility maximization
problem (rather than cost minimization).

For the proposed game, the utility in {11) measures, usig), the distance between an estimate of the

distribution of PUL when CPCi computes this distribution using;, observations and an estimate of the

“4Alternatively, one can use a bagdogarithm to get the results in bits.
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distribution of PULE when CPC: uses an extra\;;L,, set of observations to find the estimate. The extra
observationg);, L;. can be either observations generated and saved at the legofnCPCi's operation or
newly observed samples. The rationale behind (11) is teaheestimate of the distribution becomes closer to
the real unknown distribution, the KL distance in](11) wodkktrease, since adding a few more observations
to an already exact estimate would yield a little change iim ¢stimate. Hence, as the accuracy of the estimate
HZ improves, the KL distance i (l1) would decrease, since gt e\;,L;, observations have a smaller
impact on the overall distribution. This method is analogtm iterative techniques used in several statistical
domains in which one would stop iterating after observingt th few more iterations have little impact on
the final result. As a result, the objective of each CREN is to cooperate and join a coalitichi so as to
maximize [T1) by reducing the KL distang¢H s (6%+*1|.), HS (6{,F2#X#F1 1)) on every PU channdl. It

is interesting to note thaf (IL1) allows the CPCs to evaluagevalidity of their distribution estimates without
requiringany knowledgen the actual or real distribution of the PU.

While cooperation allows the CPCs to improve the estimateébendistributions as pef{9) and_{11), these
gains are limited by inherent costs that accompany any catipe process. These extra costs can be captured
by a cost functiore(.S) which will limit the gains from cooperation obtained [n {1Qonsequently, for every
CPCi member of a coalitiort, we define the following utility or payoff function that capés both the costs

and benefits from cooperation:

$i(S) =) uw(S) — e(S), (13)

whereu;;(S) is given by [I1) ands(D) = 0. The first term in[(IB) represents the sum of KL distances over
all PU channels: € K, as given in[(1l1), while the second term represents the costooperation. Although
the analysis done in the remainder of this paper can be abfdieany type of cost functions, hereinafter,
we consider a cost function that varies linearly with thelitioa size, i.e.,

£S5 =1), if |S]>1,

c(5) = (14)
0, otherwise,

with 0 < x < 1 representing a pricing factor. The motivation behind thecfion in (14) is that, in order
to perform joint estimation of the PUs’ activity, the CPCsttlare members of a single coalitigh must
be able to synchronize their communication and maintain @@nahannel among themselves to exchange

information, share their different observations over timpdate the priors of one another, and so on. This
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synchronization and coordination cost is, indeed, an asirg function of the coalition size such as[inl(14).
The nature of this cost is dependent on the implementatidrteshnology of the CPC network (e.g., whether
it is wired, wireless, or heterogeneous). In essence, tieatioverhead model would adequately capture most
implementations since our approach requires that each CRCS provide a small amount of data. For
example, if the nodes are exchanging the data over a wirelemsnel, each CPZ € S can broadcast its
signalling packet once, to the farthest CPCSinDue to the broadcast nature of the wireless channel, adroth
members ofS would receive this packet. In this case, each GRCS needs simply to wait for the data of the
other|S| — 1 coalition members, and this number would increase lineaitly S. A similar reasoning can be
applied for a wired exchange of data using multicast. Néebess, we note that, while the choice of a linear
overhead in[{14) is well-justified, the proposed approaah ltandle any other models for communication
overhead. Note that, whe$i is a singleton[(T3) would highlight the non-cooperativeitytiof the CPC inS
with no cost. Given[(13), we can now formally characterize toalitional game between the CPCs:

Proposition 1. The proposed CPC cooperation problem is modeled as a ooalitigame with non-
transferable utility(NV, V') in which N is the set of CPCs anif(S) is a singleton set (hence, closed and
convex) that assigns for every coaliticha single payoff vector¢p whose elements;(S) are given by[(1B3).

Unlike in classical coalitional games, the formation of mgé¢ grand coalition encompassing all the CPCs
is not guaranteed due to the cooperation costs, as seen)inr{Xfact, the different CPCs can have their own
distinct view of the PUs’ activity, and, hence, these CPCy imave no benefit in cooperation. As a result,
the proposed CPC coalitional game is classified as a caalitionation gamel[29] in which the objective is
to develop an algorithm that enables the CPCs to cooperatdoam coalitions such as in Figuké 1.

Note that we are interested in coalition formation games Imctv the outcome is a set of disjoint CPC
coalitions as in Figurél1l. The motivation for having disjoaoalitions is two-fold. On the one hand, in a
cognitive network, neighboring CPCs having similar viewstbe PUs’ activity would have an incentive to
cooperate, and, often, these groups would be disjoint frdmragroups that have a different PU view (e.qg.,
due to different locations). Moreover, forming disjointaditions enables one to exploit significant gains from
cooperative estimation as shown later in this paper, whitgding the significant overhead and complexity
associated with having each CPC belong to multiple coaktidOn the other hand, finding low-complexity
solutions for coalition formation games with non-disjgioterlapping coalitions remains an open problem that

is, recently, a subject of considerable research in the gaewry community([28],[[36]+-[38]. The main reason
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is that performing coalition formation with multiple menmbRip yields a combinatorial complexity order due
to the need for distributing the capabilities of a user amongtiple coalitions. In a cognitive network, this
translates into a significant degree of complexity for logatand forming coalitions. In a nutshell, forming
disjoint coalitions enables one to devise a coalition fdramaprocess that optimizes the tradeoff between

benefits from cooperation and the accompanying complexity.

IV. ADISTRIBUTED COALITION FORMATION ALGORITHM

The CPC coalitional game formulated in Proposifién 1 can beeted usinghedonic coalition formation
games[29], [39], [40] which are a class of coalition formation gasin which: (h1)- The players’ payoffs
dependonly on the identity of the members in each player’s coalitiord ém2)- The formation of coalitions
results from a set opreferenceghat the players build over their potential set of coaliion

By looking at [18), we can see that the payoff of any CPE S is dependent solely on the identity of
the CPCs of coalitiorf, since the behavior of the CPCs outsiélei.e., in '\ S, does not impact the utility
achieved by the members ¢f as per [(IB). Thus, the proposed game verifies the first hedmmdition,
i.e., condition (hl1). In order to cast our game into a hedawialition formation game, we need to define
preferences for the CPCs, over their possible coalitiomsdd so, it is useful to define the concept of a
preference relation or order as follows [39]:

Definition 5: For any CPCi € N/, apreference relatioror order =, is a complete, reflexive, and transitive
binary relation over the set of all coalitions that CP€an possibly belong to, i.e., the &, C N : i € Si}.

Hence, for any CPG € N/, given two coalitionsS; € N and, S, C N such thati € S; andi € Ss,
the preference relatiof; =; Sy implies that CPCi prefers to join coalitionS; rather than coalitiort,, or
is indifferent betweens; and S;. When using the asymmetric counterpart of =;, S; =, Ss implies that
CPC: strictly prefers joiningS; rather thanS,. For the proposed model, the preferences of each CPC must
capture this CPC’s two, often conflicting, objectives: (JJaximize its own individual benefit as quantified
by (I3) and (ii)- Ensure that the overall network benefit, itke social welfare, is maintained at a reasonable
level. Inherently, this implies that although the CPCs amnty interested in optimizing their own utilities
as per[(1B), they are also required to ensure that the nesnmrkrall performance, i.e., the estimation of the
PUs’ activity in the whole network, stays at an acceptablelleThis second objective is motivated by the
fact that, if each CPC acts completely selfishly, the polilmf having inaccurate estimates propagating in

the network can increase, which can potentially lead toeased interference to the PUs which can decide,



17

for example, to take specific action against the concernesd @g., stop them from using the spectrum).
This increased interference due to inaccurate estimatiay mecome a detrimental effect that can propagate
to all of the cognitive network. Moreover, the CPCs are oftemed by the same cognitive network operator,
and, thus, they have an incentive not only to improve thein ®enefit but also the overall network’s social

welfare. Hence, we propose the following preference @hator any CPCi € V:
Sl > Sg = qz-(Sl) > qi(Sg) and U(Sl) + U(SQ \ {Z}) > U(Sl \ {'L}) + U(SQ), (15)

where Sy, S, C N, are any two coalitions containing CRCi.e.,i € Sy andi € Sy, v(S) = >, 5 #;(5) is

the total utility generated by any coalitiofy andg; : 2V — R is a preference function defined as follows:

4(5) = ¢i(S), I (9;(5) = ¢;(S\{i}),Vj € S\ {i} (16)
—o0,  otherwise

where ¢,(.S) is the payoff of a CPG as given by[(13). The preference function inl(16) impliest tine
preference value that a CPC assigns to a certain coalitisnequal to the payoff thatachieves inS, if the
payoffs of the CPCs irb \ {i} do not decrease whencooperates with them. Alternatively, the preference
value is set to—oo to convey the fact that if, by being part of a coalitiéh a CPC: decreases any of the
payoffs of the other coalition members fh\ {i}, then, CPCi will be rejectedby the members of \ {i}
and, hence, these players will decide not to form coalittorThe usefulness of (16) in capturing the CPCs
objectives will become clearer as we define the following rihiat will be subsequently used for developing
a coalition formation algorithm:

Definition 6: Join Coalition Rule - Given a network partitiodl = {S;,..., Sy} of the CPCs’ setV,

a CPCi chooses to move from its current coalitiéf),, for somem € {1,..., M}, andjoin a different
coalition S, € TTU {0}, Sy # Sy, hence formingll’ = {IT \ {S,,, Sk} } U {S \ {i}, S, U {i}}, if and only
if S U{i} >=; Sm,IL. Hence {S,., Sk} — {Sn \ {i}, Sk U {i}} andIl — II'. The strict preference-; is
formally given by [(15) with strict inequality.

The join coalition rule enables every CPC to autonomouslgiddée whether or not to leave its current
coalition S,,, and join another coalitiory, € II, as long asS, U {i} »; S,, as per|[(1b). Based of (15), a
CPC would move to a new coalition if this move can strictly noye its individual payoff and increase the
overall utility generated by the two involved coalitiomsthout decreasing the payoff of any member of the
newly joined coalition (given thapproval of these other members) as perl(15) dnd (16).
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Subsequently, we develop a coalition formation algorittonsisting of three main phases: PUs monitoring
phase, distributed coalition formation phase, and codper®8ayesian nonparametric estimation phase. In
the first phase, before any cooperation occurs, each CPCtam®ithe activity of all the PUs in its area
and records a limited number of observations. Based on tbbservations, the CPCs use kernel density
estimation techniques to generate a non-cooperative &stion the distributions of the PUs’ activity. Once
the PUs monitoring phase is complete, the CPCs begin ergldhieir neighbors in order to identify potential
cooperation possibilities. Thus, the distributed coatfitiormation phase of the algorithm begins. In this phase,
the CPCs attempt to identify potential join operations bstipgating in pairwise negotiations with CPCs (or
coalitions of CPCs) in their neighborhood. As soon as a CRidtifies a join operation, based dn(15), it
can decide, in a distributed manner, to switch to the moréepe coalition. We assume that in the coalition
formation phase, the CPCs perform their join operationsniraiitrary yet sequential order. This order, in
general, depends on the time during which a given CPC regjgegperform a join operation. In essence,
performing a join operation implies that a CPC leaves itsentrcoalition and coordinates the joining of the
new, preferred coalition. The members of the new coalitiarsihgive their consent on the joining of every
new CPC as captured bl (15) andl(16). The distributed coalfiormation phase is guaranteed to converge
to a final partition, as follows:

Theorem 1: Consider any initial partitioril;,; that is in place in the cognitive network. The distributed
coalition formation phase of the proposed CPC cooperatgorithm will always converge to a final network
partition Ilsny that consists of a number of disjoint coalitions, irrespeecof the initial partitionITj; .

Proof: Given any initial network partitioil;y, the proposed coalition formation process can be mapped
into a sequence of join operations performed by the CPC andhwihansform the network’s partition as

follows (as an example):
HQZHinit—)Hl—)Hg—)..., (17)

wherell, = {5, ..., Sy} is a partition composed af/ coalitions that emerges after the occurrence join
operations. As pef_(15), every join operation performed RL that moves from a coalitiof; € II,_; to
a coalitionS; € II;, yields:

oS\ + D 6i(S2U{i}) > D 0i(S1) + Y (S (18)

JEST JES2 JEST JES2
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As the proposed game is hedonic, i.e., the payoff of any €RCS depends only on the identity of the
members inS, (18), implies that any join operation is accompanied byramgase in the overall social welfare
of the network, i.e.Jl;_; — II,; yields

Do) > D o). (19)
Sell; S'ell;_y
In this context,[(IB) implies that each join operatidpn.; — II; constitutes a transitive and irreflexive order.
Given that the number of partitions of the g¢€tis finite (given by the Bell numbef [36]), then, the sequence

in (17) is guaranteed to converge to a final partitidp, which completes the proof. [ |
Following the convergence of the distributed coalitionnfation phase, the CPCs begin the last phase of

the algorithm which is the cooperative Bayesian nonparamestimation phase. In this phase, the CPCs
monitor, periodically, the PUs’ activity while continudyscommunicating with their cooperative partners
and performing the three steps described in Seéfion 11l émperative Bayesian nonparametric estimation of
the PUs distributions. In this phase, the CPCs will contitmm@ipdate their own observations on the PUs’
activities while coordinating with their coalition partiseso as to constantly improve their estimates of the
PUs distributions. Consequently, whenever the CPC ddtatthe PUs’ activity has changed drastically ( e.g.,
due to mobility of the PUs), the involved CPCs can assesshehdb reengage in the distributed coalition
formation phase in order to adapt the network partition Eséhenvironmental changes. A summary of the
proposed algorithm is given in Tadle |.

We can study the stability of any network partitibiy,, resulting from the distributed coalition formation
phase of the algorithm in Tablé |, using the concept of a Nsahle partition defined as follows [39]:

Definition 7: A partition IT = {S;,..., Sy} of a setN is said to beNash-stablef Vi € N's. t.i €
Sy Sm € T, (Sp, IT) = (SpU{a}, 1) for all Sy, € TTU{(0} with I = (TT\ {S,., Sk} U{Sm \ {i}, Sk U{i}}).

In other words, a partitionl is Nash-stable, if no CPC prefers to leave its current doaliénd join another
coalition inII. For the proposed CPC coalitional game, we have the follgwasult:

Proposition 2: Any partitionII; resulting from the proposed algorithm in Table | is Nastbta

Proof: First, as shown in Theoren 1, the distributed coalition fation phase of the proposed algorithm

is guaranteed to converge to a partitidg.,. Assume that this partitiofls,, is not Nash-stable, then, there
exists a CPG € 5, S € Ilfing and a coalitionS, € Ilgng, such thatS, U{i} =; S;\ {i}, i.e., ajoin operation
is possible. Such a case contradicts with the the result ebfém[ 1 which ensures that no join operations

are possible idlsny. Thus,Ilsing Must be Nash-stable. [ |
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TABLE |
THE PROPOSEDCPCS COALITION FORMATION ALGORITHM

Starting Network
The network is governed by a partitidfine = {S1,...,Sam} (initially e = A = {1,..., N}
with non-cooperative CPCs).

The algorithm consists of three phases

Phase 1 - PUs monitoring phase:
a) Each individual CPC discovers its neighboring PUs,

b) Each CPC records, over a period of time, a number of obsengl,. regarding the
activity of each PUk.
Phase 2 - Distributed Coalition Formation:
repeat
a) Each CPG € N performs pairwise negotiations with its surrounding CPCs,
to identify potential join operations.
b) Each CPGi € A can identify a join operation by estimating the utility [n3]j1
that results, for every P@ € K, from joining any potential coalition using the
three steps of Sectidn]ll:
b.1) CPCi € S checks the validity of the priors on each Rlsing the two-sample
Kolmogorov-Smirnov test.
b.2) CPCi combines the priors that verify the two-sample Kolmogo8mirnov
test using a Dirichlet process as [d (9).
b.3) CPCi computes its potential utility using the Kullback-Leiblgistance in[(IB).
Once the potential utility is found, CPCidentifies whether a join is possible usidgl(15).
If a join coalition operation is possible:
a) CPCi leaves its current coalitio,.
b) CPC: joins a new coalitior5y, with the consent of the members 8f as guaranteed
by (15).
until guaranteed convergence to a Nash-stable partiiiga.
Phase 3 - Cooperative Bayesian Nonparametric Estimation:
This phase occurs inside every formed coaliti®n € Ilfinal.
a) Each CPC continues to periodically monitor the PUs’ #gtiv
b) The CPCs part of a same coalition constantly share theiatep distribution estimates.
c) The CPCs in eveng,, perform cooperative Bayesian nonparametric estimatiothef
PUs distributions using the methods of Secfioh IlI.
Based on the results of Phase 3, the CPCs can decide to repepgriodically, the coalition

formation process to adapt to environmental changes such ashanges in PU behavior.
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The proposed algorithm in Table | can be implemented by th€<Céf a practical cognitive network, in a
distributed manner. Each CPC can discover its neighborgtedurrounding PUs (e.g., using the backbone
when the CPC nodes are stations, or, otherwise, by usingkweln methods such as those [in|[41]). Then,
each CPC can start negotiating with its neighboring CPCa, pairwise manner, either over the backbone or
over a temporary wireless ad hoc control channel, in ordedéatify potential join operations. Each CPC
can, on its own, determine whether a join operation is ptessiking [15), by performing the three steps
for cooperation detailed in Sectignllll. These steps aredas standard mathematical methods that require
reasonable computation time. Moreover, implementingeh&eps does not require any knowledge about
the real PU distributions. Once a join operation is iderdifthhe CPC would signal to the new coalition its
intention to join. The new coalition is guaranteed to acdbjs request ag (15) ensures this approval. Hence,
the CPCs would interact, performing distributed join dexis, until reaching a Nash-stable partition. Finally,
for any partitionIl = {Sy,..., Sy} of NV that is in place in the network, the computational compiexit
finding a potential partner, i.e., identifying a join opévat can be easily seen to li(|II|) and its worst

case scenario is when all the CPCs are acting alori¢ iim which case|ll| = N.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a square area kinh x 2 km in which the CPC nodes and the PUs are
randomly deployed. The model proposed in this paper doesnage any assumptions on the distributions
of the PUs’ activity, and, thus, it can be applied to any suidtridutions. In the simulations, we will use
beta distributiong32] with parameters3;, and~;, to describe the activity of a PW as seen by a CPC
These distributions are generated in such a way that eachpeR®ives a different distribution depending
on its location with respect to the PU. For the considered lastributions,3;;, — 1 and~;, — 1 can be
interpreted as the number of times RUs observed to be active and inactive, respectively [32]g&oerate
these distributions, we need to determine valuesffgrand ;. such as each CPCwould see a different
beta distribution, depending on its location with respecPU k. To do so, first, we assume that, in an ideal
case, over a period db consecutive discrete time instants (e.g., time slotsh €4d k& transmits for a period
of 7, B such that) < 7, < 1 and is idle for the remaining period. Therefore, in the id=de, the parameters
of PU k’s beta distribution can be set tg B+ 1 and (1 — ) B + 1.

However, even when the PU is transmitting, depending on #tle loss and fading, some CPCs might still

see this PU a#active e.qg., if it is already far away and, hence, is not likely teenfere with the SUs that
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these CPCs are serving. Hence, we consider that & BU appears to bactiveat a CPC nodeé € N if its
received SNRy;;, at CPCi is above a certain target thresholgl Otherwise, PUk is considered agactive
by CPCi, even if it is, in fact, transmitting. Thus, in order to findviadhe distributions of the PUs’ activity
appear to each CPC in the network, the parameters of the sttdutions must be computed as a function
of the received SNRy;;, of the PU signal at any CPCe .

In this respect, assuming Rayleigh faded wireless chajmelsienote byy;, = exp(—%) the probability
that the average SNR;. as received by CPZC when PUE transmits is larger than a target valug The

Py

average received SNR from PJto CPCi is given by, = =& where P, is the transmit power of the

(e

PU, o2 is the variance of the Gaussian noise, apd= -i- is the path loss with: the path loss exponent

w
dz‘k

and d;;. the distance between Pk and CPCi. Consequently, the effective number of times that a U

is seen to bective by a CPC:i would be given byy;,7.B. From the perspective of a CPLC in addition

to being effectively inactive for a period dft — 7)) B, a PUk is also considered to bimactive whenever

its SNR drops belowy, i.e., with a probability ofl — y;.. Hence, to generate different, yet correlated beta
distributions that describe the PUs’ activity as perceibsgdeach CPG € N, we set the parameters of the
distributions tof;, = xixmB + 1 and~;, = (1 — 7)) B + (1 — xix) e B + 1.

It is important to note that: (i)- The above procedure is as=adito be completelynknownto the deployed
CPCs, i.e., the CPCs have no knowledge on how they view thebdisons of the PUs, and (ii)- The results
in this section can also be reproduced for any other typedJsf Bctivity distributions as well as for other
methods for generating these distributions as the propowetel is distribution-independent.

The parameters of the simulations are consequently setllagv$o The number of PUs is set thh = 4
and the pricing factor = 1073, unless stated otherwise. We I&t, = 0.5, Vi € N,k € K. The number of
observationd.;;, for a CPCi is assumed to be uniformly distributed over the integerd@interval|5, 20].

The KS significance level is set to a typical valuerpf= 0.05 [30]. For the generated distributions, we set
B =10 and letr;, be randomly chosen by each Rlusing a uniform distribution ovef.4, 0.9]. The transmit
power of any PUk € K is assumed to bé&, = 100 mW while the path loss exponent, the Gaussian noise,
and the target SNR are, respectively, setite 3, 0> = —90 dBm, andv, = 10 dB. All statistical results are
averaged over the random locations of the CPCs and the PUs.

Further, while a body of work (e.g.,[[9]._[12]-[19]) dealstlvicooperative spectrum sensing techniques,

most of this existing work assumes a certain given PU agtdigtribution. In contrast, in this paper we provide
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Fig. 2. A snapshot showing a network partitiin= {51, Sz, Ss, S4} consisting of4 coalitions and resulting from the proposed coalition fatiora
algorithm for a network withV = 9 CPC nodes andS = 2 primary users.

a scheme for learning and estimating the activity distidoubf the PUs, from the perspective of a number
of cognitive users. In fact, the work done in this papemplementsooperative sensing as the distribution of
the PUs’ activity patterns can serve as an important factcomprove the prediction of cooperative sensing
techniques. Thus, given the fundamental difference betwhee problem solved in this paper and the abundant
works on cooperative sensing such aslinl [12]-[19], a direchgarison of the results is not possible. For
instance, to our best knowledge, no existing work has addcethe problem of learning and estimating the
statistical distribution of the PUs’ activity using coopBve approaches. Thus, we use the commonly used
non-cooperative kernel estimation technique as a congpatisnchmark. Further, we also compare our results
with the real, yet unknown distribution of the PUs’ activiép as to provide an additional benchmark for
evaluating how close our solution is with respect to an ogliperfect estimate.

In Figure[2, we present a snapshot of a partifibe- {5, S5, S3, .54} resulting from the proposed coalition
formation game for a randomly generated network havg= 9 CPC nodes andy = 2 PUs. Figurd R
demonstrates how the nodes that are experiencing somevwhigdrsPUs’ activity can decide to form a
coalition. For example, consider coalitidf that consists of CPC nodds3, and 8. In this coalition, the
distribution of PU1 is seen by CPC nodek 3,8 as beta distributions with parametdr$;; = 4.71,v1; =
7.29), (Bs1 = 3.72,731 = 8.28), and(fs; = 4.6,7s1 = 7.4), respectively while the distribution of PRis seen
by CPC nodeq, 3,8 as beta distributions with parametérs, = 8.21, 72 = 3.79), (32 = 8.23, 32 = 3.77),
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Fig. 3. The actual real distribution of PUas seen by CPC nodein the network of Figur€l2 compared to the distributions itasy from the
proposed cooperative Bayesian nonparametric approactramdthe non-cooperative kernel estimate.
and (fs2 = 8.27,732 = 3.73). Clearly, CPC nodeg, 3, and 8 have a benefit to use cooperative Bayesian

nonparametric estimation to improve their estimate of tistridution of PU2 which is seen by all three
CPCs with an almost similar distribution (i.e., it passes K test for all three CPCs). However, for RU
although CPCd and8 see a comparable distribution, CBQas a different view on PW’s activity. In fact,
the KS test fails when CPC nodeuses it to compare its samples of Rl distribution to samples from
CPCs1 or 8. Nonetheless, all three CPCs find it beneficial to join foraed form a single coalitiory; as
it significantly improve their KL distance as pér {13), onloétUs for CPCsl and8, and only on PW2 for
CPC 3. Inside S;, CPC3 discards the priors received froinand 8 regarding PUL’s distribution and only
utilizes the received priors related to PUn order to compute its Dirichlet process estimate aglin ¢8@)PU
2. Note that, the partitiofl in Figure[2 is clearly Nash-stable as no CPC can improve ilisyuty switching
from its current coalition to another coalition withlmh.

For the network of Figurel 2, we show, in Figlide 3, a plot of &l distribution of PUL as seen by CPC node
1, compared with the estimates generated from the proposagkecative Bayesian nonparametric approach
and with the non-cooperative kernel estimate. Figlire lgleshows that, by performing cooperative Bayesian
nonparametric estimation, CPCwas able to significantly improve its non-cooperative keestimate of PU
1's distribution by operating within coalitio;. We note that, in Figurgl 2, the number of non-cooperative

observations that CPCE 3, and 8 record regarding the distribution of PUare L,; = 10, L3; = 8 and
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Fig. 4. Performance assessment showing the average Kindis{@er CPC and per PU) between the real distributions &teatinknown to the
CPCs) and the estimates generated by the CPCs for a netwtirikikini= 4 PU channels as the number of CPGsvaries.
Lg; = 20 observations. Therefore, Figuré 3 demonstrates that mgubie proposed cooperative Bayesian

nonparametric approach while sharing observations (paith CPCS8 in S;), CPC1 was able to obtain an
almost perfect estimate of PUs distributionwithout any prior knowledge of this distributicand by using
only L;; = 10 own observations. Note that, analogous results can be seall f{CPCs in Figuré2 as well
as for all other simulated networks.

In Figure[4, we assess the performance of the proposed @aieeapproach by plotting the average
achieved KL distance between the real, yet unknown (by th@sJRlistributions of the PUs and the estimates
computed by the CPCs for a network with = 4 PUs as the number of CPCA4), varies. This KL distance
allows us to assess how accurate the computed estimatéisasfiect to the actual real PUs’ distributions. The
results in Figuré]4 show the average KL distance per CPC ané\de Figure[## shows that, as the number
of CPCs N increases, the average KL distance between the estimatetharreal distributions decreases
for the proposed approach and remains comparable for theeomperative case. This result demonstrates
that, for the proposed approach, &sincreases, the CPCs become more apt to find partners with vinom
cooperate and, thus, their performance improves as thiénaies become more accurate, i.e., closer to the
actual PUs’ distributions. Figuté 4 shows that, at all neklwsizes, the proposed cooperative approach reduces

significantly the KL distance between the real and estimdistlibutions relative to the non-cooperative case.
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Fig. 5. Average and average maximum coalition size regulfiom the proposed coalition formation algorithm for a netkvwith X' = 4 PU

channels as the number of CPG5varies.
This performance advantage is increasing with the netwié 8 and reaching up t86.5% improvement

over the non-cooperative kernel estimation schem& at 30 CPCs. Figuré]4 also shows that our approach
allows the average KL distance (average per PU and per CP@ppmach the ideal case 6f as more
cooperative partners exist in the network, i.e., as the ost\size NV increases.

Figure[® shows the average and average maximum coalitienremulting from the proposed algorithm
as the number of CPCsY, varies for K = 4 PUs. In this figure, we can see that both the average and
average maximum coalition size are increasing with the odtwize as cooperation becomes more likely for
large networks. From Figuid 5, we can deduce that the ragutietworks are composed of coalitions having
small to moderate sizes. In fact, the average and averagenmaixcoalition size vary from arountl67 at
N = 2 CPCs to around.5 and 5.3, respectively, atv = 30 CPCs. Hence, Figuiid 5 shows that the CPCs
self-organize into networks composed of a large number latively small coalitions.

In Figure[®6, we show the impact of the pricing factoron the performance of the proposed algorithm
in terms of the average KL distance (per CPC and per PU) betile® real distributions of the PUs and
the estimates computed by the CPCs for a network With= 15 CPCs andK = 4 PUs. Figurd 6 shows
that. as the pricing factor increases, the average KL distance increases as coopeaitomes more costly,

hence, limiting the cooperative gains. Nonetheless, Eiffushows that, at all pricing factors, the proposed
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Fig. 6. Performance assessment showing the average Kindéstper CPC and per PU) between the real distributions anddtimates generated
by the CPCs for a network witlv = 15 CPCs andK = 4 PU channels as the pricing factarvaries.
algorithm maintains a performance advantage relativegamtn-cooperative scheme. This advantage, in terms

of reduced KL distance with respect to the real PUs’ distitins, ranges from arour28.9% atx = 5-103
to about7.6% at x = 10~!. The value ofx is, in practice, related to the implementation of the nekwor
such as the type of backhaul interconnecting the nodes dvarewireless), the capabilities of the devices,
among others. For example, if the PU monitoring is beinggraréd by CPCs connected through a high-speed
backhaul, the value of is expected to be small, e.g., within the rangel@f? to 10~2. In contrast, if the PU
activity monitoring is being done by devices with limitedpedilities such as cognitive femtocells connected
through a DSL backhaul, the cost for information exchangald/bave a bigger impact andcan have values
above5%. We also note that, while the network implementation is theshsignificant factor in determining
k, the network operator can use the results of Figuire 6 to ham® scontrol over the pricing factor so as to
optimize a tradeoff between the potential gains from coafp@n and the costs that this cooperation entails,
in terms of increased control traffic, communications delyd overhead. For example, depending on the
nature of the CPC nodes’ network (e.g., wired or wireless) taeir capabilities, the operator can decide to
tweak the value ok so as to maintain a certain target QoS requirement durirgynmdtion exchange (e.qg.,
target delay or overhead for signalling) or reserve soméhmad resources for alternate functions.

In Figure[7, we show the average and average maximum joinatipas attempted per CPC before

convergence of coalition formation as the network skearies. In Figurél7, we can see that as the number
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Fig. 7. Average and average maximum number of join operataitempted per CPC for a network wifti = 4 PU channels as the number of
CPCsN varies.
of CPCsN increases, both the average and average maximum numbenaifgerations per CPC increase.

This is due to the fact that, as the network si¥egrows, the possibilities for cooperation increase, and,
hence, the coalition formation process yields a larger remab join operations per CPC. Figué 7 shows
that the average and average maximum number of join opesafier CPC vary, respectively, from2, and

0.4 at N =2 CPCs tol.9 and4.7 at N = 30 CPCs. The results in Figuté 7 can also be combined with the
coalition sizes in Figurél5 so as to corroborate that the ¢exity of determining a partner for forming a
coalition grows linearly with the size of the network padit in place.

The convergence of the algorithm is further assessed inr€i§uvhich shows the average and maximum
number of iterations required until convergence to a Ndahks partition. Each iteration consists of a number
of join operations performed by the CPCs. In Figule 8, we @mthat as the network siZ€ increases, a
larger number of iterations is needed for the CPCs to reachsh{dtable partition. In this respect, the average
and maximum number of iterations range from aro@ndt N = 2 CPCs t06.94 and 12, respectively, at
N = 30 CPCs. FigureE]7 arid 8 clearly show that the proposed algotiids a low complexity as it enables
the CPCs to cooperate, in a distributed manner, while reguet very reasonable number of iterations and
join operations.

To show how the proposed approach can handle changes in tirerenent, in Figurd 9, we plot, as a



29

=
N

—O— Average number of iterations
—B— Maximum number of iterations

BN
[EEY
T

Ay
o

Number of iterations till convergence

N W b~ OO N 00 ©

5 10 15 20 25 30
Number of CPCs (N)

o

Fig. 8. Average and maximum number of iterations requirdoinvergence to a Nash-stable partition for a network with= 4 PU channels
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function of the speed of the PUs, the frequency in terms ofaaeetotal number of join operations per minute

resulting, over a period df minutes, from a network witlk’ = 4 mobile PUs and different number of CPCs
N. In this figure, the PUs move using a basic random walk meghitibdel with a constant speed given by the
x-axis in Figure ®. Periodically, once the CPCs detect thairtview of a certain PU’s activity has changed,
e.g., due to mobility, they reengage in the coalition folioraphase of the algorithm proposed in Taldle I. As
a result, the CPCs may decide to break from their currenitowad and join other coalitions. The increase in
the frequency of join operations with the PUs’ velocity asrsén Figure[ P is due to the fact that, for more
dynamic environments, i.e., higher mobility, the likeldtb of the occurrence of join operations increases.
Figure[9 shows that the average frequency of join operapensninute ranges, respectively for= 7 CPCs
and N = 15 CPCs, from2.2 and 5.4 operations per minute d) km/h to about3.9 and 8.8 operations per
minute at100 km/h. Note that similar results can be seen for other enumemal changes such as mobility
of CPCs or changes in the PUs transmission pattgrgior any PUKk).

In Figure[10, we show how the average KL distance betweenetleand estimated distributions varies for
a network in which the PUs are moving with different speedgufe[10 shows that, as the speed increases,
the average KL distance achieved by the proposed approaddases. This increase is due to the fact that, as

the mobility becomes higher, the CPCs become more apt tayehtieir coalitions and, thus, their average KL
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distance increases due to these changes. Nonetheless [Elyshows that the proposed approach maintains

its performance advantage, compared to the non-cooperedise, at all PUs’ speeds.
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VI. CONCLUSIONS

In this paper, we have introduced a novel cooperative apprietween the CPC nodes of a cognitive
radio network that is suitable for modeling the activity afnpary users which is often unknown in practice.
Using the proposed cooperative scheme, the CPC nodes caerat® and form coalitions in order to
perform joint Bayesian nonparametric estimation of therdbistions of the primary users’ activity. We
have tackled this problem by formulating a coalitional gameéween the CPCs and proposing an algorithm
for coalition formation. The proposed algorithm allows t68C nodes to autonomously self-organize into
disjoint, independent coalitions. Within each formed ¢amal, the CPC nodes exchange their non-cooperative
distribution estimates and use a combination of Bayesiapa@metric models such as the Dirichlet process
and statistical goodness of fit techniques such as the tmplsakolmogorov-Smirnov test, in order to improve
the accuracy of the estimated distributions. We have shdwencbnvergence of the proposed algorithm to
a Nash-stable partition and we have assessed the propeftibe resulting partitions. Simulation results
have shown that the proposed algorithm allows a significanrovement in the estimated distribution as
guantified by a significant reduction in the Kullback-Leibtistance between the real, yet unknown (to the
CPCs), distributions and the estimates inferred using Slapenonparametric techniques. The results also show
that the proposed approach enables the CPCs to cope witmitynhanges in their environment. Future work
can consider applying the proposed approach for estimatwigpnly the activity of the primary users, but also
the duration of such activity by considering the PUs agtidiistribution over time. In a nutshell, by marrying
concepts from game theory, Bayesian nonparametric estimaind statistical goodness of fit techniques, we
have proposed a novel model for cooperative data estim#tainis suitable for many practical applications

beyond cognitive networks such as wireless weather serviceooperative multimedia data reconstruction.
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