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Robust Transceiver with Tomlinson-Harashima
Precoding for Amplify-and-Forward MIMO
Relaying Systems

Chengwen Xing, Minghua Xia, Feifei Gao, and Yik-Chung Wu

Abstract—In this paper, robust transceiver design with
Tomlinson-Harashima precoding (THP) for multi-hop amplify-
and-forward (AF) multiple-input multiple-output (MIMO) r  elay-
ing systems is investigated. At source node, THP is adopted t
mitigate the spatial intersymbol interference. However, die to its
nonlinear nature, THP is very sensitive to channel estimatin
errors. In order to reduce the effects of channel estimation
errors, a joint Bayesian robust design of THP at source, linar
forwarding matrices at relays and linear equalizer at desthation
is proposed. With novel applications of elegant charactestics of
multiplicative convexity and matrix-monotone functions, the op-
timal structure of the nonlinear transceiver is first derived. Based
on the derived structure, the transceiver design problem rduces
to a much simpler one with only scalar variables which can
be efficiently solved. Finally, the performance advantage fothe
proposed robust design over non-robust design is demonstied
by simulation results.

Index Terms—Amplify-and-forward (AF), multiple-input
multiple-output (MIMO), Tomlinson-Harashima precoding, ro-
bust design, majorization theory.

I. INTRODUCTION

design for
multiple-output

Ransceiver

multiple-input (MIMO)

Linear transceiver design for dual-hop AF MIMO relaying
systems has been extensively studiedin [2]-[12]. In paldic
joint design of relay forwarding matrix and destination algu
izer minimizing mean-square-error (MSE) of data streams
is discussed in[]4]. Joint design of source precoder, relay
forwarding matrix and destination equalizer minimizing KIS
is investigated in[[5], [[6], [[9]. The capacity maximization
transceiver design has also been reported in[[2],[[3], [8]tl@
other hand, linear transceiver design for multi-hop AF MIMO
relaying systems with prefect channel state informatio8IJC
is discussed in[12]. Furthermore, robust design, whiclesak
channel estimation errors into account, is recently ingagtd
in [7], [8], [LQ], [11], where the channel estimation uneenty
is considered as nuisance parameters and removed in Bayesia
sense.

In general, there are two goals in transceiver designs:
transmitting as much information as possible and recogerin
the signal at receiver as accurately as possible. The latier
is the starting point of this paper. For multiple-antenrstems
with fixed bit rates, it is well-known that nonlinear transegs

amplify-and-forward (AFusually have performance advantage in terms of bit error
relaying rate (BER) than their linear counterpaiftsi[18]2[15]. Relyen

systems attracted a lot of attention recently, as it has atgrgonlinear transceiver design for AF MIMO relaying systems
potential to enhance the communication range of a simpigsuming perfect CSI, was introduced [n1[16]. There are

point-to-point system, while providing spatial diversiand

two kinds of nonlinear transceiver design: decision-feaib

multiplexing gains. AF MIMO relaying systems have a broagqualization (DFE) based design and Tomlinson-Harashima

range of potential applications including resource exation,

precoding (THP) based design. In fact, there exists a gualit

vehicle communications, military ad hoc networks, satellibetween these two desigris [16], [17]. However, as THP is
communications, et¢ [1]. This system has also been corsideperformed at transmitter, it is free of error propagatiomeo
to be adopted in the emerging wireless systems, such p@sed to DFE based one. THP is the transmitter counterpart
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of the vertical BELL-Labs Layered Space-Time (V-BLAST)
system. THP can effectively mitigate intersymbol inteefece

or multi-user interference, and is also widely used as one-
dimensional dirty paper coding (DPC). Due to its nonlinear
nature, unfortunately, THP is more sensitive to channel es-
timation errors than its linear counterpart. In the presenc
of channel estimation errors, the performance of THP would
degrade severely [18]. Therefore, robust nonlinear tr@insc
design is a promising way to mitigate such problem. This is
the motivation of the current work.

In this paper, we consider a general multi-hop AF MIMO
relaying system. The THP at the source, linear forwarding
matrices at multiple relays and linear destination egealiz
matrix are jointly optimized under channel estimation esro
at all terminals. As in this case many design objectives of
THP can be considered as a multiplicatively Schur-convex
or multiplicatively Schur-concave function, in this work,
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Fig. 1. Multi-hop AF MIMO relaying system with Tomlinson-ieshima Precoding at the source.

unified optimization problem is investigated whose objexti from M-QAM constellation with the real and imaginary parts
functions are multiplicative Schur-convex/concave. Witivel of a;, belong to the se#d = {+1, 43, -, +(vV M — 1)} .
applications of results in multiplicative Schur-convexénd As shown by Fig[lL, at the transmitter, the data vector
matrix-monotone functions, the optimal diagonal struetaf a is fed into the a precoding unit which consists of a
the transceiver is derived. With the obtained optimal struév x N feedback matrixB and a nonlinear modulo operator
tures, the transceiver design is then significantly singaifi MOD A, (e). The square matriB is a strictly lower triangular
and then iterative water-filling alike solutions are addpte matrix which allows data precoding in a recursive fashiod an
solve for the remaining unknown variables. It is found thahe MOD (o) is defined as

if the objective function is multiplicatively Schur-cones

the proposed nonlinear transceiver design reduces tor lined1ODm(2) Re() Im(s) 1
transceiver design. The performance advantage of the pro- e(z) 1 — | im(z) 1

posed robust design is assessed by simulations and is shown = =2V M H2\/ﬂ * 2J VL {2\//\_/1 * 2H (@)

to perform much better than the corresponding non-rob%ere the symba|z | denotes the largest integer not exceeding

design. Notice that while delay is a critical consideratio e nonlinear modulo operator reduces the output signals

for relaying communication, in this paper, we assume thf?ﬁo a square regiofi—v M, VM) x [—vAM, vVM). In the

the net_wqu size is I|m|te<_jdanddthe effects of time delay 'QquationRe(a:) andIm(z) denote the real and imaginary parts
transmission are not considered. of z, respectively.

The following notations are used throughout this paper. Generally speaking, nonlinear operation is more compli-

Boldface lowercase letters denote vectors, while boldfagsted to be analyzed than linear operation. To simplify the

uppercase letters denote_ matrices. The_ nota#ifndenotes following analysis, as shown by Figl 1, the nonlinear precod
the Hermitian of the matriZ, andTi(Z) is the trace of the .o pe interpreted as the following linear operation as
matrix Z. The symboll;, denotes anV x N identity matrix.

The notationZ!/? is the Hermitian square root of the positive

semidefinite matrixZ, such thatZ!/2Z'/2 = Z and Z'/2 by = ax, — Z[B]k=lbl + di (2)

is also a Hermitian matrix. The symbi@l{e} represents the =1

statistical expectation. For two Hermitian matric€s,=~ D  whered;, = 21/ M1, andI; is a complex number whose real

means thatC — D is a positive semi-definite matrix. Theand imaginary components are both integer. While we do not

(n,m)™ entry of a matrixZ is denoted a$Z],. andA\(Z) need to know the exact value éf, it has the effect of reducing

represents the vector consisting of the eigenvaluég. of by into the square regioh\/ﬂ, \/ﬂ) X [_\//\_/1, \/M)_ The
previous equation can be written into a compact form as

k—1

1. SIGNAL MODEL AND PROBLEM FORMULATION b=B+1Iy) a+d) (3)
A. Signal Model Lo

In this paper, &-hop amplify-and-forward MIMO relaying ywhere b 2 [b1,---,bx]T, d £ [dy,---,dn]T, and C is
system s investigated, in which there is one source, ogejower triangular matrix with unit diagonal elements, ,i.e.
destination and< —1 relays, as shown in Fig] 1. The source iTC]kz =0 for k <1 and[Cl, = 1.
equipped withN7.; transmit antennas. THe" relay hasNr . After the nonlinear operation, the vectbr is multiplied
receive antennas antiz .+, transmit antennas. The destinayith a precoder matri®;, under a transmit power constraint

tion is equipped withVr, i receive antennas. At the source, afy(p R, PH) < P, where P, is the maximum transmit
each time slot, there is & x 1 vectora = [ay,az, -+ ,an]*

to be transmitted. Specifically, the data symbols are chosefin this paper, only square QAM is considered.

[|>

S



power at the source. When the elementaafre independent B. Problem Formulation
and identically distributed (i.i.d.) over the consteltettiand
the dimension of modulation constellatiovt is large,b can
be considered as i.i.d. [19], i.e.,

As shown by Fig[lL, at the destination, a linear equalZer
is adopted and is followed by a modulo operator. As the real
and imaginary parts od are both integer multiples &/ M,
the effect ofd will be perfectly removed by modulo operator
at the destination. As a result, estimatisgis equivalent
to estimatinga [14], [15]. Thus at the destination, a linear
equalizerG is used to detect the data vectar The MSE
x; = H{P1b +n, (5) matrix of the data vector is defined B$(Gy —s)(Gy—s)1}
[15], [19], where the expectation is taken with respect to
where H; is the channel between the source and the firstndom data, channel estimation errors, and noise. Falfpwi
relay andn; is additive Gaussian noise with mean zero anal similar derivation to that if[8], it can be shown that
covariance matri®,, = o2 In, .
At the first relay, the rleceived signat; is multiplied ®(G,{Py}i_1,C)
by a forwarding matrixP» and then the resultant signal is = E{(Gy — Cb)(Gy — Cb)"}
transmitted to the secqnd relay. The received signal at the— GHKPxR,, PLHL + Tr(PxRy, PR W L)k
second relay can be written as

szz(M—l)/:{[NéO'gIN. (4)

The received signat; at the first relay is formulated as

K
+ R, JGY — 07 G [ ] (H:Px) C*

Xo = H2P2H1P1b + H2P2n1 + no (6) he1
H
whereH, is the MIMO channel matrix between the first and 5 Koo - 5 "
second relay, and, is the additive Gaussian noise vector at —oy |G H (HkPk) C +0,CCT (10)
k=1

the second hop with zero mean and covariance magjx =
o2 In,,. Similarly, at thek'" relay the received signal is where matriceR, is defined as

X = HiPpxp_1 + ny (7) ka £ E{X[@(E}

. .. . = IjIkPk;ka71PI];IItIE+’I‘I‘(Pkak71PEWk)Ek—"‘Rnk,
with H;, andn;, are the channel and additive noise at ke (11)
hop, respectively. In this paper, we considered slow fading
channels withH,, being fixed in each transmission. It is obvious thafRy, is the covariance matrix of the received

The covariance matrix ofn; is denoted asR,, = Signal atthe relay. Notice th&, = Ry = o7l
o2 Iy, Finally, for a K-hop AF MIMO relaying system, _ For MIMO transceiver design, a wide range of ob-
the received signal at the destination is jective functions can be expressed as a function of

the diagonal elements of the MSE matrix. For exam-
ple, for sum MSE minimization, the objective function is
0, e +nk,  f(MSEy,--- ,MSEN]T) = Y2 MSE,, where MSE,, =
[®(G,{Pr}E ,,C)]nn. For product MSE minimization,
the objective function is f([MSEy,:--,MSEx]T) =
N . .
K I, MSE,. Furthermore, worst-case MSE minimization
Wherer:lz’“ denotesZy x -- - x Z. In order to guarantee corresponds to minimizing the objective function given as
the transmitted data can be recovered at the destination, i ™
is assumed thalNy;, and N, are greater than or equal to (IMSE,,- -, MSEx]") = maxnzl’?""’N{MSE"} -[Eﬂ’
Tk R,k 9 q [13], [15], [23]. On the other hand, weighted geometric mean

N A , i MSE minimization corresponds to minimizing the following
In practice, the channelsl; are estimated and Channebbjective functionf(MSEy, - -- , MSEx]T) = [, MSE"
estimation errors are inevitable. Therefore, the chaigl i, Wy > Wy > wy >6 Tr’lerefore a unifiggltranscneiver

can be expressed as design optimization problem can be formulated as

K
y= [H(Hkpk)

k=1

b+Kzl{[ ﬁ (H,P;)

k=1 l=k+1

H; = H; + AH,, ©) min - f([MSEy, --- ,MSEx|T)
k>
whereHy, is the estimated channels, addd;, is the corre- s.t. MSE,, = [®(G, {P1.} . C)lun
sponding channel estimation erfdmhose elements are zero Tr (PR PE) <P k=1,--,K (12)
Xie—1 = I - 9

mean Gaussian random variables. Furthermore,Nrg, x

N7 matrix AH,, can be decomposed using the widely usegthere the matrixC is a lower triangular matrix with unit

Kronecker model([7],[[8],[[20] as\H,, = /?Hyy,¥}/?, diagonal elements anB; is the maximum transmit power at

where the elements of th€ .. x Nr , matrix Hyy, are i.i.d. the k™ node.

Gaussian random variables with zero mean and unit varianceln general, the objective functiofi(e) possesses two im-

The specific formulas o¥, and ¥, are determined by the portant properties:

training sequences and channel estimatars [7], [8], [2].[ (1) f(e) is an increasing real-valued vector functield’ —

R, i.e., for two vectorsu = [uj,ug,---,uy]’ andv =

2In this paper, only channel estimation errors are taken actmunt. [v1,v9, - ,un]T, whenu, > v,, we havef(u) > f(v).



This property is natural in transceiver design This is bevith respect toG* (the conjugate ofz) to be zero, and we
cause for two de5|gns resulting [NSEq, - - MSEN] and have

[MSEl, MSEN]T, supposeMSE,, < MSE,, for all n,

we will prefer the former design. This fact is reflectedfi®) G yse = o}
being an increasing function.

(2) f(e) is multiplicatively Schur-convex or concave, with +Tr(PKRxK,1PI;{<‘I’K)EK + Ry, ]t
definitions given below. (15)
Definition 1: For anyz € R", let z;; denotes the:" largest
elements ok andz ;) denotes thé'® smallest elements o,
..,z > -+ > 2zv) @ndzqy < -+ < z(. For two vectors

H
[HxPrR,,  PRAL

K

H H,P;) C

In terms of MSE, LMMSE estimator is a dominated estimator
in linear estimators [23], i.e.,

v, u whose elements amonnegative v <, u is defined as ®(Gravvse, {Pr},,C) < ®(G,{P}E,,C) (16)
k k which implies
< ] k= —1 and ] = i
E”” R E”” H”“ H““ [#(Gramuse, (P}, C)lnn < [B(G, {Pi}isy, C)lun

(13) As f(e) is an increasing function, and there is no constraint on
G in ([12), the optimal linear equalizer is LMMSE equalizer,
€., Gopt = GLMMSE-

Substituting the optimal equalizer {15) into the MSE for-
mulation [10), the MSE matrix is rewritten as

Definition 2: A function ¢(e) is multiplicatively Schur-convex .
if and only if v. <, u implies ¢(v) < ¢(u). Notice that
¢(e) is multiplicatively Schur-convex if and only if¢(e) is
multiplicatively Schur-concave.

Notice thatDefinition 2 cannot be directly used to prove  ®mse({Px}ie;, C)

whether a function is multiplicatively Schur-convex or 8ch K H
concave. In practice, we need the followihgmma 1 . = 0}C (IN o} H H,Py)| [HxPrRyx,
Lemma 1: Let ¢(e) be a continuous real-valued function k=1
defir_le(_j onD = {z: 2 > 2 AN 2 Q}. Then ¢(e) is x PRAY + Tv(PxRy, PR, + R, ]!
multiplicatively Schur-convex if and only if for alk € D, K
X H,P cH 17
d)(zla"' ,Zk,l,Zk/e,Zk+1 X€7Zk+27"' aZN) |J£[1( F k) ) ( )
is decreasing ire over the fo”owing regions based on which the Optimization prOble(lZ) becomes
1 PR T
1<eandzy/e > zp4q1 xe for k=1,--- N—1. (14) glkl,r(lj F(IMSEx, , MSEn]")
, t. MSE, = [® P Olun
Proof: See Appendik AN ° [ MSE({ tti=1, Ol
With Lemma 1 and straightforward computation, it can Tr(PrRx, , Pi) < P (18)

be proved that the four objective functions mentioned aboveFrom the definition ofR,, in (@), it is noticed thaR,

are multiplicatively Schur-convex or concave. In the folis a function ofP; with I < k. In other words, the constraints
lowing, for notational convenience, multiplicatively Sgh in (I8) are coupled with each other. In order to simplify the
convex/concave is referred to as M-Schur-convex/concave.ana|ysis, we define the following new variables
Remark 1: Notice that in [14], [15], there is another way to 12 ~H
prove whether a function is M-Schur-convex/concave. How- =PiRy QO (19)
ever, the method in[[14],[15] requires all input variables and F, _PkKl/2 (Kg Hk FrF HT Fi/Q
21, 22, ...,2zy > 0. In contrastLemma 1 provides a stronger I 1/2 (201)
result and allows elements afbeing zero. +INgi) Q’“—l
Remark 2: The differences between our work andI[14],/[15vhereKF, is defined &
are twofold. (a) The system considered In1[14],1[15] is a a H 2
point-to-point MIMO system, while our work focuses on K, = Tr(BFp W) + 03, Ivp s (1)
a multi-hop AF MIMO relaying system. (b) In the aboveand the matrixQ; is an additional unknown unitary matrix.
two works, the involved CSI is perfectly known. In thisBased on the definition of, in (I3) and [2D), it is easy
paper, we consider a robust transceiver design under Gaus$d show thatF,F! = P,R,, P! and thus the power
distributed channel estimation errors. Generally spegkime constraints becomes
problem tackled in this paper is more complicated and more

. . . TT(I)kI{
challenging, because of more variables, more constraints,
more complicated objective function. Therefore, in terms of the new variabl®g, the power con-
straints become independent of each other, which faetat
further manipulations.

Xk—1

P}') = Tr(F4F}) < P. (22)

Xk—1

II. OPTIMAL DESIGN OFG AND C

3putting the definition off;, into () and comparind (11) withi (1), the
The linear minimum mean-square-error (LMMSE) equalizefatrix K, can be interpreted as the equivalent noise covariance xtri

is obtained by setting the differentiation of the trace[dB)(1 the £th hop.



K

H
®rise(Qr, {Fi}E,,C) = C (IN - Q?{ [TiQu(xs*a, P FIAIKL 2 + Ly, )7/ 2Ky QEka]}
k=1

K
x { [TiQ: (K *HF FIANKL + 1y, )7V 2K Qﬁka]}Qo> Clo?
k=1
AM,,
=07 C(Iy — QI MIQIMYQY - MEQEQxM - QaM>Q1M; Qo)CH. (23)

20

Meanwhile, using[(119) and[ (R0), the MSE matrix is further IV. OPTIMIZATION PROBLEM REFORMULATION FORF,

reformulated as[{23) on the top of the page. Basedloh (22) optimal Solution of Q

and [23), the optimization probler [18) is simplified as Because the objective function of the optimization problem

(29) is M-Schur-convex or M-Schur-concave. In the follogin

. T
"arc F(MSEy, -+, MSEN]T) we will discuss the two cases separately.

Fi,Qk,
st.  MSE, =0} [C(Iy — Q{O©Q)C"] M-Schur—convex: . .
Ho~H H o~ o Taking the determinant on both sides bfl(25), we have
© =M Qi - -MgQrQxMg - - Q1M N N
T(FFD) < P QiQi =Ty @4 oIy - QOQo) = [TIL . = 2V [T (1 - Au(®)
n=1 n=1
Notice that the largest singular value lof;, is smaller than (30)

one. Therefore, the largest eigenvalue®fis smaller than \ynere A (©) is the n'™ largest eigenvalue 0®. Based on
one (see AppendkIE) and thdy — Q{©Qo is a positive @0), the following multiplicative majorization relatiship can

definite matrix. With the Cholesky factorization be established [24]
(Iy — Q'OQq)o; = LL" (25) Al " T
’ ' of [ITA =A@ @1y < [ 1o WA w]
where L is a lower triangular matrix, and the definition of n=l (31)

MSE,, in the second line of(24), we have
where the symbok denotes the Kronecker product ahg

MSE, = 02[C(Ix — QH®Q,)C1], ,, is a N x 1 all-one vector. WithDefinition 2 and f(e) being
- E'[b(gH]( N)HL(E%[C(I?]O) I a M-Schur-convex function[ (81) leads to
n—1 i ) T N %
=S L2, [(CLD Y, 1% + (L2, FOLE - LR N] )2 f (cr? lH(l—An((@)) ®1N) :
i=1 n=1
> [L]7 .., (26) 29[x(©)]
(32)
whereD is a diagonal matrix defined as o
whereA(®) = [A\1(®), -+, An(0)]T. The equality in [(3R)
D = diag{[L1 1, - , Ly ~]T}. 27) holds when< in (31) is replaced by equality, which means

that [L]? ,, are identical for alln. Notice that from [(2b), we

In order to make the equality in the final line 6F126) to holdcan WriteLL" = 07 Qg(I — ©)Qq. Sincel — @ is positive
we needZ;’__ll [L]2,|[(CLD~1)H], |2 = 0, whose solution definite, there always_ eX|_sts an umtary rgatmg which makes
; the Cholesky factorization matrix 0@ (I — ©)Q, have
identical diagonal elements [15]. An explicit algorithmr fo
C... = DL .. (28) constructing suclQ is given in Appendix{B.
P M-Schur-concave:
From definition ofLL in (25) and based Weyl’ theorem [25],

IS

As a resultMSE,, = [L)? ,,, and the optimization problem for

robust transceiver desrdﬁ is formulated as we have -
, - (LT, L] << op[ln = A(©).  (33)
Fr]fn(gk f([[L]l,l, e ’[L]N,N} ) Applying f(e) on both sides ofl{33) and witBefinition 2,
st. oIy — Q1OQy) = LLH we have i
0 =MIQI. .. MEQEQxMy - QM FLE L LN ) = fOiin — AO)).  (34)

Te(FiF}) < P, QQr =1In,,. (29) 24[A(0)]



The equality in [(B4) holds when<, in (@@3) is B. Prerequisites of Multiplicative Majorization Theory
replaced by equality, ~which means thaL[7,, pefinition 3: For two vectorsv,u € D with D — {z:2 >
equals to o[l — \,(©®)]. On the other hand, taking . . > x> 0}, v < p 1S dei‘ined as >
eigenvalues on both sides off_{25), we can obtain — - "
o2[ln — A(©)] = P (LLY), - X\ (LLT)]T. Therefore, k k
[T 1, (L y]T = D (LEM), -, Ay (LLM)]T, which [Tva < ITwa: k=1 N 37
implies L is a diagonal matrix. WitH. being a diagonal =1 =1
matrix, Q{©Qo is also a diagonal matrix. This can be Notice that there is a subtle difference betwdsfinition
satisfied if we takeQo = Ue, where the unitary matriltUe 2 in (I3) and Definition 3. In Definition 3, whenk = N,
is defined based on the eigendecomposi®n- UeAeUg [TV, vy < [IN, uyy rather than[[, vy = [T, ugy in
with the elements oA arranged in decreasing order. Definition 2.

Notice that sincd. is a diagonal matrixC,, in (28) is also Lemma 2: Let ¢(e) be a real-valued function o®. Then
a diagonal matrix. Based on the definition@fin (3) and with ¢(e) is decreasing and multiplicatively Schur-concave®n
the fact thatC is a lower triangular matrix with unit diagonalif and only if
elements, it can be seen that the feedback m&nwust be an
all-zero matrix. Therefore, when the objective functiorMs V <w U= P(v) 2 o(u). (38)
Schur-concave, THP becomes linear precoding. T_he opt'ynalbmof__ See AppendiCH
of linear transceiver for M-Schur-concave objective fimrct é

. . . : Lemma 3: When ¢(e) is increasing and multiplicatively
has also been obtained in point-to-point MIMO systems wi ) I - s N
perfect CSI [14], [[15], [[7]. chur-concave, for,ueC={z:1>z2, >--- > zy >0}

Remark 3: The equal bit rate assumption at the beginning V<xwu=¢(ly —v)>o(ly —u). (39)
of Section[1l is for the operation of the nonlinear precoder .

only (this assumption also appears/inl[L4.][15].][19]). et FProof: See Appendik DE

that we have not used the equal bit rate assumption in the

derivation of the optimal solution. If the objective furmtiis ¢. problem Reformulation

chosen such that a linear transceiver is obtained, thisl &ijua

rate assumption will not appear in the solution. On the othﬁ]rBase?h on tpe.g'\;_en reSléllts of rgultlph%an;/e m?jorlz;ajtllon
hand, if the objective function is chosen such that a noaline eory, the optimization problerfiL(B5) can be transformeéd in

transceiver is obtained, the nature of the optimal transcei a much simpler one. Before presenting the result, two useful

is of equal bit rate (see the discussion belbw (32). Thwafoproperties of the objective functiar{e) are first derived based

the equal bit rate assumption is not a restriction. on the multiplicative majorization theory. . . .
Summary: Property 1: The vectorA(®) has the following relationship

Summarizing the previous results, when the objective funcA(®)<x . [v1 {Fr i), 2 (Frlr_y), - aw(Frlro )t
tion is M-Schur-convex or M-Schur-concave, the optimiaati
problem [29) is equivalent to

Sv({Fr}y)

K HigHc— 11
_ A (FHEHK S 'H, Fy)
i g[A(®)] with . (i) = 11 1 g oy “O
Frinfgkg( k:1+"(kkakk)
st. ©@=MQ! - MIEQLQxMk - -QiM,; where the equality holds when
H Hoy _
Tr(FrFy) < P, Qp Qi =1Ing,- (35) Qr=Vm,, U, k=1, ,K—1 (41)
whereg[A(®)] equals to where Uy, and Vi, are defined based on the singular
value decompositioM , = UMkAMkV&k with the diagonal
27V L elements ofAyg, arranged in decreasing order. Notice that
_ (1= (O)]¥®1 k . .
@ Tl (f )l . MNS) h (@) does not cover the design @, but it can be any
gIA@)] = ) it f(e) is M-Schur-convex, unitary matrix because it always appears in the f@%Q x
flop[1n — A(©)]) and equals to an identity matrix in the objective function.

if f(e) is M-Schur-concave. Proof: See Appendix El
(36) Property 2: The objective functioy[A(©)] in (38) is a de-
creasing M-Schur-concave function with respective\{®).
It is difficult to directly solve the optimization problem Proof: Based onLemma 2, it is obvious thatg[A(©)]
[@39), becaus® is a product consists of matricdd,’s which is a decreasing M-Schur-concave function if and only if
in turn are complicated functions of the variabEg's. In A(®) <x w A(®) = g[A(®)] > g[A(©)]. In the following,
order to simplify the optimization problefi(35), we explisie we will prove the latter.
multiplicative majorization theory and transforms theatiive ~ When f(e) is M-Schur-convexy[A(©)] = f(o2[T]\_, (1
function of [3%) to be a direct function & ;. To this end, we ),(®))]¥ ® 1y). Using Lemma 1, Hﬁ;l(l - A(0))
first provide useful results which form the theoretical basfi can be proved to be a M-Schur-concave function\g®).
the following derivation. Furthermore, it can be easily seen tlﬂf:l(l — (@) is



a decreasing function. I\(®) < ., A(®) is true, based on  Defining a variable)y, as

Lemma 2’ we have 77fk = OLkTI‘(FkFI];I\I/k) =+ O'Zk Wlth O = Tr(Ek)/NR_,k,
(46)

Tr(FF}) = Py is exactly equivalent t@r[F . Fil (ay PP+
o2 In.,)|/ns. = P as proved in[[10],[[11],[[26]. Thus the

Together with the fact thaf (e) is an increasing function, it ropyst transceiver design problefl(45) is equivalent to
is concluded that

N min gv({Fr}isy)]
PRI = Mm@ @ 1y) K (PUAIK: L)

n=1 s.t. n F K_ = — —
o ({Fibir) 1:[ 1+ A\, (FEATK, T, F),)
9IM(®)] . L )
Tr[Fka (Oszk\I/k + GnkINT,k)]/nfk = P.. (47)

N
> fe[[Ta =M@ ein). @3) i proved in AppendiXF that whe®, Iy, , or X o

(1= 2(O)). (42)

=

N
[T0 - (@)=

n=1

n=l In, .. the optimal solutions of the optimization problem](47)
g[A(©)] have the following structure
On the other hand, whefi(e) is increasing and M-Schur- Fropt = V& (Ax, ) (o Ph ¥y + 05 In, )72

concaveg[A(®)] = f(o}[1y — A(®)]). UsingLemma 3 we

. M) X Vo NAF, U, v
directly haveA(®) < ., A(®) implies

with &k (Ax,) = Uflk/{l — ale"[V%hN(OékPk‘I’k + 0,2”C

floi[ln = X(©®)]) > f(op[ln — A(O)]).  (44) < Ing, ) P Py t0p I, )2
gIA(©)] 9A(®)] X Vi, nAF 1}, (48)
= where Az, is a N x N unknown diagonal matrix, and

Based orProperties 1and2, the objective function of(35) Vai,,v andUa.m, v are the matrices consisting of the first
has an achievable lower bound\(®)] > g[y({Fy} )] columns ofVs, andUam, , respectively. The unitary matrix
with equality achieved whefi . (#1) is satisfied. When the low&f b, iS an arbitraryNg 1 x Ng -1 unitary matrix, and
bound is achieved, we have the following three additionfle unitary matrixVs, is defined based on the following
observations: singular value decomposition
(a) The constraint®}'Q,, = Iy, . are automatically satisfied. —1/217 2 —1/2
(b) The objective functiory[y({F}X_,)] is independent of Kro /) Hilow BB & oy, )

Q. = U’HkA’HkV’s-ILk (49)
(c) WhenF,’s are known,Q,’s can be directly computed where the diagonal elements Af,, are arranged in decreas-
using [41). ing order.
Applying these three observations infa](35), we have tiieemark 4: In general, the expressions ¥, and>, depend
reformulated optimization problem on specific channel estimation algorithms. Denote the inéns
. X and receive antennas correlation matrices and the channel
I%Ikn 9 Y{Frti=)] estimation error variance in the® hop asRr, Rr and

K (FUANKS FFy) 02 oo respect?vely. When the_ channels are estimated based
st m{FrH)) = H n\T kTR Fk,lk— k on the algorithm proposed in_[R1]._[22], it can be shown
1 1 +)\n(FI;3HEKFkaFk) that v, = RT,k and X = a'g,k(INR,k + O'g_’kR§71k)71.
Tr(F:FY) < P (45) If.the transmit antennas or the receive antennas are spaced
widely, we haveRrj oc Iy, or Rpy o In,,. These
imply ¥, o In,, Or ¥ o In,,. Moreover, if the
length of training is large, the value Q;fg_’k will be small

In the following, we first derive the optimal structure ofand Iy, , + ag_,kR;L}k ~ Ing,. As a result,X; will also
F). and then present an algorithm to solve for the remainiggproximate an identity matrix even whdz . &« In,,.
unknown variables. On the other hand, if the channel statistics are unknown, and
using least-square channel estimator, it can be derived tha
3, o< Iy, , always holds regardless of the antenna correlation
or training lengthl[[8].

V. SOLUTION OF F,

A. Optimal Sructure of Fy,

Notice thatg(e) is a decreasing function, ang ({Fy};",)
is an increasing function of,, (F}'H}'Ky 'HF},). Therefore, B. Computation of Az,

g[g(_{gk}ﬁ:l)] is a decreasing matrix-monotone function of |t js obvious that in[{48), the only unknown variableAsz, .
FH; Ky HFy [10]. Following the derivation inl[11], it |n the following, we will discuss how to solva =, in more

can be proved that at the optimal solution, the power cOfetail. Denoting the following diagonal elements as
straints hold at the equality, i.€Ix(F,F}) = P, meaning
that the relays transmit at the maximum power. [AseyJnn =hen,  [Azdnn = fin, (50)



substituting[(4B) into the optimization problem{47) andicro

ing that &,(Ax,) = 71y, (shown by [79) in Appendix]F),
after a straightforward derivation, the optimization fobust
transceiver design is simplified as

g ({Fr}isy)]

min
Jrn

K

{Fk}k 1) H fk

Z fin="P
n=1

The solution of [(Bll) depends on whethgfe) is M-Schur-
convex or M-Schur-concave.
M-Schur-convex functions:

Notice that whenf ([MSEq, - - - , MSEx]T) is an M-Schur-
convex function, regardless of the specific expression
]_[2)1(1 — w({Fr}E ) [A5]. Therefore, the transceiver
design problem{31) equals to

)

Zlog <1 -
n=1
Z fim
n=1

s.t.

(51)

Hf:l flz,nh%n
K
Hk:l (kanhi n +

s.t. (52)

In order to solve the optimization problerh {52), iterative

water-filling can be used to solve fgf,; with convergence
guaranteed. More specifically, wh¢n;’s are fixed with! # &,
fx,i is computed as

—Qk,n + \/ai,n + 4(1 — akyn)akynhim/uk

1
2 _
Jim = h?, ( 2(1 — ag.n)
JF
— 1) n=1,---,N
with agp = [ £2uhin/ (F2nhin +1) (53)

1k

where pu; is the Lagrange multiplier
Zﬁ;l f,fyn = P, hold [27]. Notice that this iterative water-

filling algorithm is guaranteed to converge, as discussed 1

[28].
M-Schur-concave functions:

When f(IMSEy,--- ,MSEy]T) is a M-Schur-concave
functions, there is no unified solution. In this casks,
should be solved case by case. In the following, we u
the examplef([MSEl,--- ,MSEx]T) = [T, MSE®" for
w; > wg--- > wy > 0 to illustrate how to compute

Az, . For thls objective function, usind _(B6) it follows that

gV ({FiH,)] = 0" T, (1= 3 ({Fi}f2)) "™ and
the optimizaﬂonl]Ell) is equivalent to

N K
Hk:l fl?,nh%,n
Z wplog | 1 — —5 P
- e (2 R, + 1)
N
> fin= P
n=1

min
fri

(54)

the optimization probleni{$1) is equivalent to minimize

which makes

ke

TABLE |
SUMMARY OF ROBUST TRANSCEIVERDESIGN

Derive the data estimation MSE matrixJ10).

Formulate the optimization problern{12) wit®, P;, andC

as variables.

Derive the optimal equalize&G as a function ofP, andC
given by [I5). Substitute the optim& into the optimization
problem [I2) to reduce the number of variables and have

a reformulated optimization probler (18).

Simplify the constraints of the optimization problen](18)

by replacingP; with Q; andF,, and obtain an equivalent
optimization problem[{24).

Derive the optimalC as a function 0fQ, andF,, given

by (28). Substitute the optimal into the optimization problem
(24) and reformulate the optimization problem @&s] (29).
Derive the optimalQ; as a function off';, based on
majorization theory and substitute the optin@J, in (41)

into the optimization problen{{29) to reduce the number of
variables. The optimization problem is then simplified to(@8).
Derive the optimal structure dF;, given by [48).

Solve for the unknown diagonal matriceA 5, in the optimal
structure using[{31).

@~

Equation [[B#) has the same form d4s1(52). Therefore, the
solution can also be obtained by iterative water-fillingision.
Notice that the design problem becomes linear transceiver
design problem wherf(e) is M-Schur-concave.

C. Summary and Implementation Issues

The design idea and procedure of the proposed robust
transceiver are summarized in Table I. For the implemeontati
of the proposed algorithm, the execution order is in reyerse
i.e., from Step 8 to Step 3. Notice that in Step 8, iterative
water-filling is adopted to solve foA#,. In general, only
local optimality of the solution can be guaranteled [29], athi
is a common problem for AF MIMO relaying design [6]) [9],
[28].

For information sharing in the implementation of the pro-
posed solution, we can consider two algorithms.
Central Algorithm:

In centralized implementation, a natural assumption i$ tha
there is a central node performing the transceiver designs.

All other nodes send its own estimated CSI to the central
r?de via control channels, and after completing the design t
central node informs each node the corresponding traresceiv
matrix. Since the channel does not change (or change very
slowly), estimated CSI transmitted on control channelskman
considered error-free due to low data transmission ratds an
avy channel coding.

istributed Algorithm:

Based on the derived optimal structufg ., in (48) and
#@3) and the optimalQ, in (@1, using the definition of
F;. given by [19) and[{20), we can derive that the optimal
forwarding matrix at the:*" node has the following structure

P, = (akPk\Ilk + U?zkINT k)—1/2

X VHk,NAPkUHk 1 NK 1/2

F. > (99)

whereAp, is a diagonal matrix whose elements are functions
of the diagonal elements oAz for all m. It can be
seen that excepfAp,, all other matrices in[{35) are only
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Fig. 2. BERs of the proposed transceivers with M-Schur-emnand M- Fig- 3. BERs of proposed robust design with M-Schur-convejedive

Schur-concave obijective functions whep= 0, p, = 0.4, 02 = 0.001. functions and the algorithm based on estimated CSI only wher= 0.5,
N pr =0, and Py /o2 = 30dB.

the functions of the channels immediately preceding and

succeeding thé&'™" node. It is easy for each node to obtaim .4, o? = 0.001, P2/0' — Pg/o' — 30dB and Pl/o'

such channel information. As a result, the only mformatloljemg varied from 5 to 30dB. As expected, the nonlmear
shared among all the other nodes is the diagonal elementsrahsceiver has a better performance than linear traresgeivt
matrix Az, denoted by{f,, »}._,. Notice that{f,. »}2_; the performance improvement of nonlinear transceiver @ome
is the solution of the optimization problem (51). Exploitat the expense of higher complexity. Comparing to linear
ing the linear network topology and the fact that in th@ansceiver, the THP nonlinear transceiver has an addition
first constraint of [(B){ fm»})_, appears in the form of N x N triangular matrix multiplication. Thus the additional
szl fk7nhi,n/(fk7nhi,n + 1), only local information needs complexity is N(1 + N)/2 complex multiplications and

to be shared between adjacent nodes. N(N —1)/2 complex additions for each vector transmission.
Furthermore, although the three-hop system performs not as
VI. SIMULATION RESULTS AND DISCUSSIONS good as the two-hop system, due to the extra hop of channel

In this section, the performance of the proposed algorithrdgd noise amplification, the performance of the two-hop and
is assessed by simulations. In the following, we consid#iree-hop systems shows the same trend. In the following,
an AF MIMO re|aying System where the source, re|ayge focus on the M-Schur-convex objective function (i.e.,
and destination are all equipped with four antennas, i.@9nlinear transceiver) for two-hop system only.

Nr = Ngi = 4. The estimation error correlation matrices Next, we investigate the effect of the channel estimation
are chosen as the popular exponential mddsl] = ngIZ il error on the BER performance. Figl 3 shows the BERs of
and [Z] = pr il [7] where p; and p, are the correlation the proposed robust nonlinear design and the corresponding
coefficients, and2 denotes the estimation error variance. Th@lgorithm based on estimated CSI only (which takes the
estimated channeB,’s are randomly generated based on thehannel estimates as true channels) with= 0.5, p; = 0,
following complex Gaussian distributioris [7[J30[,]31]  Fi/on, = 30dB, and /o7 being varied from 10 to 35dB.
1= 0?) The algorlthm based on estimated CSI only is obtained by
Hy, ~ CNnp o No i (ONs o Nois (72062k ®®}), (56) simply setting®; = 0 in the proposed algorithm (similar
R R o¢ approach has been used in_1[20] amd][21]). From [Eig. 3,
such that channel realizatio&;, = H, + AH, have unit it can be seen that smaller estimation errors lead to better
variance. We define the signal-to-noise rat{NR) for the performance for both algorithms, but the performance of the
k'™ link as P /o2, . At the source node, four independent datBroposed algorithm is always better than that based on the
streams are transmitted and in each data stre¥py., = ©€stimated CSI only. Furthermore, the performance gap be-
10000 independent 16-QAM symbols are transmitted. Eadieen the proposed robust design and the algorithm based on
point in the following figures is an average of 10000 trial§stimated CSI becomes larger as the channel estimation erro
and the bit error rates (BER) are computed [33[-[35]. increases. Of course, the performance of the two algorithms

First, we consider the objective function as weighted geoincide whens? = 0.
ometric mean MSE with equal weighting. In this case, the Finally, we illustrate the effects of correlation in the ohal
objective function is both M-Schur-convex and M-Schurestimation errors. Fig.]4 shows the BERs of the proposed
concave. There are two optimal solutions: one being lineaybust design with M-Schur-convex objective functions and
transceiver and the other one being nonlinear transceiviie corresponding algorithm based estimated CSI only for
Fig.[@ compares the BERs of these two solutions. Both twdifferent p,., whenp, = 0, o2 = 0.002, Pl/o—f11 = 30dB, and
hop and three-hop systems are simulated with= 0, p, = Pg/o—f12 being varied from 10 to 35dB. It can be seen that in
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Fig. 4. BERs of proposed robust design with M-Schur-convbjedive Fig. 5.

. . ? ~ BERs of d robust desi ith M-Schur- bjedi
functions and the algorithm based on estimated CSI only diffierent p,., S Of Proposed roust design wi chur-copvajeaive

functions and the algorithm based on estimated CSI only different p,

whenp; = 0, O'g = 0.002 andP1/0%1 = 30dB. when p, = 0 o2 — 0.002 and P2/0'2 — 30dB

) e . no .
addition to the fact that the performance of the proposedsbb APPENDIXA
design is always better than that based on the estimated CSI PROOF OFLEMMA 1

only, asp, increases, the performance gain of the proposed o _
robust design with respect to that based on CSI only become?aSeOI orDefinition 2'_ ¢(z) is M-_Schur-convex oveD =
larger. It is most obvious whep, — 0.9 and at high SNR 1221 =+~ =2y > 0} ifand onlyifforv.u € D, v <x u
at the second hop. The performance gaps come from {ARlIES (V) < ¢(w).

fact that when correlation becomes stronder, will be very ~ For & vectorz € D, define

different from identity matrix. Therefore fronl (#8) and ]j49 k
the proposed optimal structure will be significantly diéat Z=1[%2,-,2n|T and %, = HZZ (57)
from that of the algorithm with estimated CSI only. As the i=1

designed precoding and forwarding matrices can be coreside
as the transmission directions, Fif$. 4 shows that coivelat
of channel estimation error would affect the direction ofada
transmission, and subsequently affect the final BER perfor-
mance. Fig[6 shows the corresponding BERs for differegi the other hand, based dnl(57), equals to

pe, With p,. = 0, 02 = 0.002, P»/o2, = 30dB, and P, /o2

being varied from 10 to 35dB. It can be seen that a similar 2k = 2k /Zk—1, k< L., (59)
conclusion can be drawn.

Eorv, u € D, it is obvious thatv < u is equivalent to

{op < ar}r,', and on = dn. (58)

where L, — 1 is the number of the nonzero elementszof
Thereforep(v) < ¢(u) can be written as

VIlI. CONCLUSIONS $(01, 02 /01 0L, /00,-1,0,--+,)
Joint Bayesian robust transceiver design for multi-hop AF ~ :j”((’i o
MIMO relaying systems was investigated. It was assumed < ¢, up/us -+ g, /UL,-1,0,--+ ), (60)
that channel estimation errors exist in CSI in all hops. At 24 (a0)

the source node, a nonlinear Tomlinson-Harashima pregodin

was used, and was jointly optimized with linear forwarding Based on[(88) and(60), provingz) is M-Schur-convex is
matrices at all relays and linear equalizer at the destinati equivalent to proving whed@, < ax}h ' and oy = iy

A general transceiver optimization problem was formulatdtbld, we havey(¥) < (a). In other words, the proof
with objective function being either M-Schur-convex or Mbecomes to prove(e) is a vector-valued increasing function.
Schur-concave. Using elegant properties of multiplieativa- To prove(e) is increasing, we only need to prove that
jorization theory and matrix-monotone functions, the wgti whenu;, < @, andd; = 4, for all £k, we havey(v) < ¢ (q)
structure of the transceivers was first derived. Then, tf@4]. As o, > 0 and @, > 0, o, < 43 iS equivalent
original optimization problem was greatly simplified and ato ¢, = /e with e > 1. Substitutingo, = /e and
iterative water-filling solution was proposed to solve fhet @, = @, for all £k into (€0) and replacingy, = iy /1 for
remaining unknown variables. Simulation results showed tht < L,, — 1, proving¥(v) < (1) is equivalent to proving
the proposed robust design has much better performance thém, , - - - , u,/e, ug+1e,---) is decreasing ovee > 1 and
the non-robust design. ug/e > upyie.



APPENDIX B
ALGORITHM FOR COMPUTING Qg

Following the sufficient conditions given in[B32], an exjiic

algorithm for constructin@® is given as follows. Without loss

of generality, in this Appendix, for both singular value det

11

APPENDIXC
PROOF OFLEMMA 2

Proof of “if” direction
First, we will prove that for any two vectorg,u € D,
V <xw U = ¢(v) > ¢(u) implies ¢(e) is a decreasing

position (SVD) and eigendecomposition, the elements of théSchur-concave function ovép.
diagonal singular value or eigenvalue matrix are assumed toVhenv <, ., u = ¢(v) > ¢(u) holds,v <, u =

be in decreasing order.

¢(v) > ¢(u) must hold. Using.emma 1, ¢(e) must be M-

Step 1:Define A based on the following eigen-decompositioschur-concave ovep.

QEQxMg - QM) 20,
— UmAn UYL
——

LA

Iy —M{QY - M
(61)

Step 2:Initialize S = Ox v and set
[Am]1,1 — AM]NN ’
Sy = Amls = [ATA[VY
N [Am]11— [AMm]N N

Meanwhile, the orthogonal complement matrix[8f. ; is set

(62)

to be
—[Slva 0
[S]h = 0 I|. (63)
[Sha O
Step 3: Begin recursion fork = 1,--- , N — 2. Compute a
(N — k) x (N — k) unitary matrixV(*) based on the following

eigendecomposition

(A[S]21.) " [ — A[S]. 1k (], ATA[S]: 1) ™

x S AT (A[S]h,) = VAW (VIHH - (6a)
Then update thék + 1) column of S as
[S]. k1 =[S VW y® (65)
\/|AHA|1/N A®] N ns o
1L,N—k—1,
AP — AN vk
- T
[A®)], — |[AHA|UN
™ A - (66)
A1 — [AY Nk N—k

Based on the SVI» = USASVE, the orthogonal comple-
ment matrix of[S]. 1.,+1 iS computed as

[S]:{_l:kJrl = [Us]. k+2:N- (67)
Stzp 4:Whenk =N -1, [S]. n = [S]flzN_zv(Nfﬁy(Nfl)
an
o [ [ AT
[A(N—Z)]Ll _ [A(z\r—z)]z’2
_ [IATARA A, 1
[A(Nfz)h’l _ [A(Nfz)]lz

Step 5: Finally, Qo equals toQq, = Uy S.

Furthermore, forv,u € D with v, < u, andv; = u; for
all i#k, we havev <, ,, u. Thenv <., u = ¢(v) >
¢(u) implies ¢(e) is a decreasing function. Therefore, when
vV <x.w U= ¢(v) > ¢(u), then we havey(e) is a decreasing
M-Schur-concave function.

Proof of “only if” direction

On the other hand, whet(e) is a decreasing M-Schur-
concave function, we need prove that<, ,, u = ¢(v) >
¢(u). For any two vectorsv,u € D with v <., u we
can construct a vector € D with ; = u; for i < N and
7y is chosen to makef[", 7; = [, v;. It is obvious that
™~ < un. Thenifv <4 , u, we havev <, T andr <, ,, u.

As ¢(e) is M-Schur-concave, based deemma 1 we
directly haveg(v) > ¢(7). Furthermore, since the difference
betweenr andu is only in the last element withy < uy,
as¢(e) is decreasing, we havwg(T) > ¢(u). Combining the
two inequalities, we have(v) < ¢(u).

APPENDIXD
PROOF OFLEMMA 3

Based orLemma 1, it can be proved thaif[le(l—zi) is an
M-Schur-concave function. It is also obvious tiﬂ{f (1—2;)
is a decreasing function fat € C = {z: 1 > =, Z D
zy > 0}. Using Lemma 2, for v,u € C with v < u, we
have

k
H 1—v) >H (1—u;)>0, k=1,---,N. (69)
i—1 pl 1Hf_/
3%) 2
We construct a vectof = [71),--- ,7n)]" with 7 =

for i < N and 7y, is chosen to makeﬂf\’1 by =

lel 7(;) hold. It is obvious thatry > u(y). As the only
difference betweenm;) andu; is ati = N, wheng(e) is in-
creasing, we have(7) > ¢(11) whered = [y, - - , G(w)] "

On the other hand, based gn|(69) and the factithat= ;)
for i < N, it can be concluded that (]|, Dy > e, ao)
for 1 < k < N. Based on the definition ofy, it can also
be concluded that (B)[\\, ;) = I\, 7;) > 0. Results (a)
and (b) impliesv <, # wherev = [i(),---,0n)]" [24].
As ¢(e) M-Schur-concave, usingemma 1, we havep(v) >
¢(7). Together with the conclusion in the last paragraph, we
can obtaing(Vv) > ¢(a). Finally, with ¥ = 1y — v and
i = 1y — u, the proof is completed.

APPENDIXE
PROOF OFPROPERTY1

First notice two facts in matrix theory: (a) for two matrices
A and B with compatible dimension;(AB) = X\;(BA) [24,



9.A.1.a]; (b) for two posmve semi-definite matricesand B,
[T, Mi(AB) < [T, Mi(A)X(B) [24, 9.H.1.a], where the

equallty holds whemA and B has the same unitary matrix in

eigendecomposition. With these two facts, we have

n

H N(MYQY - MEQEQxMk - - QM)
=1
= H Ai(M5Qy - Mg Qi QrMg - -
=1
X Q2M2Q1M1M11{Q11{)
<[InMEQY - - MEQE QM - - QoM,)
=1
x X (M;M)] n=1,---,N, (70)

12

where the diagonal elements &f4, and Ay, are arranged
in decreasing order, we can construct a maktjxequals to

Fr =V, Ax, VY, . (77)

where Ax, is a rectangular diagonal matrix with the same
rank asA 4, and 1/byA4, Ax, = Aa,. The scalarby is

chosen to make thakr(F,F}) = P, holds.
_Using Lemma 12 _in [@] we can show that
FIMIH T, - kopﬂ-tk’}-thk opt- Together with

the formulation of%({Fk},C 1) in (]E) it can be concluded

that %({Fk}k ) > %({F;C opt 1 1 Since g(e) is an
decreasing functiong[y({F}/_,)] < [ {Fropt Hy)]-
BecauseF, ot is the optimal solution, it is impossible to

have gly({F1}C,)] g[v({Fk,opt}szl)]- Therefore, I,
must be the optimal solution. Furthermore, based on the

where the first equality is due to fact (a) and the secomelationship between df;, andFy, it follows that

inequality is based on fact (b). Repeating the above two pros

cesses and based on the fact thg?M,; M}') = \;(M}JMy,)
we can obtain the following inequality
H Ai(©)
=1
< T MEM )N (M Mk 1) -+ X (MM,
i=1
Lvi({FR},)
(71)
where the equality holds whe@,.'s satisfy
Qk_VMk+1UMka k:17 aK_la (72)

where Uy, and Vi, are defined based on the following N =

singular value decompositidvl;, = UMkAMkVIP\I/Ik with the

diagonal elements aAys, arranged in decreasing order. Fur-

thermore, based on the definition®df;, in 23), v ({Fr ;)
in (Z1) equals to

K HyTH 1
i(Fp H Kg Hka)
{F 73
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Defining new variables
Fr, =1/ /05 (ax Pe®y + 02 Iy, ) *Fy, and
Hi = (Kr, /np) PH(r Py + 07, In, )72, (74)
the optimization probleni(47) is reformulated as
min g ({Fr o))
An( FH’H;C HiFy)
FH’Hk HFy)
(75)
When ¥, o Iy, , or ¥ o< Iy, ,, for the optimal solution
K, /1y, is constant[10],[[11],[26] and thu&;. is constant.

Let F opt be the optimal solution of (T5). With the following
singular value decompositions,

HiFropt = Ua,Aa, VL, ., Hi=Us, Ay, V5, (76)

K
s.t. ’777, {Fk}k 1 H

k=1
Py.

1+
Te(FpFY) =

/2VHk: Axk ng .
(78)

Notice that in general the unitary matr® 4, depends on the
optimal solutionf‘kyopt. However, from [[7b), it can be seen
that the value oV 4, does not affect the objective functions
and therefore it can be an arbitrary unitary matrix. Meareyhi
as the minimum dimension & H} H, Fy is N, only N x N
principal submatrix ofAx, can be nonzero. For notational
convenience, we denote thatx, |1.n 1.8 = Az,
Substituting[(7B) into the definition ofy, in (48), we obtain
a simple linear function ofyy,, andny, can be easily solved
to be

Fy, ,opt — m(akpkqlk +0'121kINT,k)_1

op, /{1 — an Tr[VE, N (o Pe®y +op Iy, )72
X W (auPe®y + 07 Ing )" *Vay, nAR 1}
2 6(Ag,). (79)
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