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Abstract—Machine learning (ML) models are widely used
in many important domains. For efficiently processing these
computational- and memory-intensive applications, tensors of
these over-parameterized models are compressed by leveraging
sparsity, size reduction, and quantization of tensors. Unstructured
sparsity and tensors with varying dimensions yield irregular
computation, communication, and memory access patterns; pro-
cessing them on hardware accelerators in a conventional manner
does not inherently leverage acceleration opportunities. This
paper provides a comprehensive survey on the efficient execution
of sparse and irregular tensor computations of ML models on
hardware accelerators. In particular, it discusses enhancement
modules in the architecture design and the software support; cat-
egorizes different hardware designs and acceleration techniques
and analyzes them in terms of hardware and execution costs;
analyzes achievable accelerations for recent DNNs; highlights fur-
ther opportunities in terms of hardware/software/model co-design
optimizations (inter/intra-module). The takeaways from this pa-
per include: understanding the key challenges in accelerating
sparse, irregular-shaped, and quantized tensors; understanding
enhancements in accelerator systems for supporting their effi-
cient computations; analyzing trade-offs in opting for a specific
design choice for encoding, storing, extracting, communicating,
computing, and load-balancing the non-zeros; understanding how
structured sparsity can improve storage efficiency and balance
computations; understanding how to compile and map models
with sparse tensors on the accelerators; understanding recent
design trends for efficient accelerations and further opportunities.

Index Terms—Machine learning, deep learning, deep neural
networks, spatial architecture, dataflow, sparsity, compact mod-
els, pruning, quantization, dimension reduction, tensor decom-
position, energy efficiency, hardware/software/model co-design,
compiler optimizations, reconfigurable computing, VLSI.

I. INTRODUCTION

Machine learning (ML) models implement intelligence in
computing systems. Different ML models are widely used in
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several important domains including computer vision (object
classification [1]–[3] and detection [4]–[6]), natural language
processing [7]–[9], media generation [10], recommendation
systems [11], [12], medical diagnosis [13], large-scale sci-
entific computing [14], embedded systems [15], mobile and
edge processing [16], [17], and even for designing or opti-
mizing hardware and software systems [18], [19]. Domain-
customized accelerators can significantly speed up their exe-
cution in an energy-efficient manner [20]–[23]. However, the
computational and memory requirements for processing these
models have surged drastically [24]. Moreover, ML models
can be deeper and larger, which improves learning accuracy,
but significant redundancy may exist in these often over-
parameterized models [25], [26]. Therefore, recent techniques
for efficient learning and inference have proposed compressing
tensors of ML models. Tensors are compressed by inducing
and leveraging: (a) sparsity (zero values in tensors) [27]–[31],
(b) size reduction (tensor decomposition, dimension reduction,
and shape reduction) [3], [32]–[35], and (c) quantization
(precision lowering and leveraging value similarity) [27], [36].
With significantly lowered computational, storage, and com-
munication requirements, efficient processing of compressed
tensors (sparse, size-reduced, and quantized) offers notable
acceleration and energy efficiency opportunities [37]–[40].

Hardware accelerators can efficiently process tensor com-
putations of ML models. In particular, coarse-grain spatial
architectures are a common choice for hardware accelerator
designs. They contain an array of processing elements (PEs)
with local registers/memory and shared memory. These accel-
erators feature interconnects like mesh or multicast for com-
municating data to PEs and reusing the data spatially, which
reduces the accesses to the memory hierarchy. With simple
PE designs and effective spatial and temporal management
of the data and computations, such architectures achieve high
speedups and energy-efficiency [20]–[22].

Special mechanisms are needed to exploit the acceleration
benefits due to tensor sparsity, size reduction, and quantization.
This is because, while hardware accelerators for ML can
process low-precision tensors, they inherently cannot benefit
from sparsity [41], [42]. They are designed for performing
structured computations with regular memory accesses and
communication patterns. Without special support for sparse
tensors, they fetch all the data, including zero values from
memory and feed into PEs, thereby wasting the execution time.
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Fig. 1. Overview of the accelerator system for processing sparse and irregular tensor computations. (Section IV provides further discussion.)

Sparsity, especially unstructured, induces irregularity in pro-
cessing since non-zeros (NZs) or blocks of NZs are scattered
across tensors. So, leveraging sparsity necessitates additional
mechanisms to store, extract, communicate, compute, and
load-balance the NZs and the corresponding hardware or
software support. The goal of exploiting sparsity is to exploit
all forms of sparsity possible to considerably reduce compu-
tation, communication, and storage of zeros while avoiding
adding performance, power, and area overheads. Exploiting
sparsity effectively depends on tailoring the data encoding and
extraction, dataflow, memory banking structure, interconnect
design, and write-back mechanisms. Further, it requires new
representations and enables new opportunities for hardware/-
software/model co-designs. In this survey, we mainly discuss
different accelerator designs that have leveraged the sparsity
of different tensors and different opportunities for performance
gains and energy efficiency. Tensor decomposition and dimen-
sion reduction yield tensors of various sizes and asymmetric
shapes [3], [43]. Dataflow mechanisms for executing layers of
the models are typically optimized well for some commonly
used layers (symmetric dimensions). They often become ill-
suited for processing tensors with reduced dimensions [43]
and different functionality. So, we describe how configurable
designs and flexible dataflows can help to achieve efficient
execution. Sparse tensors quantized with value sharing require
additional support to index a dictionary for obtaining shared
values. The survey also discusses how accelerators leverage
value similarity across inputs, weights, or outputs and support
variable bit-widths of sparse tensors.

Contributions: This paper provides a comprehensive sur-
vey of different techniques for efficiently executing sparse
and irregular tensor computations of the compact ML models
on hardware accelerators. It describes corresponding enhance-
ments in the hardware architecture and the required software
support. In specific,

• For inference and training of different ML models, we
summarize various sources of the sparsity of tensors.

• We highlight challenges in accelerating computations of
sparse (especially unstructured) and irregular-shaped ten-
sors (e.g., dot product, convolution, and matrix multipli-
cation) on spatial-architecture-based hardware accelerators
that execute with dataflow mechanisms.

• We present an overview of the accelerator system along

with the different hardware/software modules for sparse
and irregular computations, their interfacing, and the exe-
cution flow. We provide an in-depth discussion of the need
of each module, different design choices, and qualitative
analysis of the different choices.

• We survey different accelerator systems and execution
techniques for sparse tensors of ML models and provide
taxonomies to categorize them based on the various hard-
ware/software aspects of the designs.

• We analyze how variations in sparsity and tensor shapes of
different models impact the storage efficiency of different
sparsity-encodings and the reuse of tensors.

• For designing these accelerator modules and overall accel-
erator system, we discuss recent trends and outline further
opportunities for hardware/software/model co-designs.

Paper organization:

• Section II provides a brief background on different ML
models, hardware accelerators for their tensor computations,
and the need for further efficiency by reducing computation,
storage, and communication requirements.

• Section III discusses tensor compression and opportunities
due to sparse, size-reduced, and quantized tensors and why
their efficient processing requires special support.

• Section IV provides an overview of the accelerator system
with enhanced architectural modules and software support
for sparse and irregular tensor computations (Fig. 1). It
also presents a case study of accelerations of recent, sparse
DNNs and analyzes execution bottlenecks. In-depth discus-
sions of individual modules follow through sections V–XII.
Opportunities for optimizing each module further are dis-
cussed at the end of corresponding sections or subsections.

• Section V illustrates common sparse data encodings, ana-
lyzes their implications in terms of storage and coding over-
heads, and describes the group-wise encoding of tensors.

• Section VI discusses techniques for extracting matching NZs
from tensors for computations. It analyzes the advantages
and limitations of the centralized and in-PE extractions.

• Section VII discusses managing non-coherent, multi-
banked, global scratchpad and hiding the memory access
latency behind computations. It also discusses data reuse of
the sparse tensors and cross-layer reuse opportunities.

• Section VIII discusses interconnect designs for distributing
data from memory and reducing partial outputs, their band-
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width requirements, spatial data reuse, and their configura-
bility to support multiple dataflows for execution.

• Section IX describes sparsity-aware dataflows and pipelined
PE architecture including tailoring functional units for spar-
sity, bit-adaptive computing, and leveraging value similarity.

• Section X discusses sources of the inter-PE and intra-PE
imbalance due to sparsity and their impact, software-directed
balancing, and hardware structures for dynamic balancing.

• Section XI describes different write-back mechanisms for
collecting data from PEs and assembling the data locally in
PEs or on a central module. It also discusses data layout
transformations and on-the-fly encoding of sparse outputs.

• Section XII discusses compiler support for targeting hard-
ware accelerators, including intermediate representations for
deep learning models, compiler optimizations and their
automation, and ISAs and code generation for accelerators.

• Section XIII describes recent trends and future directions
in terms of developing tools and techniques for systematic
exploration of hardware/software/model co-designs.

• Section XIV discusses relevant surveys that describe addi-
tional details (domain-specific models, tensor compression
techniques, etc.) and can be useful to readers.

II. BACKGROUND: NEED FOR EFFICIENT EXECUTION OF
ML MODELS ON HARDWARE ACCELERATORS

A. Domain-Specific Machine Learning Models
Learning through ML models can be supervised (where

labeled data is available), unsupervised (training samples are
unlabeled), or semi-supervised. We refer non-expert readers
to surveys [44]–[46] for a detailed discussion on different
learning approaches and inference and training of various
models. Discussions through this survey mainly focus on
accelerating different deep neural networks (DNNs) that are
commonly used for supervised learning.

Convolutional neural networks (CNNs) are used for
object classification and detection in image processing, video
analysis, and autonomous vehicle systems. CNNs majorly
consist of many convolution layers (CONV) and a few fully-
connected (FC) layers. Early CONV layers capture low-level
features from the images (e.g., edges and corners), which
are used for constructing high-level features (e.g., shapes)
by subsequent layers. Finally, the classifier aka FC layer
determines the type of the objects [44].

Sequence-to-sequence models include recurrent neural net-
works (RNNs), gated recurrent units (GRU), long-short term
memory (LSTM) [15], and attention mechanisms [7], [8].
These models are used for natural language processing (NLP)
and media processing tasks. They essentially use unidirectional
or bidirectional recurrent cells at their core and process multi-
layer perceptrons (MLP) aka FC structures.

Models for semantic segmentation and language trans-
lation use encoder-decoder structures with convolutions [5],
[14], recurrent cells, or attention layers [8], respectively.

Generative adversarial networks (GANs) [10] are used
by media generation applications. GANs use generators and
discriminative networks that consist of convolution layers.

Graph neural networks (GNNs) and other graph learning
models [47] are used for applications such as text classification
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Fig. 2. Abstract accelerator design for processing sparse tensors of machine
learning applications. Execution of applications require explicit management
of computational, communication, and memory resources.

and translation, node classification and link predictions in large
social graphs, etc. They learn graph properties and infer about
unforeseen information. To achieve this objective, each node
contains an embedding feature vector with the information
mixture about own and neighborhood features. The nodes
then recurrently aggregate features of local neighbors, perform
neural network computations on aggregated data (e.g., MLP
for down-scaling embeddings), and update their embeddings.

Recommendation system models consist of embedding
layers (look-ups and matrix operations) [12], CNNs for object
detection and video understanding, and RNNs for processing
language models [11].

Primitives like MLP or GEMM (general matrix multiply)
and CONV are at the core of many models and dominate the
execution. So, ML frameworks like PyTorch [48], TensorFlow
[49], and Intel MKL [50] provide efficient implementations
of these primitives for execution on commodity hardware
(CPUs, GPUs, FPGAs) or even specialized accelerators. So,
our discussions mainly focus on efficiently accelerating tensor
computations of MLP, CONV, and RNN operators.

B. Hardware Accelerators for Machine Learning

In the “new golden age of computer architecture”, recent
research efforts and commercial solutions have extensively
demonstrated that domain-customized hardware accelerators
significantly speed up the execution of ML models in an
energy-efficient way [20]–[22], [51]–[54]. Typically, these
specialized solutions feature spatial architectures, which are
those that expose low-level aspects of the hardware’s in-
terconnect and storage to the hardware-software interface.
Spatial architectures can be coarse-grained or fine-grained.
Coarse-grained architectures feature arrays of interconnected
PEs, and fine-grained designs are realized by programming
FPGAs. Coarse-grained spatial architectures are a common
implementation choice for designing hardware accelerators
for ML [20]–[23], [55]. As Fig. 2 illustrates, the accelerator
comprises an array of PEs that may contain private register
files (RFs) and shared buffers or a scratchpad memory. PEs
are simple in design (functional units with little local control),
and the shared scratchpad is non-coherent with software-
directed execution. Therefore, these accelerators are a few
orders of magnitude more power-efficient than out-of-order
CPU or GPU cores [20]–[22]. They lead to highly energy-
efficient execution of ML models that are compute-intensive
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Fig. 3. Computation requirements for the training of AI algorithms almost
double every few months (Figure adopted from [24]).

and memory-intensive. Performance-critical tensor computa-
tions of ML models are relatively simple operations like
element-wise or tensor additions and multiplications. So, they
can be processed efficiently with structured computations on
the PE-array. Moreover, private and shared memories of PEs
enable high temporal reuse of the data [56], [57]; with efficient
data management, PEs can be continuously engaged in tensor
computations while the data is communicated via memories
[20]. Additionally, interconnects like mesh or multicast enable
data communication among PEs and spatial reuse of the
data, lowering the accesses to off-chip memory. Thus, with
minimized execution time, spatial-architecture-based hardware
accelerators yield very high throughput and low latency for
processing ML models.

C. Need for Further Efficient Execution

With recent advances in the development of ML models,
their computational and memory requirements have increased
drastically [18], [24]. Fig. 3 provides an overview of this
dramatic surge. One major reason is the rise of deeper models.
For example, for processing ImageNet images, AlexNet [1]
contained five CONV and three FC layers (eight parameter
layers) with the model size of 61M parameters (weights and
bias) and computation of 724 MFLOPs. DNNs like ResNet-
101 [2] achieved higher classification accuracy but contained
100+ parameter layers and required processing about 7.6
GFLOPs per image. Memory requirements for NLP models
have increased massively, e.g., from 50M–100M parameters
(Transformer [7], 2017) to 175 billion (GPT-3 [9], 2020).

While deeper and larger models achieve high efficiency for
various tasks [44], they consume high execution time, energy,
and memory. Previous studies showed that significant data re-
dundancy exists in these often over-parameterized models [25],
[26]. So, researchers have developed techniques that compress
tensors and obtain compact models, reducing computational,
communication, and storage requirements significantly.

III. ACCELERATION OPPORTUNITIES DUE TO COMPACT
MODELS AND THE NEED FOR SPECIAL SUPPORT

Efficiency of executing ML models can be improved fur-
ther by drastically reducing computation, communication, and
memory requirements. This can be achieved by compressing

(a) Unstructured (b) Block sparse
(Coarse-grain)

(c) Density-bounded (k:n)
block sparse (fine-grain)

(d) Conditional
or Patterned

block size: 1x4; k=1block size: 2x2

Fig. 4. Common sparsity structures (e.g., for a 75% sparse 8×8 matrix).

tensors of ML models. Tensors are compressed by inducing
and leveraging: (a) sparsity (zero values) [27]–[30], (b) size
reduction (tensor decomposition, dimension reduction, and
shape reduction) [3], [30], [32]–[35], and (c) quantization
(precision lowering and value similarity) [27], [36]. Previous
techniques have achieved highly compact models without
incurring accuracy loss. For example, after applying pruning,
quantization, and Huffman encoding, Deep Compression [27]
reduced the model size of AlexNet and VGG-16 by 35×
and 49× (e.g., from 552 MB to 11.3 MB), respectively.
Accelerator-aware designs can compress the model further. For
AlexNet and GoogLeNet models, [40] pruned 91% and 66%
of weights and reduced computational requirements by 6.63×
and 3.43×, respectively. ADMM-NN [38] applied weight
pruning and quantization, thereby reducing the model size of
AlexNet, VGG-16, and ResNet-50 (with up to 0.2% accuracy
loss) by 99×, 66.5× and 25.3×, respectively.

This section describes various sources of tensor sparsity
which is either inherent or induced by model architecture
or regularization. It describes how sparsity reduces com-
putations, storage, and communication requirements. It also
discusses techniques for reducing the size and quantization
of the tensors, and how they offer advantages in terms of
storage/performance/energy-efficiency. Then, it describes how
compression techniques may induce irregularity in the pro-
cessing and why special support is needed for efficiently
processing the compressed tensors on hardware accelerators.

A. Opportunities Due to Sparse Tensors

1) Sparsity Structures: Inherent sparsity is usually unstruc-
tured (e.g., of activations, gradients, or tensors of scientific
computing applications), where NZ elements are randomly
scattered (shaded elements in Fig. 4a). Applying ReLU,
dropout, quantization, or fine-grain pruning also induces
unstructured sparsity in input activations (IA) or weights
(W ). For improving execution efficiency, pruning techniques
or model operators induce structured sparsity. For example,
weights can be pruned in coarse-grain blocks where block
shape can vary from 1-D (vector) to n-D for an n-dimension
tensor [28], [37], [58], [59]. Fig. 4b shows 4×4 blocks for
a block-sparse tensor, where each block contains all zeros
or all NZs. With larger blocks, techniques often prune entire
dimensions (e.g., channels or filters in CNN models) [28]. The
selection of block size and shape depends on task accuracy
requirements. Alternatively, tensors are sparsified with density
bounded blocks (Fig. 4c), where each n-D block contains a
fixed (k) number of NZs [60]–[62]. It equally scatters NZs
throughout the tensor. NZs are located arbitrarily in the whole
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block, or a fixed number of NZs can be induced across each
dimension of the block. Values of k can be selected based
on the sensitivity of the pruning to accuracy. For example,
analysis of [60] showed that for VGG-16 and ResNet-50,
about 12 out of 16 elements can be pruned without any
accuracy loss, and about 10 out of 16 elements for compact
models like MobileNetV1 and SqueezeNetV1. To preserve
accuracy while achieving high sparsity, a mixture of blocks
(with different block sizes or sparsity) can also be introduced
[63]. Lastly, tensors can be pruned in patterns or conditionally
with sophisticated rules (e.g., diagonally, as Fig. 4d shows).

2) Sources of Sparsity: Tensors of different ML models
can be sparse due to multiple reasons:
• CNNs use the ReLU activation function [1] that clamps

negative values to zero. So, sparsity of input activations (IA-
sparsity) can be 40% in CNNs, on average [64] and higher
in later layers (about up to 70% [64], [65]). Cao et al. [64]
reported that max-pooling can amplify it, e.g., up to 80% for
VGG-16 layers. Lee et al. [66] showed that IA-sparsity elim-
inated about 40% and 55% of the multiply-and-accumulate
(MAC) operations during CNN training and inference, respec-
tively. For recent compact models like MobileNetV2 [32], IA-
sparsity eliminates about 20% of the MACs.
• Neural networks use drop-out layers to avoid overfitting.

After applying the drop-out, only partial activations are re-
tained [26]. Dropping the activations induces sparsity [26].
• Pruning techniques remove unimportant weights and

alleviate the overfitting of the model while maintaining the
classification accuracy. Typically, weights with the least sig-
nificant values can be safely pruned [25], [31] (in training
or post-training). Pruning can bring regularity in the learning
of the model and can even increase accuracy slightly [37],
[60]. Pruning algorithms introduce significant sparsity, e.g.,
more than 60% weights of CONV and more than 90% of the
weights of FC layers can be removed [25] (W -sparsity). For
recent compact models like MobileNetV2 and EfficientNetB0,
W-sparsity can be 50%–93% (80%–85% in point-wise convo-
lutions) [67], which reduces MACs by 2.5×–4.2×. Similarly,
more than 80% weights of RNN, GRU, or LSTMs can be
pruned [39], [68], [69], especially for medium or large models,
without significantly increasing error rate. For NLP models
Transformers [7] and BERT [8], recent techniques induce 80%
[70] and 93% [71] W-sparsity, which reduces total MACs by
about 4.8× and 12.3×, respectively. Besides, regularization
of the models (e.g., L1 or group-lasso based) can induce
unstructured or structured W-sparsity [28].

Pruning of activations is also shown as effective [72]–[76].
DasNet [73] reported eliminating about 27% and 12% MACs
by activation sparsification for AlexNet and MobileNet. It
achieved 79% IA-sparsity for AlexNet FC layers along with
pruning 81% weights, without dropping top-1 accuracy. Sim-
ilarly, MASR [77] refactored batch normalization, achieving
about 60% IA-sparsity for RNNs. For attention-based NLP
models, SpAtten [78] pruned unimportant tokens and heads.
It reported reducing computations and DRAM accesses by up
to 3.8× and 1.1×, respectively, without accuracy loss.
• CNNs use Atrous (dilated) convolutions where filters are

upsampled by inserting zeros between weights [5].

• GANs use transposed convolution in a degenerator net-
work, where input data is upscaled first by inserting zeros
between values, and then convolution is applied. For trans-
posed convolutions in different GANs, about 60% MACs can
be zero [79]. Additional sparsity is introduced when GANs
are forced to forget generating specific objects [80].
• Input data for object detection tasks can be inherently

sparse, as only specific regions of frames are valid [81].
For example, object detection models of autonomous driving
systems process 3D LiDAR data by constructing point clouds
and projecting them from the bird’s eye view (top view) [82],
[83]. The resultant images are then fed to object detection
algorithms for locating the regions of interest. Recent tech-
niques have reported that the sparsity of the input data for
object detection can be 80% or more [81], [82].
• For efficient communication in distributed training, gradi-

ents (Grad) are sparsified and compressed. E.g., Grad-sparsity
can be 99%+ for computer vision (CV) or language processing
tasks [84] and 95%–99% for recommendation models [85].
• Input data for the tasks of recommendation systems (e.g.,

user-item matrix) can be inherently highly sparse, e.g., from
95% [86] to 99% [11]. Recommendation models compute dot
products on dense-sparse or sparse-sparse data [85], [87].
• GNNs process large graphs, e.g., with thousands of

vertices. Depending on the real-world interactions of objects
(vertices), data contain high (e.g., 75%–99%) or hyper (99%+)
unstructured sparsity [88], [89]. For example, in processing
large graphs with GCNs, many features of vertices are local
and lead to zeros in adjacency matrices for remote nodes [89].
GNN computations involve aggregation on sparse data and
multiplications of dense matrices with dense or sparse matrices
[89], [90], which are often processed on separate modules of
the accelerator (e.g., in HyGCN [88] and EnGN [91]).
• Text corpus in text analytics applications leads to high

sparsity since each document contains only a fraction of the
words from the vocabulary. Such analytics applications include
PCA for dimensionality reduction of the sparse data, support
vector machines and regression for classification, collaborative
filtering for the recommendation, and k-means for clustering
the data [30]. These operations involve multiplications of
sparse matrices with dense or sparse vectors, where the matrix
sparsity can vary from 67% to 99% [30].

While we describe leveraging sparsity for ML models,
applications of many domains, including linear algebra, graph
processing, and scientific computing [92], [93], can be accel-
erated by exploiting sparsity.

3) Advantages: Sparsity allows (i) eliminating ineffectual
computations, i.e., reduces execution time and energy by
processing only NZs, (ii) reducing storage by encoding only
NZ values, so more data fits in on-chip memory and off-chip
memory accesses (extremely energy-consuming [42], [94])
are reduced, and (iii) improving speedup due to reduced
communication requirements for data-intensive ML models.

B. Opportunities Due to Size-Reduced Tensors

Symmetric or high-dimensional tensors have large sizes
and their processing requires more computation and memory.
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So, ML models are designed to reduce such requirements
by using group or parallel operators [1], [95], 1×1 or point-
wise convolutions (PW-CONV) [33], [96], or dimensionality
reduction with PCA [30], [34]. Moreover, tensors can be
decomposed with spatial factorization [34], [97], depth-wise
separation for convolutions [3], [32], or low-rank approxima-
tions [34]. Further, tensors can be ragged [35] to eliminate
the need for structured or rectangular shapes. While these
transformations significantly reduce storage and computations,
they make tensors irregular-shaped (asymmetric).

C. Opportunities Due to Quantized Tensors

Quantization includes precision lowering [36] and lever-
aging value similarity [27], [98], [99]. Precision lowering
allows representing tensors (weights, activations, gradients,
weight updates) at much lower bit-width (e.g., 8b or lower
for inference and 8b/16b for learning). Moreover, elements
with similar values can be clustered and approximated by
sharing common values (centroids of clusters). Further, similar
values of outputs are reused with memoization (partially or
the entire layer). In general, significant redundancy exists
in tensor elements (particularly in the parameters of large
models), and a successfully trained model is generalized and
immune to noisy data. So, the error induced by quantization
or approximation may often be tolerated by a well-trained
model [100]. It can also obviate over-fitting caused otherwise
by excessive precision, thereby bringing generality in learning
[101]. For compensating accuracy drop due to quantization,
learning algorithms fine-tune the model or use quantization-
aware training [36]. Thus, quantization or approximation tech-
niques typically do not degrade inference accuracy [66] or
trade it off for notable execution efficiency [64], [102], [103].

Quantization significantly reduces storage requirements and
accesses to off-chip memory. It also reduces area and power,
since for quantized tensors, functional units can be simpler
and energy-efficient (e.g., int8 multiplier consumes 20× less
energy than FP32 multiplier [94] for a 45 nm process). Bus
sizes can be smaller as bandwidth requirements are reduced.

Thus, with sparse, size-reduced, and quantized tensors, com-
pact models can achieve higher accuracy as models with un-
compressed tensors, while becoming amenable for deployment
at the edge, mobile, or online-learning platforms [17], [27] due
to scope for low latency, energy, and storage. So, leveraging
such opportunities is crucial for further accelerations.

D. Need for Special Support to Accelerate Sparse and Irreg-
ular Tensor Computations

Hardware accelerators efficiently process different models
[21], [22], [104]. But, they inherently cannot benefit from
the sparsity because all the data, including the zero values
of activations, weights, and gradients, have to be fetched from
memory and communicated to PEs; PEs are also unable to
skip ineffectual computations, wasting the execution time.
Sparsity, especially unstructured, induces irregularity in pro-
cessing since NZs or blocks of NZs are scattered across the
tensor. Therefore, leveraging sparsity necessitates additional
mechanisms to store, extract, communicate, compute, and

load-balance the NZs, and corresponding hardware and soft-
ware support [41], [105]. Different sparsity levels and patterns
from various sources lead to unique challenges and solutions
in hardware/software co-design. Therefore, our discussions
throughout this survey mainly focus on exploiting tensor
sparsity for accelerating compact models.

Tensor dimension reduction and tensor decomposition make
tensors irregular-shaped (asymmetric), and they may also
modify the functionality of the computational primitives, e.g.,
depthwise convolution (DW-CONV). Since execution on hard-
ware accelerators is typically well-optimized for processing
symmetric tensors with a specific dataflow mechanism, these
shape transformations and supporting different functionality
(e.g., DW-CONV, randomized or approximated matrix multi-
ply [106]) may introduce irregularity in processing require-
ments. To sustain high utilization of computational resources,
it requires additional support including configurable hardware
architectures and flexible mappings of the functionality onto
architectural resources [43], [105], [107].

Hardware accelerators have supported low-precision tensors
of fixed bit-widths, and even more recently, tensors with mixed
precision [66]. However, when sparse tensors are quantized
with value sharing, it requires indexing the codebook through
indices for approximated elements [27]. Such irregular ac-
cesses are handled by implementing separate indirection tables
in the pipelined hardware datapath [37], [42]. Moreover, value
similarity is leveraged further by reusing computations with
memoized outputs, which requires additional processing. Fur-
ther, supporting different bit-widths of various sparse tensors
of different models requires configurable architectures for bit-
adaptive computing [108]–[110].

To sum up, compressed tensors lead to sparse and irregu-
lar computations. Their efficient accelerations require special
support, which is described in the next section. The appendix
describes that exploiting sparsity (especially unstructured) is
relatively hard for execution on CPUs and GPUs; with special
support, hardware accelerators can achieve notable gains.

IV. ACCELERATOR DESIGN FOR EFFICIENT SPARSE AND
IRREGULAR TENSOR COMPUTATIONS

A. Overview
To efficiently process sparse and irregular tensor compu-

tations, designers of the accelerator systems can integrate
special hardware or software modules. It enables orchestration
of the structured computations while processing the tensors
in compressed formats. Consequently, it can lead to efficient
utilization of the accelerator resources and allows exploiting
acceleration opportunities. Fig. 1 provides an overview of the
accelerator system equipped with such modules. This section
briefly describes these system modules.

Sparse, size-reduced, and quantized tensors of ML mod-
els offer various opportunities for storage, performance, and
energy efficiency. Hence, several accelerators have provided
marginal or comprehensive support and leveraged some or all
the opportunities. Table I lists such common objectives and
corresponding accelerator solutions that meet these objectives.

Different accelerators for inference and learning exploit
W -sparsity, IA-sparsity, or both, which impacts acceleration
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TABLE I
ACCELERATORS FOR PROCESSING SPARSE TENSORS.

Objective Techniques
Compressed data

in off-chip
memory (storage)

[20], [30], [37], [41]–[43], [60], [65], [66],
[68], [93], [105], [107], [109], [111]–[124]

Compressed data
in on-chip

memory (storage)

[30], [37], [41]–[43], [60], [65], [66],
[68], [72], [93], [105], [107], [111]–[119],
[121], [123]–[125]

Skip processing
zeros

(energy efficiency)

[20], [30], [37], [41]–[43], [60], [65], [66],
[68], [72], [93], [105], [107], [109], [112],
[114]–[119], [121]–[134]

,
Reduce ineffectual
computation cycles

(performance & energy)

[30], [37], [41]–[43], [60], [65], [66],
[68], [72], [93], [105], [107], [112]–[119],
[121], [123]–[125], [129], [130], [134]

Load balancing
(performance)

[37], [42], [43], [60], [65], [66], [68],
[116], [118], [123], [126], [127], [130]

gains [130]. Several accelerators, including Cambricon-X [41],
exploit only static sparsity (Table II), e.g., when locations of
zeros in weights are known beforehand for inference. Static
sparsity allows offline encoding and data transformations for
arranging structured computations (e.g., for systolic arrays
[62], [126], [136]). Recent accelerators, including ZENA
[130], SNAP [107], and EyerissV2 [43], leverage dynamic
sparsity also. It requires determining locations of intersecting
NZs in both tensors at run-time to feed functional units, on-
the-fly decoding (encoding) NZs, and often balancing compu-
tations on PEs. Table II lists different accelerators that support
static and dynamic sparsity of tensors. Now, we describe
different hardware and software aspects of the accelerator
system that help in leveraging sparsity effectively.

Sparsity encodings: Sparse tensors are compressed using
encodings, where only NZ values are stored in a ”data” tensor
and one or more ”metadata” tensors encode locations of NZs.
Section V discusses different formats and associated costs
for encoding and decoding. For different sparsity levels, it
analyzes their effectiveness in terms of storage efficiency. E.g.,
tensors can be compressed by 1.8× and 2.8× for 50% and
70% sparsity (bitmap or RLC-2) and 7.6× and 55×–60× for
90% (RLC-4) and 99% sparsity (CSC or RLC-7). Structured
sparsity (coarse-grain block-sparse) can alleviate the overheads
of metadata and fine-grained data extraction by encoding in-
dices for only large dense blocks. For accelerating ML models,
sparse tensors are also quantized i.e., their precisions are
lowered (typically int8 or int16 for inference [43], [115], [130]
and FP16 for learning [66], [105]) and often approximated by
clustering data of similar values [37], [42], [111]. Therefore,
encoded sparse data contains quantized values of NZs.

NZ detection and data extraction: In processing sparse
tensors of different primitives, corresponding elements of the
weight and activation tensors are multiplied and accumulated.
Depending on the sparsity, accelerators need to use data ex-
traction logic that decodes compressed tensors, search within a
window of NZs or index the buffer, and obtain matching pairs
of NZs to feed the functional units for computation. Section VI
provides a taxonomy of different data extraction mechanisms
and analyzes their implications for various sparsity levels. Up
to moderate IA-sparsity and high W -sparsity, these indexing

or intersection-based mechanisms efficiently extract sufficient
NZs at every cycle for keeping functional units engaged. For
efficient compute-bounded executions at such sparsity, acceler-
ators reported achieving near-ideal speedups (e.g., about 80%–
97% of the speedup corresponding to reduced operations, i.e.,
sparsity-speedup ratio) [41], [42], [130]. However, extraction
becomes challenging at high (e.g., 90%+) or hyper sparsity
as NZs are scattered at distant locations [89], and execution
is usually memory-bounded with low arithmetic intensity.
Section VI also discusses sharing of the data extraction mech-
anism among PEs or employing in PEs. Then, it discusses
opportunities for further optimizations.

Memory management: Compressed tensors are often
stored in the shared on-chip memory that is non-coherent,
multi-banked, and often non-unified. For a pre-determined
sequence of execution, a controller or PEs initiates the accesses
between off-chip and on-chip memory; their latency needs to
be hidden behind computations on PEs. Section VII discusses
corresponding memory architectures and techniques for hiding
miss penalty for sparse tensors via double-buffering or asyn-
chronous computation and memory accesses. It describes the
data reuse opportunities for various sparsity and dimensions of
tensors of common DNNs and how sparsity lowers the reuse.
It also discusses techniques that leverage cross-layer reuse of
intermediate output layers and reduce latency.

Communication networks: Once tensor blocks are fetched
from memory, they are distributed to appropriate PEs via in-
terconnect networks (often one per operand). Efficient designs
ensure that sufficient data can be fed to PEs while they perform
computations. Reuse is leveraged spatially by multicast or
mesh networks that communicate common data blocks to
multiple PEs. It lowers accesses to memory hierarchy and
communication latency. However, spatial reuse opportunities
vary depending on the sparsity, NZ extraction mechanism,
and mapping of the functionality on the accelerator. Section
VIII discusses different designs for distributing sparse and
quantized tensors and reducing partial outputs. It also describes
challenges in executing inter-PE communications that may
become unstructured due to sparsity and the temporal and
spatial mechanisms for reduction/collection of the outputs. It
describes how configurable designs support various communi-
cation patterns for different sparsity, reuse, and functionality.

PE architecture: Several accelerators consist of scalar
PEs with fused MAC units (e.g., EIE [42], LNPU [66], and
Envision [109]). Others contain SIMD PEs (multiple func-
tional units) (e.g., EyerissV2 [43]) or vector PEs consisting
of multiplier-arrays and adder-trees (e.g., Cambricon-X [41]
and SNAP [107]). PE architectures either directly process
pairs of matching NZs extracted from tensors or use hardware
logic for data extraction or coordinate computation (Fig. 2).
Effectively utilizing functional units can be challenging for
variations in sparsity, precisions, and functionality, and it
may require configurable designs. Section IX provides cor-
responding discussions and describes sparsity-aware dataflow
mechanisms (mapping of tensor computations on accelerator
resources) used by different accelerators. It also describes how
accelerators have leveraged value similarity of tensors and the
corresponding modifications in the PE architecture.
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TABLE II
ACCELERATOR SYSTEMS LEVERAGING SPARSITY OF DIFFERENT TENSORS FOR DIFFERENT ML MODELS.

Dynamicity
of Sparsity

Static [41], [60], [62], [68], [113], [119], [122]–[124], [126], [127]

Dynamic [20], [30], [37], [42], [43], [65], [66], [72], [78], [93], [105], [107], [109], [111], [112], [114]–[118]
[121], [125], [128]–[131], [131]–[133], [135]

Tensors Treated
as Sparse

Weight Unstructured [41], [113], [122]–[124], [127], [136]
Structured [37], [58], [60]–[62], [68], [118], [126], [137]

Activation [20], [66], [72], [78], [111], [121], [125], [128], [131], [133], [135]
Both [30], [37], [42], [43], [65], [93], [105], [107], [109], [112], [114]–[119], [129], [130], [132], [134]

Primitive
Operation

Matrix-Vector Multiply [30], [37], [41]–[43], [60], [66], [93], [107], [114], [116], [119], [129], [133]
Matrix-Matrix Multiply [41], [93], [105], [116], [126], [127], [132], [134]

Convolution [20], [37], [41], [43], [60], [65], [66], [72], [107], [109], [111]–[118], [121]–[124], [129]
Recurrent / Attention Layer [68], [77], [78], [125], [128], [131], [135], [137]

Accelerators for Learning [66], [105]

Load balancing: Depending on the distribution of zeros,
the execution may end up with processing a different amount
of NZs on different PEs or their functional units, which creates
inter-PE or intra-PE load imbalance. Section X analyzes
such sources of the imbalance and introduces a taxonomy of
different load balancing techniques. Accelerators achieve load
balance through either software techniques (e.g., structured
pruning or data reorganization) or by providing a hardware
module for dynamic work balance (through asynchronous ex-
ecution or work sharing), which provides further accelerations.
For example, ZENA [130] leveraged the sparsity of both
activation and weight tensors for AlexNet and VGG-16 models
and reported about 32% additional performance gains through
load balancing. Dynamic load balancing can provide notable
speedups for high, unstructured sparsity [89].

Write-back and post-processing: Tensor elements pro-
duced by PEs need to be collected, post-processed for further
operations, and written back to the memory. PEs in different
accelerators either write back sequentially or asynchronously
through a shared bus or via point-to-point links. In addition,
accelerators usually contain a post-processing unit that re-
organizes the data (as per the dataflow mechanism of the
current and next layer of the model) and encodes sparse output
on the fly. Section XI discusses such mechanisms.

Compilation support: It is important to support the exe-
cution of various ML models on accelerators and easier pro-
gramming of models from ML libraries. Section XII discusses
compiler support for sparse models and hardware accelerators.
It discusses polyhedral and non-polyhedral intermediate rep-
resentations and their implications on the compiler’s ability to
represent the code and apply code transformations. It describes
challenges in supporting sparse tensors and DNN compilers
that facilitate sparse tensor computations. Then, it discusses
compiler optimizations including common loop optimizations
and those specific to hardware intrinsics. It also describes
semi-automatic optimizations for transforming the loops and
data layout and automatic optimizations using cost models.
Finally, it discusses ISAs used by accelerators and their code
generation by using libraries of high-level primitives.

B. Case Study: Acceleration of DNNs and Bottleneck Analysis

This section analyzes the sparsity of recent DNN models
(for NLP and CV) and the acceleration that can be achieved
with some of the popular accelerators-alike architectures.

TABLE III
SPARSITY OF SOME POPULAR DNNS.

Model Domain Dataset GOps
(dense)

Sparsity % Sparse
ModelIA W Ops

MobileNetV2 [32] CV ImageNet 0.3 34 52 81 [67]
EfficientNetB0 [124] CV ImageNet 0.5 0 68 60 [67]

Transformer [7] NLP WMT En-De 4.6 0 79 79 [70]
BERT-base-uncased [8] NLP SQuAD 9.3 0 92 92 [71]

DNN models: Table III summarizes analyzed DNN models
and their overall sparsity across all CONV, GEMM, and DW-
CONV operations. For each of these DNN operations, W -
sparsity was obtained from sparse DNN models (listed in
the last column). IA-sparsity was obtained by performing
inference with sample data (images and text sequences). GOps
corresponds to processing of a single image for CV models and
sequences of 24 and 107 tokens for Transformer and BERT.

Accelerators: Table IV summarizes analyzed accelerators
and their sparsity-centered features. Their architectures tar-
geted unstructured or block sparsity of activations and/or
weights. Their features represent variations across data en-
coding, data extraction, vector processing, memory hierarchy,
NoC, and load balancing.

Methodology: To determine the impact of sparsity on
achievable acceleration, we performed a data-driven analysis
of the execution latency. For each DNN layer, zeros (or blocks
of zeros) were induced randomly according to the sparsity of
its tensors. The overall execution time was determined from
the latency of processing on functional units, data decoding,
extraction of non-zeros, work synchronization, and off-chip
memory transfers, which were calculated based on analytical
modeling of the microarchitectural features. The speedups
were calculated over oracle processing of dense tensors at
the accelerator’s peak utilization of computational resources
and off-chip bandwidth. In this study, we do not consider the
processing of DW-CONV on these accelerators, since they are
often not pruned, and their execution needs to be group-wise,
which is extremely inefficient. Such unsupported performance-
critical operators were assumed to be processed with dense
tensors at peak utilization of hardware resources.

Analysis: Fig. 5(a) shows speedups of accelerators for
targeted DNN models, for leveraging the sparsity of supported
DNN operators. It illustrates speedups for (i) reduction in the
operations due to sparsity (desired), (ii) peak utilization of
accelerator’s computational resources and off-chip bandwidth



9

TABLE IV
ARCHITECTURAL FEATURES OF ANALYZED ACCELERATORS FOR SPARSE DNNS.

ID Reference
Architecture

Supported
Operators

Sparsity
Leveraged

Non-zero Data
Extraction

PE
Architecture

Work
Synch-

ronization

Freq.
(GHz)

DRAM
BW

(GBPS)

Bit-width
data metadata

IA W Encoding Discovery Loc. FU IA / O W IA W
A1 EIE [42] GEMM unstructured CSR Indexing in-PE Scalar Prefetch 0.8 256 16 4 N/A 4

A2 Cambricon-X
[41] CONV,

GEMM
dense unstru-

ctured
COO-

1D
central

(per PE) Vector (16
multipliers &

adder tree)

Every
Output

Activation

1 256 16 16 N/A 8

A3 Cambricon-S
[37]

unstru-
ctured

block-
sparse Bitmap Inter-

section

central,
shared 1 256 16 8 1 1

A4 ZENA-
IA-W [130] CONV unstructured in-PE Scalar Intra-

Workgroup 0.2 12 16 16 1 1

1

5

9

13

A1 A2 A3 A1 A2 A3 A2 A3 A4 A2 A3 A4

obtained peak_resources reduced_Ops reduced_Ops_w_d/w_CONV
Transformer BERT MobileNetV2 EfficientNetB0
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Fig. 5. (a) Obtained speedups for accelerators listed in Table IV. (b) Analysis
of execution time overheads for obtained accelerations.

while leveraging sparsity, over such oracle processing of dense
tensors (potential), and (iii) actual processing on accelerator
over oracle processing of dense tensors (obtained). For under-
standing implications of execution overheads including those
incurred by metadata processing and load imbalance, Fig. 5(b)
illustrates fractions for desired computation time and execution
overheads in a stacked format. The overheads were extracted
for layer-wise processing and then accumulated to determine
the overall impact. Fractions include: • Computation time:
Minimum execution time required for processing at peak on
accelerator’s functional units. • NZ extraction: Time required
for decoding NZs from communicated operands and extracting
matching operands for feeding the functional units. It also cor-
responds to balanced computations. • Load imbalance: Time
required for on-chip processing on the accelerator, considering
the imbalanced computations subjected to the accelerator’s
work synchronization and work sharing schemes. • DMA
time: Time required for off-chip data communication via DMA
transfers, in addition to on-chip processing.

Fig. 5(a) shows that accelerators efficiently exploited mod-
erate sparsity. E.g., for 4.8× reductions in operations of
Transformer due to W -sparsity, they achieved about 4×–4.2×
speedup. The exploitation of speedup lowers when activations
are dense and weights are highly or hyper-sparse. This is
because accelerators like EIE and Cambricon-X broadcast
activations to PEs and extract matching pairs corresponding

to NZ weights. So, communication of activations and ex-
traction of matching NZ operands consume significant ex-
ecution time, while there are fewer operations to feed the
functional units (Fig. 5b). E.g., for BERT-base-uncased [8]
(92% sparse weights [71]) on SQuAD [138], they achieved
about 7.7×–8.9× speedup out of 12.2× speedup for pro-
cessing at peak. Due to block-sparse weights, computations
on PEs of Cambricon-S are always balanced. Therefore, it
achieved higher speedups. By using blocks of 16×16 or even
1×16 (across input and output channels) for pruning, inducing
similar sparsity is not possible sometimes. So, the reduction in
operations and potential for the speedup was slightly lower for
Cambricon-S (e.g., for EfficientNetB0). In general, due to high
DRAM bandwidth, overheads incurred by DMA transfers were
hidden (for Cambricon-X/S) or negligible for non-interleaved
transfers (e.g., for EIE).

Fig. 5(a) also shows that Cambricon-S and ZENA-IA-
W achieved higher speedups for CV models by leveraging
unstructured sparsity of activations. High IA-sparsity am-
plified total sparsity during processing several layers (e.g.,
MobileNetV2), incurring considerable excess processing in
data extraction for Cambricon-X/S and in load imbalance for
ZENA-IA-W. With zero-aware static sorting of filters and dy-
namic load balance, ZENA [130] could overcome such imbal-
ance. But, it would suffer through high on-chip communication
time since it used only one shared bus for multicast via NoC
and collecting outputs. We disregarded such communication
overhead for ZENA-IA-W in this study, as most accelerators
use separate NoCs or buses for alleviating communication
overheads. Also, due to low DRAM bandwidth, overheads
incurred by DMA transfers were higher for ZENA-IA-W,
mainly for executing DW-CONVs with dense tensors.

V. ENCODINGS FOR COMPRESSING SPARSE TENSORS

A sparse tensor is compressed with an encoding format. An
encoded tensor contains actual data (NZ values) and metadata
(information about positions of NZs). Later, metadata is used
by an accelerator’s data indexing logic to locate and extract
NZs. This section discusses commonly used encodings through
an example (Fig. 7) and their implications on the storage
and processing requirements. For different formats, Fig. 6
introduces a taxonomy for processing metadata during data ex-
traction, and Table V lists the corresponding storage overhead.
Depending on the mapping of a layer onto the accelerator,
tensors are divided into blocks (per PE-wise work) which are
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Direct Step

Single-Step

• COO
• COO-1D

• RLC
• Bitmap

Double-Step Triple-Step 2n-Step
• CSR
• CSC

• Double CSR
• Double CSC
• CSR/CSC + Relative indexing

• CSF

Metadata Processing

Fig. 6. A taxonomy for the required processing on the metadata during data
extraction when a sparse tensor is encoded using different formats.

encoded separately. We refer to such processing as a group-
wise encoding, which is discussed later. Finally, this section
briefly describes encoding on the fly and further opportunities.

A. Encoding Formats and Implications

1) Coordinate (COO): It stores absolute positions of NZs.
As Fig. 7(b) shows, all NZs of an uncompressed tensor T are
stored in a data vector val, and vectors coord y and coord x
indicate the coordinates of each NZ value. So, COO is a
natural way to express sparse tensors and is used commonly
(e.g., in PyTorch). Formats adopted by FROSTT [140] and
matrix market [141] closely resemble COO.

The COO format stores all coordinates in the uncompressed
format. E.g., as Fig. 7(b) shows, the metadata for values ’2’
and ’3’ (same row) or ’2’ and ’5’ (same column) are not
compressed, i.e., duplicate values of row and column indices
exist in coordinate vectors. So, the overhead of storing n
coordinates per NZ value is about

∑n
1 dlog2 die bits (vector

d contains the tensor’s dimensions). It makes COO inefficient
for storing tensors with low or moderate sparsity.

Fig. 8 shows storage benefits for encoding 2 MB matrices
of various sparsity in different formats. We calculated storage
requirements with the analysis presented in Table V and
normalized them to the matrix’s size in dense format. We used
the Scipy library [142] to generate matrices of various sparsity
and encode them in COO, CSR, and CSC. Fig. 8 shows that
for a 2 MB matrix, COO achieves storage efficiency for 70%+
sparsity. However, COO may yield simple indexing logic, as
both the data and metadata can be directly extracted.

2) COO-1D: For tile-wise processing of an encoded tensor,
accelerators often process only a block of NZs at a time,
where block elements vary across only a single dimension.
For example, Cnvlutin [72] processes the input activations and
weights across the channel direction. Therefore, the data block
is encoded with COO-1D, which is just like COO, but there
is only one pos vector for storing coordinates of NZs in the
flattened block. For instance, if we flatten T and consider it a
block, then the value ’5’ is indexed by position ’3’.

3) Run-Length Coding (RLC): It compresses a sequence
of values by replacing consecutive duplicate values with a
single value and the number of repetitions (aka run). For RLC-
encoded sparse tensor, “run” indicates a total number of zeros
before (after) an NZ. Fig. 7(d) shows RLC encoding of T .
Run values for ’2’ and ’3’ are ’0’ and ’1’, respectively. A few
accelerators, including Eyeriss [20], encode both the NZs and
runs altogether in the same vector val. For example, T can be
encoded as val: (0, 2, 1, 3, 0, 5, 4, 7).

RLC requires a step-processing on metadata, as run-length
needs to be calculated by accumulating runs and preceding
number of NZs (NNZs), for determining the position of an
NZ. The storage overhead for RLC-B is NNZ × B bits,
where B is bit-width of the run. If a vector d contains tensor
dimensions, then B can be set as up to dlog2 (

∏n
1 di)e bits

for accommodating the number of leading zeros in a highly
sparse tensor. When B is set lower, it cannot always capture
the number of zeros as run. Fig. 7(d) shows RLC-2b encoding,
where leading zeros before ’7’ are four. This cannot be
expressed in 2 bits. As a work-around, padding zeros [42]
are inserted and treated as NZs. In this example, a padding
zero is inserted between ’5’ and ’7’; run values corresponding
to the padding zero and ’7’ are ’3’ and ’0’, which contributes
to the total run of four.

To accelerate CNNs with 30%–90% sparsity of tensors,
designers have set B as two or four bits. In general, setting
the B as blog2 (

sparsity
density )c + 1 bits can effectively compress

tensors and provide a feasible bit-width to indicate leading
zeros. Here, sparsity and density are fractional numbers
indicating the actual or anticipated number of zeros and non-
zeros in the tensor, respectively. Thus, setting the B as 1, 1, 1,
2, 4, and 7 efficiently encodes tensors with sparsity of 10%,
30%, 50%, 70%, 90%, and 99%, which is depicted in Fig. 8.

As RLC requires step-processing on metadata, the indexing
logic needs an accumulator to determine the position of an
NZ. When an encoded tensor is not processed block-wise
but rather indexed by n-dimensions, the indexing logic may
require performing division and modulo operations on the
metadata. Alternatively, a multi-dimension representation can
be used where run for the coordinates of each dimension can
be calculated separately and stored. The overall computational
cost (arithmetic and logical operations realized in hardware)
for such step-processing can be low. Therefore, several accel-
erator designs, including Eyeriss [20] and SCNN [115], used
RLC or its variant. As run indicates repetition of a value,
CompAct [111] used an enhanced RLC format for encoding
both the sparse and similar-value activations.

4) Bitmap: It stores all NZs in a tensor val along with a
tensor flag which contains 1-bit flags for all elements of an
uncompressed tensor T . As Fig. 7(e) shows, a flag indicates
whether an element is NZ or not. Storage overhead for the
bitmap (aka bit-mask) is

∏n
1 di bits (where vector d stores

n dimensions of T ) [121]. Since bitmap stores metadata for
all elements, it is effective for compressing the tensors of
low or moderate sparsity. Like RLC, decoding or indexing
bitmap also requires step-processing. The indexing logic to
locate an NZ typically consists of at least an adder and
a comparator [41]. Due to moderate storage overhead and
low encoding/decoding cost, several accelerators used bitmap,
including Cambricon-X [41], SparTen [116], and SIGMA
[105], as shown in Table VI.

5) Compressed Sparse Row (CSR): It compresses a matrix
by processing each row as a sparse vector. In a CSR-coded
tensor, an array val contains all NZ values (ordered row-wise),
and an array idx stores their column indices [143]. Array ptr
stores information about total NZs in each row i, which is
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Fig. 7. Encodings to store sparse tensors in different formats. Elements with green shade encode the same NZ element. (Figure inspired by [139].)
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obtained by calculating ptr[i + 1] - ptr[i]. The last element
of ptr contains the total number of NZs in T . Row-wise
compression enables random accesses to any row.

While COO redundantly stores row-coordinates of NZs in
the same row, CSR compresses such metadata by storing NZs
row-wise [139]. For example, in Fig. 7(b) (COO), coord-y
stores row indices ’0’ and ’0’ for NZs ’2’ and ’3’. This
redundancy is removed in the CSR coding of Fig. 7(f), as
ptr stores only total NZs in each row. For compressing an
M×N matrix using CSR, the total storage overhead is NNZ
× dlog2Ne (for idx) + (M + 1) × blog2NNZ+1c (for ptr).
Due to high storage overhead (proportional to NNZs and size
of the row), CSR coding is efficient at high sparsity [41], [105],
e.g., 90% or higher (Fig. 8).

Decoding a CSR-encoded tensor can require a two-step
processing of metadata. The first step locates NZs of a row
by iterating over ptr, and the next step locates an NZ element
in the NZs of the row through the column index. Accelerators
efficiently process CSR-coded matrices row-wise such that ptr
is accessed once for fetching each row, and then the decoder
iterates through idx (to locate column positions).

CSR variants can improve efficiency further. For example,

TABLE V
STORAGE OVERHEAD FOR COMMON ENCODINGS. VECTOR d STORES n

DIMENSIONS OF A TENSOR THAT CONTAINS NNZ NON-ZERO ELEMENTS.

Format Storage Overhead (bits)
COO NNZ ×

∑n
1 dlog2 die

COO-1D NNZ × dlog2
∏n

1 die
RLC NNZ ×B

Bitmap
∏n

1 di
CSR NNZ × dlog2 d1e + (d0 + 1)× blog2NNZ + 1c
CSC NNZ × dlog2 d0e + (d1 + 1)× blog2NNZ + 1c

ptr stores duplicate values when consecutive rows are zero.
Doubly CSR (DCSR) [144] eliminates this redundancy and
achieves additional compression for hyper-sparse matrices.
Block CSR (BCSR) [145] stores a block of elements in val,
if the block contains at least one NZ. As Fig. 7(k) shows, in
BCSR, idx indicates the column index of a block, and ptr
informs about the number of dense blocks located in the same
rows. BCSR avoids storing blocks of all zeros and populates
dense regions, and hence suitable for encoding block-sparse
structured weight tensors. Thus, BCSR-coded tensors can be
efficiently executed not only on conventional processors but
also on hardware accelerators (with additional support for
appropriately indexing dense regions, e.g., [126]).

6) Compressed Sparse Column (CSC): CSC is similar to
CSR, except that NZs are stored column-wise [143]. As Fig.
7(g) shows, an array val contains NZs (organized column-
wise); idx stores their row indices; ptr informs about the total
NZs in each column. The storage overhead and hardware costs
for encoding/decoding tensors in CSC format are similar to
those for CSR. Accelerators, including EIE [42] and Sticker
[117], processed high-sparsity tensors with CSC format.

For alleviating the high storage overhead of CSR or CSC
formats due to storing idx and ptr arrays, a few accelerators
further encode the metadata idx or ptr. For example, EIE [42]
and EyerissV2 [43] encode idx in RLC such that elements in
idx indicate zeros between column indices of NZs (similar to
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run in RLC for NZ values). Fig. 7(h) shows CSC encoding
with such an RLC-encoded row index array. Values ’2’ and
’5’ have column index ’0’ and ’1’, respectively, which can be
encoded as ’0’ and ’0’ since there are no leading zeros before
NZs ’2’ and ’5’. Similarly, if the first column of T is (0, 2, 0,
0, 5), then the row indices for ’2’ and ’5’ can be encoded as
’1’ and ’2’. ptr can also be encoded likewise (store NZs per
column instead of a cumulative number). However, encoding
positions relatively requires additional step-processing on the
metadata. Therefore, decoding a CSR or CSC encoded matrix
with RLC-encoded metadata can require triple-step processing
on metadata (additional hardware cost).

7) Compressed Sparse Fiber (CSF): CSF [146] provides
a generalization of CSR for higher-order (n-dimensional)
tensors by forming a tree (with n levels). Nodes at level l
contain indices for lth mode (dimension) of an uncompressed
tensor T . Path from a root to a leaf node encodes different
coordinates of an NZ, which are stored in the nodes throughout
the path; each leaf node stores an NZ value. So, the height of
the tree is the total dimensions of T ; the width is NNZs in T .

Fig. 7(i) illustrates a mode-0 tree and corresponding arrays
of index pointers. Root nodes represent the major mode (0 or
y), and their child nodes represent the consecutive dimension
(1 or x). Like in CSR, ptr informs about a group of indices
corresponding to a dimension. For instance, ptr array at
the beginning informs that one group of three coordinates
corresponds to the mode 0 (idx stores coordinates). Similarly,
the next ptr array informs about three different groups of co-
ordinates for the next mode (dimension 1). The corresponding
idx array stores the coordinates for mode 1, separated into
three groups (marked by thick outer vertical borders).

Layering the arrays of index pointers reduces duplication
of indices [147]. Each time when a node directs to children,
it eliminates duplicating indices for the corresponding mode.
Storage benefits increase with the increase in dimensions and
redundancy among coordinates of NZs. The organization of
the data also impacts storage efficiency. For example, Fig. 7(j)
shows another ordering, which eliminates storing redundant
coordinates of column (mode 1), achieving fewer nodes. For
an n-mode CSF tensor, the storage overhead corresponds to
more than NNZ + n − 1 coordinates and typically much
less than n×NNZ coordinates. Works [146], [147] provide
further details about managing higher-order tensors with CSF
format. Processing metadata at each dimension requires two-
step processing (just like processing ptr and idx in CSR),
thereby up to 2n-step processing for an n-dimensional tensor.
So, accelerator designers may opt for CSF format when
processing high-dimensional tensors with high sparsity.

8) Huffman coding: It typically is applied for compress-
ing sparse tensors once they are quantized using precision
lowering or value sharing. After quantization, values of the
reduced range appear with different frequencies and can be
compressed further with Huffman encoding [27]. For example,
Deep Compression [27] pruned and quantized weights of
AlexNet [1] and VGG-16 [148], achieving 8b/5b indices with
a codebook of 256/32 weights for CONV/FC layers. With
Huffman encoding, it compressed the models further by 22%

TABLE VI
COMMONLY USED SPARSITY ENCODINGS BY ACCELERATORS

COO [93], [117]
COO-1D [60], [72], [107], [114], [124], [125], [129], [132]

RLC [20], [65], [66], [78], [111], [113], [115], [149]

Bitmap [37], [41], [62], [105], [109], [111], [112], [116]–
[118], [120], [121], [130]

CSR [30]
CSC [30], [42], [43], [68], [119], [123], [150]
CSF [93]

and 36% (total compression of 35× and 49×).

9) Encodings for tensors with structured sparsity:
Density-bounded blocks (Fig. 4c) can be encoded similarly
as blocks with unstructured sparsity, e.g., with bitmap [62],
COO-1D [60], or RLC. So, for the same sparsity and block
size, the overhead is similar to tile-wise processing of a
tensor with unstructured sparsity. It is usually low for small
block sizes (e.g., 8×1 [62], 1×4 in NVIDIA A100 Tensor
Core GPU [61]), since the position of each NZ is indicated
by a few bits. Coarse-grain block-sparse tensors (Fig. 4b)
can be encoded at block-granularity, which can significantly
reduce the metadata size (almost eliminated for dimensional
pruning [151]). Cambricon-S [37] used bitmap to indicate the
presence of each 1×16 dense block with a single bit. Similarly,
ERIDANUS [126] used few bytes to process each 8×8 dense
block on systolic arrays. Such encodings require indicating
the position of a dense block across rows or columns and
additional indices for higher dimensions that indicate dense
blocks packed per dimension, e.g., in block CSR (Fig. 7-k).

10) Other formats: Various encoding formats have been
proposed, which improve the compression or efficiently access
sparse tensors during execution on CPUs/GPUs (for high-
performance and scientific computing). It includes compressed
sparse blocks (CSB) [152], libsvm [153], ELLPACK [154],
diagonal (DIA) [155], dynamic CSR [156], delta-coded CSR
[157], and mode-generic and mode-specific formats [158].
Prior works including [139], SPARSKIT [143], and [147],
[159]–[161] surveyed them along with additional formats and
discussed their implications. Different libraries that provide
support for encoding the tensors and for sparse tensor com-
putations on CPUs or GPUs include MATLAB tensor toolbox
[162], Intel MKL [50], SciPy [142], and cuSPARSE [163].

B. Group-wise Encoding

One way of processing sparse tensors is to encode the whole
tensor. Then, the accelerator’s data management logic extracts
an appropriate tile (optionally decodes it) and communicates to
the PEs. In contrast, for group-wise encoding, tensor tiles are
encoded separately, based on pre-determined per-PE work. De-
pending on the mapping, each tile is typically communicated
to a unique PE (or a PE-group) during execution. Thus, the
encoding considers the dataflow, i.e., mapping of the tensor
computations onto PEs. It can make the decoding and data
extraction easier, as each group corresponds to execution on a
distinct PE (or a PE-group). EIE [42], Cambricon-X [41], and
CompAct [111] used group-wise encoding.
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TABLE VII
CLASSIFICATION OF NZ DATA EXTRACTION TECHNIQUES

Target
Sparsity

PE Arch-
itecture

Functional Unit
Operation Accelerators

One
Tensor

Scalar MAC [30], [68], [113], [121]
SIMD/
Vector

Sc-Vec-Mul [60], [66], [72]
Vec-Vec-Mul [41], [60], [123]

Both
Tensors

Scalar MAC [30], [42], [93], [114],
[116], [119], [130]

SIMD/
Vector

Sc-Vec-Mul [43], [112]
Vec-Vec-Mul [37], [105], [107]

Location of
Extraction Units Accelerators

Centralized/
Shared

[30], [37], [41], [42], [65], [66], [105], [107],
[112], [119], [121]

In-PE [42], [43], [60], [68], [72], [93], [113]–[116],
[118], [123], [130], [134]

C. On-the-fly Encoding

Accelerator designers often target only static sparsity of
weights and encode them off-line, e.g., DNN inference ac-
celerators, including EIE [42], Cambricon-X [41], and [113].
However, on-the-fly encoding is required for efficiently pro-
cessing dynamically sparsified tensors (sparse activations in
the inference and tensors in training the models). Therefore,
accelerators, such as CompAct [111], SCNN [115], NullHop
[121], Cnvlutin [72], and Sticker [164] employ an on-the-fly
encoder. Typically, before encoding a tensor, the data is re-
organized as per requirements of the group-wise encoding and
dataflow mechanism for processing the subsequent layer. So,
on-the-fly encoding is often combined with assembling the
outputs from PEs (section XI-D provides further details).

D. Optimization Opportunities

(i) Tailoring encoding formats for sparsity levels and patterns:
Various layers of deep learning models exhibit a wide range
of sparsity (inter-layer, intra-tensor sparsity variation). More-
over, even within a DNN layer, sparsity among tensors can
be different (intra-layer, inter-tensor sparsity variation). Ac-
celerators need to support such sparsity variations effectively
without incurring significant overheads for storage, encoding,
and indexing. When the sparsity range or pattern of multiple
tensors is diverse, designers can opt for the separate encoding
of different tensors (e.g., [117]). These different sparsity-
encodings can be utilized for off-chip storage, zero-guarding
the PEs, or reducing the latency of on-chip extraction to
locate intersecting NZs. When different formats are used for
performance gains, the accelerator should provide hardware
logic for decoding different tensors that are stored in different
formats (and support for any on-the-fly encoding). Such de-
coding logic may use existing data extraction mechanisms,
but it will require separate/configurable decoding logic for
supporting multiple formats.

VI. EXTRACTION OF MATCHING DATA FOR
COMPUTATIONS ON NON-ZEROS

Tensors are typically stored in the compressed format in
the accelerator’s memory. Therefore, locations of NZs that
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Fig. 9. Data extraction in subunits of Cnvlutin PE (Figure adopted from [72]).

need to be processed are determined from the metadata.
Once a matching pair is extracted (elements of two tensors
that need to be added or multiplied), a PE can proceed
for computations. Identifying effective NZs is the primary
step towards eliminating ineffectual computations due to the
sparsity of weights and/or activations. This section describes
different data extraction mechanisms (Table VII provides a
taxonomy), their management in PEs or centrally, and their
trade-offs. Then, it discusses further acceleration opportunities
to exploit various sparsity levels.

A. Non-Zero Detection and Extraction Mechanisms

A data extraction mechanism needs to feed functional units
of PEs every cycle. So, based on their processing of scalars or
vectors of NZs, Table VII categorizes extraction mechanisms
for (i) MAC operation on scalars, (ii) scalar-vector multipli-
cation, and (iii) vector-vector multiplication.

1) Indexing dense tensors by indices of NZs of a sparse
tensor: Depending on sparsity, only one tensor may be treated
as sparse and compressed (e.g., activations for Cnvlutin [72]
or weights for Cambricon-X [41] and NVIDIA A100 [61]).
So, the position of an NZ can be used for indexing the other
(i.e., dense) tensor to extract the corresponding value.

MAC: Consider the activation lane and filter lane 0 of
subunit 0 in Fig. 9, which can be visualized as processing
on a scalar PE. For an NZ streaming from the activation
lane, matching weight can be looked up and provided to
the multiplier or MAC unit. For COO-1D encoded blocks,
absolute positions of NZs can be obtained directly from
metadata. Otherwise, absolute positions of NZs need to be
computed explicitly by decoding metadata (e.g., bitmap or
RLC) through simple combinational logic consisting of AND
gates, multiplexers, and adders (e.g., in [41] and [113]).

Sc-Vec Mul: For SIMD processing, multiple arrays are
indexed with the position of an NZ. Fig. 9 shows such
mechanism used in Cnvlutin PEs [72]. Each of 16 subunits
in Cnvlutin PE featured an activation lane (streamed an input
channel vector), 16 multipliers, and 16 filter lanes. A common
NZ activation was fetched from the activation lane, and its
position was used for looking up in all 16 filter lanes to obtain
corresponding weights for multiplication.

Vec-Vec Mul: PEs of some accelerators spatially process
vectors at every cycle (e.g., with 16 multipliers and an adder
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activations via a parallel look-up, which are later communicated to a PE via
fat-tree NoC for a vector-vector multiplication. (Figure adopted from [41].)

tree in Cambricon-X). As Fig. 10 illustrates, based on positions
of NZs of a vector, a combinational logic with multiplexers can
select matching data elements to feed the arithmetic units (e.g.,
in [41], [60], [61]). An associated challenge is overheads of
parallel look-up. To exploit high sparsity, larger multiplexers
need to be used for indexing the dense tensor, as positions of
scattered NZs are likely distant. With the search length set as
256 (supports 93.75% sparsity for fetching 16 NZ elements),
a central indexing module in Cambricon-X occupied about
31% and 35% of total on-chip area and power, respectively
(exceeded total power of all 16 PEs) [41].

2) Compare metadata of sparse tensors for extracting
matching pairs of NZs: For effectual computations over
multiple compressed tensors, the extraction logic determines
pairs of NZs (intersections) by comparing indices either from
metadata streams or in multi-stage indexing.

MAC: Circuitry for extracting NZ scalars can consist of one
or more comparators (or AND gates for comparing bitmaps)
and an additional indexing logic (e.g., in ZENA [130] and
SparTen [116]). The comparators match positions of NZs, and
the indexing logic uses their outputs to extract the leading pair.
Due to the diverse sparsity of tensors, positions of NZs may
not match during comparison. Therefore, the detection logic
uses several comparators to search within a large window,
which usually can provide at least one pair at every cycle.
Priority encoders provide the leading n-pairs for feeding n
computational units (n=1 for scalar PEs). The data extraction
unit can use skip mechanisms (e.g., in ExTensor [93]) to
quickly navigate through the lanes.

Alternatively, multi-stage indexing logic is used for extract-
ing the pair. The first stage obtains a position of an NZ from
one tensor for indexing another tensor. Later stage checks if
there is a corresponding NZ in another tensor and extracts it
upon matching the positions. For example, in EIE [42], each
PE loads an NZ activation from a queue; when it does not have
any matching weights, it fetches the next activation from the
queue in the next cycle. Depending on the sparsity level and
pattern, the indexing-based design occasionally may not find
the matching data, wasting the execution cycles, i.e., functional
units in the pipeline are not utilized.

Sc-Vec Mul: PEs in EyerissV2 [43] use multi-stage extrac-
tion. Each SIMD PE fetches an CSC-coded activation and its
position, and checks positions of NZ weights. Upon match, it
forwards the activation and weights to two MAC units.
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Vec-Vec Mul: The data extraction logic to feed multiple
arithmetic units of a vector PE requires multiple comparators
followed by priority encoders or multiplexers. For example, in
SNAP architecture [107], an associate index matching module
(AIM, Fig. 11) determines the positions of NZs in case of
valid matches. Each PE of a row is interfaced with a shared
AIM. Using comparison outcomes from AIM, a sequencer in
each PE determines leading pairs of matching data, which are
then fed to three multipliers within the PE. Cambricon-S [37]
uses similar extraction logic, but its comparator array is just
ANDing of the bits due to bitmap encoding.

3) Eliminating extraction of intersecting NZs: Some
accelerators do not require extracting unstructured NZs.

Orchestrating structured computations: A few techniques
targeted high sparsity of single tensor (DNN weights). With
data pruning or transformations, they achieved coarse-grain
sparsity so that each PE can process a dense region of NZs.
ERIDANUS [126] proposed a pruning algorithm to cluster
the weights (Fig. 12a). Blocks of NZ weights are streamed to
PEs of systolic arrays for conventional processing (Fig. 12c).
Corresponding activations are kept stationary. Partial products
computed by each row of PEs are added on a separate adder
tree. When block width for structured pruning can be set
as the height/width of the systolic array, dot products can
be accumulated linearly over the systolic array itself. Thus,
structured sparsity allows executing denser blocks conven-
tionally on accelerators, while requiring additional support
to index and communicate the blocks. Adaptive tiling [127]
used a column-combining approach. For a sparse GEMM, NZ
weights were statically combined such that each column of
the systolic array could process multiple columns of input
activations. Thus, it obviated the run-time data extraction and
reduced total invocations of the systolic array by 2×–3× for
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IA4x2

x x

x

Submatrices
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accumulated on 
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Fig. 12. Computation of locally dense regions in ERIDANUS (Figure
adopted from [126]). (a) Matrix multiplication with block-sparse weights. (b)
Sub-matrices for processing on a 2×2 systolic array. (c) Multiplication of
streaming blocks (NZs) with stationary data.
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processing point-wise CONVs of MobileNet. CirCNN [165]
and C-LSTM [166] proposed executing DNN operators as FFT
(Fast Fourier Transform) on smaller block-circulant matrices.

Coordinate computation unit: SCNN [115] and Squeeze-
Flow [65] perform unit-strided convolutions as a Cartesian
product where all elements of two blocks of tensors should be
multiplied together. Due to all-to-all multiplication, no special
support is required for extracting matching pairs of NZs. How-
ever, index computation is still required to determine which
partial-sums should be accumulated with partial products. This
calculation is performed in a “coordinate computation unit”
that processes metadata (indices of NZs) and determines in-
dices of outputs. These approaches require conflict detection in
hardware since it can’t be pre-determined which accumulators
would be accessed in any cycle. Since coordinate computation
unit facilitates direct processing on compressed tensors, it may
also be used for computing block-level indices for processing
a coarse-grain block-sparse tensor.

B. Centralized vs. Distributed Management

1) Centralized: The data extraction unit can be either
centralized (and shared among PEs) or within pipelines of
PEs. Advantages of central mechanisms are: (i) PEs can be
directly provided effective NZs for useful computations [41].
It can also be used as a pre-processing unit for a PE-array
that processes structured computations, e.g., systolic arrays
or near-data accelerators. (ii) Centralized extraction in some
architectures (e.g., Cambricon-X [41]) duplicates hardware for
concurrent extractions for PEs. However, the module can be
time-shared by multiple PEs (e.g., in SNAP [107]), which
can reduce area and power. In fact, by leveraging structured
W -sparsity, the module in Cambricon-S shares extracted in-
dices among all PEs. (iii) Centralized logic extracts work
for multiple PEs, and often it is coupled with a controller
that allocates data to PEs. So, it can enable run-time load
balancing. However, a major challenge is to maintain spatial
data reuse. This is because, the centralized unit mostly extracts
data on a per-PE basis for communication to a unique PE.
So, the common data for multiple PEs cannot be multi-cast.
SNAP overcomes this limitation by sharing a module with a
row of PEs and multicasting data to PEs. The multicast occurs
first, followed by PEs communicating their metadata to the
extraction unit. Then, extracted indices are streamed back to
a PE, which uses them to obtain data from its local RF for
computations.

2) In-PE: PEs of several accelerators, such as Cnvlutin [72],
ZENA [130], and EyerissV2 [43], extract appropriate data.It
allows a controller to multicast or broadcast tensor elements
for spatial reuse. Then, in-PE logic extracts the data. However,
challenges are: (i) in-PE logic may incur ineffectual cycles for
extraction that cannot be hidden. (ii) employing inter-PE load-
balancing in the hardware may be infeasible or costlier, as the
actual work carried out by different PEs is unknown while
offloading compressed tensors to PEs (until extraction in PE
datapath).

C. Optimization Opportunities

(i) Sparsity-adaptive low-cost data extraction mechanisms:
Encodings of sparse tensors are often selected with a focus
on storage benefits. However, the computational overhead and
hardware cost for encoding and decoding tensors should be
also reduced, since they affect the performance and energy
consumption. When the data extraction cannot feed n pairs of
NZs to n computational units of a PE at every cycle, achieved
speedup can be lower from the peak. Sustaining the accelera-
tion across various sparsity of tensors can be challenging, as
different extraction schemes may be cost-effective for only a
certain sparsity range and patterns. For example, for similar
sparsity, extraction logic with a few comparators may easily
locate a pair of NZs. However, an indexing-based mechanism
may be more effective, when one tensor is highly sparse and
another is dense. Moreover, when positions of NZs in the two
tensors are considerably distant (e.g., for diverse sparsity levels
or for hyper-sparse tensors), the extraction logic needs to use
several comparators or multiplexers for parallel lookup, so that
it can extract at least one pair to feed each computational unit.
Therefore, the extraction module needs to be configurable or
consist of (and select among) multiple mechanisms so that it
can exploit a variety of sparsity at a modest hardware cost. For
the latter, it can dynamically use partial features for desired
sparsity levels/patterns (power-gated otherwise).

(ii) Tightening integration with load balance mechanism:
Central data extraction module can enable dynamic load
balancing of work among PEs (e.g., data-driven dynamic
work dispatch in GraphDynS [167]). As section X discusses,
the inter-PE imbalance can be severe due to the irregular
distribution of NZs in tensor blocks that are allocated to
PEs. Its mitigation by structuring the data may not always
be possible (e.g., for activations/weights of some models or
applications beyond deep learning). Consequently, accelerators
may attain ineffective utilization of PEs and low speedup. Al-
though some accelerators used hardware modules for dynamic
balancing, further efficiency may be achieved by enhancing the
centralized extraction module with additional low-cost logic.
This is because it already keeps the track of the data provided
to PEs, which can lead to information about the number of
operations performed by different PEs.

VII. MEMORY MANAGEMENT OF COMPRESSED TENSORS

Accelerators contain multi-banked scratchpads, which are
usually shared among PEs. Either a scratchpad is unified [23],
or separate buffers store different tensors [111], [130]. Their
sizes vary from several tens of KBs [37], [43] to several MBs
[22], [72]. Effective management of shared and local memory
highly reuses data and hides memory access latency behind
computations on PEs. This section discusses how sparsity and
reduced shapes of tensors lower reuse. However, compressed
tensors help to achieve better speedups and energy efficiency,
as more data fits in on-chip memory, reducing off-chip ac-
cesses. This section also describes how irregular accesses (e.g.,
arbitrating output activations) make management of the banks
challenging. Then, it discusses reusing intermediate outputs
via fused-layer executions and how sparsity affects it.
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Fig. 14. Impact of sparsity on data reuse opportunities for accelerating CNNs and NLP models.

A. Leveraging Data Reuse Opportunities

1) Reuse characteristics: Depending on the functionality
of layers, there can be significant reuse of tensors. Figures 13
and 14 depict reuse opportunities for different layers (early
CONV layers, later CONV layers, MLPs, DW-CONVs, PW-
CONVs, expand or reduce layers, attention mechanism). For
each tensor, the data reuse is calculated as the total number of
MACs per data element. For better visualization, reuse factors
and layers are plotted on a logarithmic scale. Input activations:
Reuse of input activations increases with going deeper in
CNNs since the number of filters increases significantly. It
is also high for ’expansion’ layers in bottleneck blocks (Fig.
14). DW-CONVs are an exception and present very low reuse
as there is only one filter. ’Squeeze’ or ’reduce’ layers present
moderate reuse for dense tensors. Reuse in FC layers or MLPs
(e.g., in encoder/decoder layers of Transformers [7]) depends
on the sizes of weight matrices (i.e., sizes of output tensors).
Weights: Since 2D feature maps in CNNs are usually much
larger than 2D weights, weight reuse can be higher by an
order of magnitude. With going deeper in CNNs, feature
maps shrinks spatially, which lowers the reuse. There is no
weight reuse for MLPs, but increasing the batch size linearly
improves the weight reuse. Video processing applications use
3D CNNs (e.g., c3d [6]), which can further increase the
reuse opportunities [168] for input activations and weights
due to additional processing steps on consecutive frames. For
NLP models such as Transformer [7] and BERT [8], Fig.
14 illustrates weight reuse for executing a sequence of 24
and 107 tokens, respectively. MatMuls in the attention-based
calculation are shown for a single head. Partial summations:
Input channels are increased as we go deeper into CNNs.
Similarly, ’reduction’ layers in bottleneck blocks involve more
input channels. Both improve the reuse of partial summations.
MLPs also usually provide high reuse due to larger input
vectors. DW-CONVs show very low reuse because partial

summations are not accumulated across input channels.

2) Impact of sparsity on reuse: Increase in sparsity can
lead to lower reuse. To determine the impact of sparsity, we
considered evaluations by Han et al. [25] for pruned AlexNet
and VGG-16 models. For recent DNNs like MobileNetV2 or
BERT models, we considered sparse models as listed in Table
III. Then, we calculated the reuse as NZ MACs per NZ of a
tensor. Fig. 14 plots the reuse opportunities for both dense and
sparse tensors of CNNs and NLP models. Since execution in
encoder/decoder modules of NLP models is repetitive, unique
layers of a single module are only shown (sparsity averaged
across all encoder/decoder modules). The figure shows that
for sparse models, reuse characteristics are preserved, but
the reuse factor decreases for almost all layers and tensors,
as compared to processing dense tensors. Primarily, this is
due to the reduced number of effectual MACs. For example,
for MLPs without batching, weight reuse can drop below
one. It means that even if a weight matrix consists of NZs,
some of them are never used due to the unavailability of
matching NZs in input activations. As an exception, reuse of
weights remains the same, when activation sparsity is absent
(e.g., EfficientNetB0 [124], BERT [8]). Similarly, with dense
weights, low or moderate reuse of activations remains the same
for DW-CONV or ’excite’ layers, respectively.

The reuse of partial summations also decreases since ef-
fectual MACs per partial summation decrease with sparsity.
Note that each output activation element still needs to be
populated or assembled before ReLU/encoding. Due to spar-
sity and fewer input channels, the reuse is low or moderate
in ’expansion’ layers. Similarly, small matrices in processing
individual attention heads exhibit low reuse. The reuse remains
high for ’reduce’ layers in CNNs or query and value processing
and FC layers in NLP models. To sum up, although sparsity
reduces the reuse of tensors, there can be high data reuse for
many layers (up to 1E + 04), which should be exploited for
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efficient accelerations.
3) Temporally reusing data through shared on-chip

memory: Like CPUs, accelerators have memory hierarchies
because applications have different working set sizes. Data
reuse can be leveraged temporally (repeatedly accessing data
from memory without accessing lower-level memory) and
spatially (providing the same data to multiple PEs without
repeatedly accessing memory). After exploiting high temporal
reuse, the highest energy is spent in upper buffers [23], [44].

B. Hiding Miss Latency Behind Computations

1) Management of tiled data in double-buffered mem-
ory: On-chip buffers are typically not large enough to accom-
modate all tensors. Therefore, loops are tiled for reusing some
tensors from buffers, while repeatedly accessing other tensors
from the off-chip memory [20], [115]. Since scratchpads are
non-coherent and their management is software-directed, data
is transferred by direct memory accesses (DMA) [22], [56].
PEs are kept engaged in useful computations by interleaving
computations with memory accesses. Such an objective is
usually achieved by double-buffering (aka ping-pong buffers)
[37], [130]. Loop optimization techniques, like loop tiling
and ordering, can determine the sizes of tensor blocks to be
managed in memories and sequence of memory accesses for
high reuse and reduced data transfers [23], [56].

2) Asynchronous communication: Some accelerators hide
the latency of communicating data to the shared/local memory
with an asynchronous mechanism that refills the memory
after some data has been consumed (e.g., in Cambricon-X
[41]). For such execution, PEs and a DMA controller may
simultaneously produce/consume data either through different
banks or at the granularity of small blocks in the same bank.
Similarly, when accessing shared memories via configurable
communication networks [43], PEs can execute in a dataflow
fashion and request partial refilling of their memory with new
data. Such mechanisms for asynchronous communication and
computations can alleviate work imbalance among PEs that
is caused by leveraging unstructured sparsity.

3) Impact of sparsity on the latency of memory accesses
and speedup: For memory-bounded execution (e.g., MLPs),
even with effective prefetching, miss penalty may be signifi-
cant. It restricts accelerators from achieving peak performance
[22]. When tensors are sparse, the amount of data that needs
to be transferred from off-chip reduces significantly, leading
to substantial performance gains. For example, Cambricon-
S reported up to 59.6× speedup of FC layers for hyper-
sparse weights. However, higher IA-sparsity did not provide
such gains (speedup saturated at about 14×) since the la-
tency of accessing weights dominated total execution time.
For processing high sparsity (e.g., 90%+) and low reuse, it
becomes challenging to engage functional units into effectual
computations. This is because, with low arithmetic intensity,
required data may not be prefetched at available bandwidth.

C. Management of Multi-Bank Memory

1) Concurrent accesses to memory banks: While single-
bank memory can be easier to manage, it is infeasible to

provide multiple ports for the PE-array with just one bank
[169]. Moreover, multi-port unified memory consumes very
high power and longer latency [170]. So, on-chip memories are
partitioned into smaller banks [43], [115], [171]. For mapping
a layer onto the accelerator, each bank is usually allocated
to only one tensor (e.g., in EyerissV2 [43]). Banked buffers
provide multiple read and write ports, allowing simultaneous
accesses to different tensors stored in different banks [20],
[172]. Sometimes, a data layout reorganization is required
before loading into memory banks. Such transformation is
done after loading it from DRAM or before writing outputs
to DRAM, which consumes additional execution time and en-
ergy. For compressed tensors, such transformation can be done
along with the data encoding [111] at alleviated overheads.

2) Arbitration and conflict management: Depending on
the indexing logic and interconnect between memory and PEs,
managing application data may require additional compilation
support or hardware logic for data arbitration and conflict
management [115], [164]. For regular memory accesses (e.g.,
dense or block-sparse data), allocation and accesses to banks
can be determined for mappings of layers. However, com-
putations on unstructured sparse data can lead to accessing
arbitrary banks and require special support. E.g., outputs from
PEs may need to be written to different banks. Moreover,
accelerators contain accumulator-buffers [115], where PEs or
their functional units are connected with memory banks via a
crossbar. The crossbar arbitrates write-back of outputs to the
appropriate bank [65], [115]. Since these partial outcomes can
correspond to non-contiguous elements in an output tensor,
bank conflicts are possible during arbitration, i.e., multiple
outputs need to be simultaneously handled by the same bank
[115], [164]. To obviate conflicts, the buffer contains more
banks (e.g., 2×N banks for storing outputs from N sources
in SCNN [115]). It alleviates collisions in hashing irregular
outputs into different memory banks. Consequently, the cross-
bar may require higher bandwidth and significant on-chip area
(e.g., 21% for a 16×32 crossbar in each SCNN’s PE).

D. Reusing Intermediate Tensors

1) Reusing intermediate tensors from large on-chip
memory: Intermediate feature map in DNNs is an output of
a layer that serves as input to later layers. It can be kept
stationary and reused from on-chip memory to reduce off-
chip traffic. Such reuse is amplified when input is the same for
multiple layers due to residual connections [2] or high cardi-
nality (e.g., ResNeXt [95]). Leveraging it can be important for
latency-bounded real-time applications. Sparsity-encoding and
quantization significantly makes such reuse opportunities more
feasible due to reduced storage requirements. Accelerators
with large memories (hundreds of KBs) such as SCNN [115]
and Cnvlutin [72], can leverage such reuse.

2) Overcoming static bank assignment: Many accelerators
process models layer-by-layer and do not leverage cross-layer
reuse, i.e., write outputs for layer L in DRAM and load them
back later as inputs for layer L+1. It is more prevalent among
accelerators with small memories. Moreover, bank assignment
for each tensor is often fixed at design time [172], which
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Fig. 15. Fusing the execution of layers can significantly reuse intermediate
activations [173] (Figure adopted from [173]).

enforces write-back of outputs and reloading them later in
other banks as inputs while processing next layers. Thus, in
both cases, output activations are not reused on-chip, causing
excessive off-chip memory traffic. To address this problem and
exploit cross-layer reuse, shortcut-mining [172] used a flexible
architecture with decoupled physical-logical buffers.

For pre-known sparsity, prior techniques for statically de-
termining the data allocation to memory banks may work well
by estimating sizes of encoded tensors. However, for dynamic
sparsity, conservative estimations may lead to inefficient uti-
lization of banks, and efficient banking for non-conflicting
accesses can also be challenging.

3) Fused-layer execution: Fused-layer CNNs [173] lever-
aged cross-layer reuse by processing a small tile of activations
such that outputs for few layers can be computed alongside
while retaining the corresponding data in the on-chip memory.
Fig. 15 shows an example for processing an input tile of
5×5 activations (C L input channels) for layer L and finally
obtaining 1×1 output activations (M L+1 output channels)
for layer L + 1. Apart from reusing intermediate outputs for
obtaining the output tile, corresponding tiles of intermediate
activations and filters are maintained in the memory and reused
partially for processing the next tiles (striding execution in
the spatial direction). Alwani et al. [173] reported reducing
off-chip transfers of input feature maps by 28% for the first
two layers of AlexNet and by 95% for the first five layers
of VGG-19. Since the cascading by storing all the filters
and input channels (dense tensors) requires high memory,
[173] applied it to only early layers. However, encoded sparse
tensors and further tiling across filters/channels allow fitting
tensors for multiple layers in the small memory, making such
reuse opportunities more feasible. The tile size and number
of layers that can be fused are bounded by memory capacity.
So, fusion parameters depend on the actual/anticipated sparsity
levels. For efficient executions, fusion parameters need to be
explored systematically with sparsity-aware dataflows.

E. Techniques for Further Energy-Efficiency

1) Look-ahead snoozing: Depending on the sparsity, en-
coding of tensors, and mapping of the layer, several banks can
be unused or inactive for certain time intervals. Accelerators
achieve further energy efficiency by power gating unused or
inactive banks. For example, look-ahead snoozing in CompAct
[111] targeted reducing the leakage power of large on-chip
SRAMs. Each bank of its activation SRAM can be power-
gated. Banks unutilized during the execution of a layer were
put in the deep sleep mode (maximal savings in leakage power,
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Fig. 16. Common NoC designs (Figure adopted from [43]).

while not preserving any data in unused banks). Further, the
period of active cycles for each bank was determined based
on the data movement schedule. Then, inactive banks were
snoozed during execution (i.e., connecting to the data retention
voltage for consuming lower leakage power).

2) Skipping memory hierarchy: Some layers do not
provide significant reuse. Data reuse is also lowered due to
sparsity and architectural choice for extracting or communi-
cating NZs. Therefore, a few accelerators (e.g., EIE [42] and
Cambricon-X [41]) obviate storing non-reusable data in the
shared memory and directly feed it to appropriate PEs (weights
for MLPs).

F. Optimization Opportunities

(i) Managing both data and metadata in unified memory:
Accelerators often contain separate buffers for metadata (po-
sitions of NZs, indirection tables for shared values). Although
such designs are easy to manage for processing tensors of
some models encoded in a specific format, they may not work
well across different levels of sparsity and value similarity,
as storage requirements vary significantly. So, designers can
explore unified memory architectures for managing both data
and metadata (including memory partitioning and bank man-
agement) and their trade-offs. It can also be leveraged to tailor
efficient designs for programming FPGAs.

VIII. INTERCONNECTS FOR DISTRIBUTING NON-ZEROS
AND REDUCING PARTIAL OUTPUTS

Network-on-chip (NoC) is required to efficiently distribute
data to PEs, exchange data between PEs (for reducing partial
outputs), and collect distinct outputs back from PEs. To pro-
cess data-intensive ML models, accelerators employ multiple
high-bandwidth interconnects for simultaneous communica-
tion of different tensors between PEs and buffers. At first,
this section describes NoCs for the distribution of operands,
which vary in terms of bandwidth and spatial reuse of the
data. With efficient NoC design, PEs can be engaged in
processing data from input FIFOs or local memory, which
gets interleaved with communication of another set of data
via NoC. This section also discusses configurable NoC designs
that can support various bandwidth requirements and spatial
reuse opportunities due to variations in sparsity and tensor
shapes. In processing sparse tensors, unstructured reduction of
partial outputs among PEs can be challenging. This section
describes different mechanisms for accumulating the outputs
temporally or spatially at PE level and PE-array level. It also
discusses configurable mechanisms for asymmetric accumula-
tion of variable-sized partial outputs.
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TABLE VIII
NOC DESIGNS FOR DISTRIBUTION OF SPARSE TENSORS

Topo-
logy

Unicast [41], [65], [72], [93], [113]–[115], [121]–[123]
Multicast [93], [107], [121]

Broadcast [37], [42], [60], [65], [66], [68], [72], [107],
[112]–[117], [122], [123], [130]

Mesh [111], [126], [127], [134]
Configurable [43], [105], [174]

Spatial
Reuse

Activations
[37], [42], [43], [60], [66], [68], [72], [105],

[107], [112]–[114], [116]–[118], [121]–[123],
[130], [164]

Weights [43], [65], [105], [107], [115], [117], [130], [164]

A. Mechanisms for Distribution of Operands

Fig. 16 shows some common NoC designs for distributing
the operands, their bandwidth, and achievable spatial reuse
[43]. Data can be reused spatially by distributing it to mul-
tiple PEs or functional units. For layers with high reuse
opportunities (Fig. 13), it lowers communication and helps
to hide the communication latency. Most accelerators leverage
spatial reuse with multicast or broadcast NoC. They consist of
configurable buses or trees that multicast the data to PEs (often
in a single cycle) [20], [105]. In contrast, the mesh interconnect
(e.g., in systolic arrays [22]) or 1D buses communicate the
data and reuse spatially with a store-and-forward mechanism.
Low-reuse tensors are distributed with unicast NoCs. Table
VIII lists common interconnect topologies used by previous
accelerators for data distribution.

Communication requirements vary significantly depending
on the sparsity of tensors, available reuse, and adopted
dataflow mechanism. Prior work [175] provides a detailed
analysis of different NoC topologies and [174] characterizes
the NoC bandwidth required for different dataflows. Similarly,
analytical tools including [57] model implications of different
dataflows on communication requirements and execution time.

1) Broadcast: Accelerators, including Cnvlutin [72], EIE
[42], and Cambricon-S [37], use broadcast NoC to reuse
activations for processing CONVs or MLPs. Similarly, in
SCNN [115], weights are broadcast to PEs for executing
unit-strided convolutions with input stationary dataflow. For
sparsity-encoded tensors, their NZs (and positions) can be
broadcast for spatial reuse, as long as the NZs are indexed
or extracted afterward (e.g., in-PE extraction in Cnvlutin
and EIE). In Cambricon-S, positions of intersecting NZs are
extracted centrally before broadcast, but due to structured
sparsity, the same extracted positions are used by all PEs. So,
NZ activations are broadcast to all PEs.

2) Multicast: Eyeriss [20], ZENA [130], and SNAP [107]
use multicast NoC to reuse multiple operands spatially. For ex-
ample, Eyeriss processed tensors with row-stationary dataflow
where PEs of a row processed the same spatial rows of
filters, and diagonal PEs processed the same spatial row of
feature maps. Eyeriss facilitated such multicasting through its
configurable NoCs, which consisted of row-wise and column-
wise controllers for 2D PE-array. Each controller could be
configured with a pre-determined tag value, which was com-
pared with the row or column tag of a packet. Upon matching
the tags, a row-wise controller forwarded the packet to asso-
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Fig. 17. EyerissV2 accelerator architecture [43] (Figure adopted from [43]).

ciated column-wise controllers, and a column-wise controller
forwarded it to the associated PE. Similarly, for processing
bitmap-coded tensors in ZENA [130], a block of activations
was broadcast to a row of PEs, and a block of weights was
multicast to PEs of the same column.

3) Mesh: A few accelerators, including Compact [111],
ERIDANUS [126], and [127], use systolic arrays with mesh
interconnects. Since the same data is forwarded among PEs in
the same row or column, such NoCs achieve the same amount
of spatial reuse as multicast NoCs. But, for sparse tensors,
efficient and correct processing becomes challenging. Hence,
pre-processing is needed to cluster appropriate NZs or index
appropriate block of structured-sparse tensor before feeding
PEs of the systolic array [105], [126], [136].

4) Unicast: SCNN [115], Cambricon-X [41], and Squeeze-
Flow [65] use unicast NoC or point-to-point links. Such NoCs
concurrently feed different elements to various PEs. They are
used when spatial reuse of a tensor is infeasible (e.g., weights
in MLPs, NZs are extracted beforehand, due to dataflow
requirements) or outputs are collected simultaneously (section
XI-A). With high bandwidth, they reduce communication
latency [41], but can incur high area and power.

5) Configurable: Communication requirements vary with
different dataflows that are effective for only some DNN layers
(section IX-B and Table 26). Further, while communication
may consist of gather, scatter, forward, or reduction patterns
[174], [176], efficient execution may demand their combina-
tion or even non-uniform patterns including multi-hop com-
munications among PEs [23]. Therefore, configurable NoC
designs are required, which can support various communica-
tion patterns that are amenable to different reuse and sparsity.
Recent designs including EyerissV2 [43], microswitch-NoC
[174], and SIGMA [105] address some of these challenges.

EyerissV2 [43] uses a novel hierarchical-mesh NoC, which
is illustrated in Fig. 17. EyerissV2 contains 16 clusters (8×2
array) of PEs and global buffers (GLBs). Each PE-cluster
contains 3×4 PEs, and each 12 kB GLB-cluster contains
seven banks for input and output activations. At the top level,
router clusters are connected through a 2D mesh, and they
enable communication among different PE-clusters and GLB-
clusters. For local communication among each PE-cluster and
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(a) (b) (c) (d)High BW High Reuse Grouped-Multicast Interleaved-Multicast

Fig. 18. Different configuration modes of hierarchical mesh network in
EyerissV2 architecture [43] (Figure adopted from [43]).

GLB-cluster, a router-cluster with ten routers is used. Each
router connects PEs with a port of the GLB cluster for
accessing GLB bank or off-chip memory (three, three, and
four routers for managing input activations, weights, partial
summations). Locally, an all-to-all NoC connects all PEs of
a PE-cluster to the routers for each data type. As Fig. 18(a)–
(d) illustrates, it facilitates multiple communication patterns
including multicast, broadcast, and unicast of the tensors. 2D
mesh topology enables inter-cluster communications, allowing
an interleaved-multicast or broadcast to all clusters.

For an N-PE accelerator, an array of microswitches (Fig.
19a) contains log2N + 1 levels with N micro-switches at
each level. Each microswitch contains a small combinational
logic for configuration and up to two FIFOs for buffering the
data during routing conflict. With small logic and storage,
data traverses through several microswitches within each cycle
[174]. All microswitches contain gather and scatter units, and
bottom microswitches (level log2N ) also contain local units
for inter-PE communication. In top microswitches (level 0),
the scatter unit connects to memory banks, and the gather
unit uses round-robin-based priority logic for arbitrating the
incoming data in a pipelined manner. In middle microswitches,
scatter units forward data to desired lower-level links, and
gather units stream the data back. In bottom microswitches,
scatter and gather units stream the data, and local units
connect adjacent PEs. Fig. 19(b)–(d) shows how configurable
microswitches can enable various communication patterns.

SIGMA [105] used Benes topology with configurable
switches (Fig. 20a). For N source and destinations, the in-
terconnect contains 2 log2N + 1 levels, each with N number
of 2×2 switches. Each switch receives two control signals to
determine whether to forward data vertically and/or diagonally.
After combining communication requirements for distributing
all elements to desired multipliers, switches can be configured
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Fig. 20. (a) Flexible dot product engine in SIGMA accelerator [105] features
a data distribution NoC with configurable switches interconnected via Benes
topology. (b)–(c): Configuration of the interconnect facilitates different unicast
and multicast communication patterns. (Figure adopted from [105].)

to forward the data, as shown in Fig. 20(b)–(c).

B. Mechanisms for Reduction of Partial Outputs

Computation primitives of ML models require reduction
(accumulation) of partial outputs from PEs or their functional
units. It can be done temporally and/or spatially (Table IX).

1) Temporal: All the reductions for computing an output
scalar are performed on a single PE (or a functional unit)
during different cycles. Accumulations are done temporally
when different PEs compute distinct outputs, e.g., for output
stationary dataflow. The temporal reduction makes the process-
ing of sparse tensors simple since PEs update partial outputs
in their private memory or registers without communicating
to other PEs via an additional interconnect. Therefore, it is
adopted by many accelerators, including EIE [42], ZENA
[130], and SparTen [116]. However, temporal accumulation
requires indexing the buffer for reading/writing partial out-
puts or accumulating computations in the output register (of
MAC unit). So, it involves register/memory read and write
operations, which consume higher energy than integer arith-
metic [23], [44]. Besides, using local accumulator buffers for
vector/SIMD functional units (e.g., in SCNN [115]) requires
support for arbitration of partial outputs.

2) Spatial: Partial outputs can be reduced spatially for an
output scalar. It can be either done by functional units within a
PE (e.g., adder-trees in Cambricon-X/S to sum up partial prod-
ucts) or inter-PE communication via a separate interconnect
(e.g., forwarding in systolic arrays). Inter-PE spatial reduction
usually requires communication among neighboring PEs and
is typically achieved through a mesh or similar topology [20],
[127]. Spatial reduction obviates buffer accesses and improves
energy efficiency (e.g., by 2×–3× [129], as compared to the
temporal reduction on scalar PEs). These linear or tree-based
reductions are typically symmetric. However, a major chal-
lenge is to enable asymmetric and asynchronous reductions of
a variable number of partial outputs, for adapting to high spar-
sity, tensor shape, or target functionality (e.g., DW-CONV).
This is because, an efficient dataflow may require some of
the interconnected functional units or PEs to process partial
outputs for distinct output elements (e.g., different depth-
wise groups); all partial outputs cannot be reduced altogether.



21

a a a b b b b b b c c c c d d d
0   1    2    3     4    5    6    7    8     9  10   11  12 13  14  15

3-input
adder
switch

mult.
switch

double
bandwidth

bidirectional
forwarding links

(a)

a a a b b b b b b c c c c d d d
0   1    2    3     4    5    6    7    8     9  10   11  12 13  14  15

0

1

2

3

adder
level

0 2

1

3

4

5

6

7

8

9

10

11

12

13

14

adder-ID
N:2 mux

2-input
adder
switch

mult.
switch

partial
outputs

(b)(with forwarding)

Fig. 21. Configurable spatial reduction trees: (a) Augmented reduction tree
in MAERI (Figure adopted from [177].) (b) Forwarding adder network in
SIGMA (Figure adopted from [105].)

Hence, configurable interconnects are needed. Otherwise, for
high or hyper sparsity, functional units cannot be fed enough
NZs and are poorly utilized. Note that structured sparsity
can alleviate imbalance by inducing patterns such that all
PEs process the same number of NZs. However, configurable
mechanisms are still required to support different dataflows
for the variations in functionalities or tensor shapes.

3) Spatio-temporal: Partial outputs can be reduced spatially
and temporally and locally (within PEs) and globally (across
PEs). Spatial and temporal reduction of outputs depends on
the mapping of computation graph onto PEs [56]. In spa-
tiotemporal reduction, different PEs or their functional units
compute partial outputs at every cycle or a few, which are,
at first, reduced spatially. The resultant partial output is then
reduced temporally by updating the previous partial output
in the memory. E.g., when data streams through PEs of a
systolic array, there is an inter-PE spatial reduction of partial
outputs (via PEs of each column). Then, the bottom PE-row
provides the reduced partial outputs to accumulator buffers
(CompAct [111], TPU [22]). PEs of SNAP [107] perform
spatiotemporal accumulation locally, where partial products
are first spatially accumulated through a configurable adder-
tree and then accumulated in PE’s memory over time.

4) Temporo-spatial: In temporospatial reduction, PEs com-
pute partial outputs and reduce them locally over time. Then,
they are collected later and accumulated spatially via inter-
connect before further processing (e.g., write-back, encoding).
For example, PEs of a cluster in EyerissV2 [43] first locally
accumulate partial summations. Then, partial outputs can
be accumulated across vertically connected clusters. SCNN
[115] PEs compute output tiles corresponding to distinct input
feature maps stored in their buffers. Outputs are temporally
reduced by indexing the accumulator buffers. Then, overlap-
ping fractions of incomplete outputs are exchanged among
neighboring PEs for reduction. SNAP [107] also performs
temporospatial reduction at PE-array (core) level. Its PEs accu-
mulate outputs locally over time, which are reduced spatially
across horizontal/diagonal PEs by a core-level reducer.

5) Configurable: MAERI [177] and SIGMA [105] employ
configurable reduction trees for efficient and asymmetric spa-
tial reduction of partial outputs. So, it can be useful for spatial
processing of unstructured sparsity and variable-sized vectors
for dot products. The augmented reduction tree in MAERI
(Fig. 21a) allows an asymmetric reduction of partial outputs
with configurable adder switches and bidirectional forwarding
links. Each 3-input adder switch can receive two partial
outputs from the previous level and one via a forwarding

TABLE IX
MECHANISMS FOR ACCUMULATIONS OF PARTIAL OUTPUTS

Temporal [42], [66], [68], [93], [113], [114], [116],
[118], [121]–[123], [130], [133], [134]

Spatial (intra-PE) [37], [41], [105]
Spatial (inter-PE) [65], [66], [105], [177]
Spatio-temporal [107], [111], [129]
Temporo-spatial [20], [43], [107], [115]

Configurable [105], [107], [177]

link, and it can add and forward them. Plus, upper-levels of
the tree (near root) have double bandwidth than lower-levels,
allowing simultaneous collection of multiple reduced outputs.
The forwarding adder network in SIGMA (Fig. 21b) enables
similar configurable reduction but at reduced area and power.
Instead of 3-input adders, it uses 2-input adders and N:2 mux
for selecting the inputs. Also, adders at the 0th level allow
bypassing of partial products to the next level.

C. Optimization Opportunities

i) Low-cost flexible interconnects for accommodating spatial
reuse opportunities, dynamic communication requirements,
various sparsity, and different precision: Variations in data
reuse (Fig. 14) are caused by the tensor size, functionality
(e.g., stride, separable convolution), batch size, and sparsity
of tensors. The communication mechanism needs to leverage
available reuse by supporting various multicast and unicast
patterns [43], [174]. Moreover, the distribution, inter-PE com-
munication, and collection of the outputs can be done asyn-
chronously and concurrently. These require the interconnect
switches to support dynamic management (priority arbitration
and congestion) at low cost. Furthermore, communication
among distant PEs may be required (e.g., for store-and-forward
or exchanging outputs during sparse computations). Finally,
depending on sparsity and precision, the bit-width of the meta-
data and NZ value can differ significantly. Communicating
different sizes of data and metadata can be facilitated by
configurable interconnect buses and their interfacing with PEs
and memory. For instance, in EyerissV2 [43], a 24-bit bus can
supply PEs either three 8b uncompressed values or two pairs
of 8b NZ and 4b metadata. Thus, configurable interconnect
topologies should be explored for effectively serving various
communication requirements. FPGAs can also be leveraged
for designing accelerators with tailored interconnects.

ii) Programming of configurable interconnects and design
exploration: Configurable interconnections can support var-
ious communication patterns and dynamic data movement
for sparse computations. But, compilation support is needed
to program them as they often contain parameterized multi-
level switches and switches with many-to-many links between
source and destination (e.g., [105], [174]). Depending on the
interconnect topology and optimized dataflow, the compiler
may need to select efficient paths for distributing data from
source to destination switches. Additionally, the underlying
topology (e.g., lack of multi-hop connectivity) may not support
some dataflows (e.g., spatiotemporal accumulation of partial
outputs from distant PEs in the absence of multi-hop con-
nectivity). Further, a systematic methodology for mapping
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Fig. 22. Overview of the PE pipeline for processing sparse and value-
approximated tensors (Figure adopted from [107]).

communication onto interconnect topology can enable design
space exploration of interconnects needed for accelerating
target ML models, allowing minimum overhead of run-time re-
configuration of the interconnect to support various dataflows.

IX. PE ARCHITECTURE DESIGN

PE architecture consists of functional units, local memory
(RFs or SRAMs), and local control (instruction buffer or finite
state machine). Fig. 22 shows pipeline stages for processing
sparse and value-approximated tensors. Depending upon PE’s
interface, it either gets data from the interconnect (typical) or
directly accesses off-chip memory via DMA transfer. At every
cycle or few, a PE (a) processes an instruction or events based
on its state [128], [164], [178], (b) fetches data from local
memory or interconnect, (c) computes tensor elements via
functional unit, and (d) writes the intermediate result to local
memory or interconnect. PEs may contain special-function
modules (e.g., for ReLU or sigmoid computations [68], [115]).

Processing compressed tensors can impose significant ma-
neuvering efforts for PE design. For example, reusing tensors
temporally through local memory (e.g., in EyerissV2 [43],
SNAP [107]) alleviates overheads of repeatedly accessing
compressed tensors via memory hierarchy and decoding them.
However, it requires communicating data to PEs before ex-
tracting NZs. Thus, the PE may require additional hardware
for extracting or correctly indexing NZs (section VI). Addi-
tionally, the selection of functional units is affected by the
number of NZs that can be fed for various sparsity of tensors,
support for mixed-precision, and functionality of the layers. In
such various scenarios, a single dataflow may not always be
effective [43], [179] and can lead to significant acceleration
loss. So, PE datapath needs to be adaptive for supporting
multiple dataflows optimized for different layers and sparsity.
Further, techniques for leveraging computation reuse due to
value similarity often require enhancements in the design. PEs
may also post-process outputs or generate additional metadata
for communicating outputs. So, an efficient pipeline needs to
hide pre-processing and post-processing latency.

A. Functional Units

1) Scalar PEs: Table X lists accelerators based on their
functional units for scalar, SIMD, or vector processing. Many
architectures contain an array of scalar PEs; PE datapath
contains a pipelined MAC unit (e.g., EIE [42], SparTen [116]).

2) SIMD/Vector PEs: PEs of Cnvlutin [72] and Cambricon-
S [37] contain multiplier arrays and adder trees. By performing
dot products at every cycle, they can deliver high throughput.
Moreover, accumulation through adder-trees reuses data spa-
tially, which lowers energy consumption (by 2×–3× [129]) as

TABLE X
PE ARCHITECTURES FOR SPARSE TENSOR COMPUTATIONS

Scalar [20], [30], [42], [65], [66], [68], [93], [109], [113], [114],
[116], [117], [119], [121], [122], [128], [130], [133]

SIMD /
Vector

[37], [41], [43], [60], [72], [105], [107], [112], [115],
[118], [123], [125], [129]

compared to temporal accumulation on scalar PEs by reading
and writing partial summations via local memory. However, a
major challenge is the inefficient utilization of multipliers and
adders, which often leads to ineffectual computation cycles
and acceleration loss. This is because, for high sparsity, enough
NZs may not be extracted to feed all multipliers at every cycle.
For example, a sensitivity analysis for Cambricon-X [41]
determined that, for hyper W -sparsity, it accelerated CONVs
by about 8× (out of 16× peak speedup). The utilization
may be improved by employing larger indexing or extraction
modules (increased on-chip area and power). Alternatively,
PEs can be designed with fewer multipliers to sustain the
scalability and efficiency over a wide sparsity range.

While SIMD or vector PEs achieve spatial reuse, due to
fixed designs, they are utilized poorly when executing some
functionalities like DW-CONV. The efficiency of SIMD PEs
is further affected by high sparsity, as functional units of the
PE require synchronization, and there may not be enough
effectual NZs to feed all of them. Configurable functional
units can overcome such limitations. For example, PEs of
SNAP architecture [107] use a configurable adder-tree. It
processes inputs from three multipliers and computes different
combinations of partial summations. With multiple adders and
multiplexers, the PE can concurrently process different partial
summations (vs. gather in adder-tree) without high-bandwidth
crossbars. Such configurable designs can support different
DNN operators (e.g., DW-CONVs).

3) Multiplier-free PEs: Accelerators, such as ZENA [130]
and [113], use multiplier-free PEs for high energy efficiency.
These PEs process tensors of very low-precision (binary or
ternary values) or logarithmic quantization. So, they replace
multipliers with simpler arithmetic like 2’s complement (in-
verters and adders or subtractors) [113], [180] or bit-wise
shift and additions [103], [181]. However, one challenge is
to maintain the accuracy of DNNs, as aggressive quantization
often drops top-1 and top-5 accuracy, e.g., by 0.1% [181] –
5% [103]. By trading off the flexibility with simple hardware,
supporting various models can be challenging.

4) Bit-adaptive computing: Precision requirements for
targeted accuracy can vary for different models [108], [182],
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TABLE XI
PRECISION OF SPARSE TENSORS SUPPORTED BY ACCELERATORS

binary/ternary [113], [134]
int8 [111], [116]

int16 [20], [37], [41], [42], [65], [68], [72], [107], [112],
[114], [115], [121], [123], [125], [127], [133]

logarithmic [130], [132]
bit-adaptive [108]–[110], [183], [185]

FP8 [66]
FP16 [66], [122], [134]
FP32 [30], [105], [134]
FP64 [93], [119]

which can be supported by PEs with bit-adaptive computing.
Bit-serial computing: Albericio et al. [108] showed that

zero bits in NZ activations (8b or 16b precision) can be more
than 50% and proposed the Pragmatic accelerator to leverage
sparsity of activation bits. Fig. 23(b) shows the bit-serial
computation of an inner product with AND gates, adder tree,
and bit-wise shift of partial output. AND gates are serially
fed 1b activations (variable precision) and bit-parallel 16b
weights (fixed precision). Fig. 23(c) shows the processing of
only NZ activations in Pragmatic (essential bits indicated by
their positions). Laconic [183] achieved further accelerations
by processing only NZ bits of both activations and weights.

Bit-composable computing: Bit-fusion [184] employed
fusion units consisting of an array of BitBricks. The fusion
units can be configured for processing multiplications of 2b,
4b, 8b, or 16b operands. For processing NZs, PEs of CNN
accelerator Envision [109] used a single-cycle N-subword-
parallel multiplier, followed by an N×48b/N reconfigurable
adder. The subword-parallel design allowed the configuration
of MAC units for processing the data of 4b, 8b, or 16b. SPU
architecture [110] employed DGRA, a decomposable CGRA,
for efficiently processing stream-join accesses. The DGRA
PE and interconnect switches enabled decomposing up to
four 16b sub-word operands. DGRA also supported accessing
sub-word data from the scratchpad. For DNN training with
mixed-precision and sparse tensors, PEs of LNPU contained
configurable MAC units that can process FP8 or FP16 tensors.
Table XI lists precisions of sparse tensors that are supported by
different accelerators. The precision indicates the bit-width of
input operands (activations and weights). For MAC operations,
accumulators usually produce high-precision output, which
can be down-scaled or truncated afterward.

5) Clock-gated PEs: PEs can be clock-gated when not
used for executing a layer and for ineffectual computations.
For example, Eyeriss [20], Thinker [128], and Minerva [74]
use zero detection for clock gating the datapath in the PE
pipeline. PEs check whether the value being read is zero (or
compare with a threshold, e.g., in MNNFast [131]). Based
on the comparator output, their clock gating logic prevent the
MAC datapath from switching in the consecutive cycle, which
reduces energy (e.g., it saved power consumption of Eyeriss
PE by 45%). Zero-skipping through flags in Envision [109]
and Sticker [164] achieved similar savings.

6) Optimization opportunities:
(i) Exploring efficient designs of functional units for vari-
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Fig. 24. Commonly used dataflow mechanisms for executing convolution
layers on hardware accelerators.

ous sparsity ranges/patterns and functionality: Utilization of
vector/SIMD units can drop significantly due to unstructured
sparsity [107] and functionality beyond structured dot products
(e.g., DW-CONV). So, for exploring design hyperparameters
such as the number of functional units, designers need to
consider the impacts of sparsity, data extraction mechanism,
required synchronization among computational units, and con-
figurations required to support various functionalities. More-
over, for low sparsity, designs should deliver performance
at par with a sparsity-oblivious design. For example, for
processing dense tensors, SCNN [115] achieved 79% of the
performance and consumed 33% higher energy as compared
to the baseline accelerator for processing dense tensors. So,
designers may ensure that additional features for exploiting
sparsity and configurable components do not increase the
critical path latency and are power-gated if not used.

B. Dataflow Mechanisms

1) Background: The efficiency of executing a layer onto
hardware accelerator depends on the computational, commu-
nication, and memory access patterns, which are commonly
referred to as dataflow mechanisms [44], [56]. A dataflow
refers to the spatiotemporal execution of a model layer (nested
loop) on architectural resources [23], [56]. Here, spatial ex-
ecution corresponds to how PEs exploits parallelism in the
computation graph and processes different subsets of ten-
sors. Temporal execution drives the data accessed throughout
memory hierarchy and data communication via interconnects.
Thus, depending on the functionality and tensor dimensions,
dataflow can significantly impact the utilization of resources,
data reuse, and latency hiding for memory accesses and data
communication, and consequently, the execution time and
energy consumption [43], [44], [56], [57], [186].

One way to classify dataflows is by what data is kept “sta-
tionary” in registers or local memory of PEs (and reused fully
before eviction), while other data is being iterated over. Some
commonly used dataflow mechanisms are output stationary,
weight stationary, input stationary, row stationary, and no local
reuse. Fig. 24 shows an example of convolution and the layout
of the stationary data for mapping the convolution with these
dataflows. In weight stationary dataflow, each weight (of a
2D filter) remains stationary on a unique PE, and reused
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Fig. 25. Low utilization of a 16×16 PE-array in (a) coarse weight stationary
dataflow when executing depth-wise layers and (b) input stationary dataflow
for executing later layers of deep CNN models (Figure inspired by [43]).

many times, during processing activations (corresponding to
the same input channel C). By processing a unique weight,
each PE produces partial summations for output activations,
which are communicated by PEs and accumulated before
outputs are written back to the memory hierarchy. Thus, input
and output activations are accessed from off-chip memory
(via shared scratchpad and PE’s local memory) several times,
while weights are continuously reused. After reuse, a new
set of weights is loaded from memory, and the execution
repeats. Weight reuse is higher in processing larger feature
maps (CNNs) and multi-folded for processing data in a batch
(e.g., images for CNNs, tokens of sentences for NLP models).
Fig. 26 lists such characteristics of different layers.

Dataflows can be applied at a coarser level, where PEs
process a data block or plane (1D/2D/3D). In a coarse weight
stationary approach [23], each PE processes weights of an
entire 2D filter (dimensions C and/or M are laid out spatially
on PEs). Rows and columns of PEs process the data corre-
sponding to unique input and output channels, respectively.
So, activations need to be multicast to the PEs of a row,
different weights need to be provided to each PE, and partial
summations for output channels can be accumulated vertically
[23]. Similarly, in an input stationary dataflow, unique acti-
vations (or blocks of input feature maps) remain stationary
and are reused. In an output stationary dataflow, each PE
produces a unique output activation (corresponding to the same
or different output channel) [44]. By processing spatial data
and input channels first, partial summations are accumulated
and reused in the memory of each PE. With the temporal
accumulation of outputs on PEs, the output stationary dataflow
does not need to reduce partial outputs spatially by collecting
them from appropriate PEs, which is otherwise challenging
for unstructured sparse data (section VIII-B). Therefore, many
accelerators opt for such dataflow. In no local reuse dataflow,
input operands are streamed to PEs, but they are not stored
in PE’s memory [22], [44]. In row stationary dataflow, PEs
of the same row process the same weights (a row of a filter),
diagonal PEs process the same row of input activations, and
partial summations for rows of the output feature map are
accumulated through vertically connected PEs [20]. Thus,
different dataflows uniquely exploit the spatial parallelism and
reuse of different tensors.

Dataflow optimization: As dimensions of tensors are often
large, many ways exist for spatiotemporally executing a layer
onto the computational and memory resources of an accelera-
tor. Optimization of the dataflow is important as it can signif-
icantly impact the performance and energy consumption [23],

Layers Examples Characteristics Implications on Execution

Early 
CONV

AlexNet / 
MobileNet

CONV1

Large spatial feature maps High weight reuse

Less filters Low input reuse
Less channels Low reuse of partial sums

Low W and IA sparsity Higher data movement

Last 
CONV

ResNet-50 
CONV4/5_x

Small spatial feature maps Low weight reuse

More filters High input reuse

More channels High reuse of partial sums

High/Moderate W/IA sparsity Usually compute-bounded

MLP
VGG-16 FC,

FC0 in encoders 
of BERT

Smaller activation vectors No weight reuse w/o batching

Large weight matrix Memory/comm. bounded

High/low W/IA sparsity Reduced data movement

Depth-
wise 

CONV

MobileNets
d/w,

Xception,
EfficientNetB0

Single filter

No channel-wise reduction

Unpruned, fewer parameters

Low reuse of inputs

Low reuse of partial sums
Low computation, high 

communication req.
Inefficient PE-array utilization
w/o group-parallel processing

Point-
wise 

CONV

MobileNet s/1, 
Fire module in 

SqueezeNet

1x1 convolution kernel
Reduced reuse of W, IA

structured sparsity limited to 
channel and filter directionModerate sparsity 

Residual 
Layers

ResNet-50,
U-Net

Concatenation of outputs additional off-chip accesses

additional inputs from 
previous layers

opportunity for reusing 
intermediate feature maps

Group 
CONV

ResNeXt Aggre-
-gation Blocks

Parallel paths 
due to cardinality

opportunity for input reuse 
with fused executions

3D CNN C3D
Temporal processing 

across frames
heavy computations,
increased data reuse

Attention

Encoders in
Pruned

Transformer,
BERT

Highly/hyper sparse weights 
in query, value processing

Reduced computations and 
data movement

Multiplications of dense, 
small matrices for each head

High collective data 
movement for all heads

Fig. 26. Characteristics of different DNN layers pertaining to hardware
execution (Figure inspired by [43], [57]).

[56], [57]. For instance, mappings with similar performance
can consume an order of magnitude higher energy [186] or
vice versa. Further, as Fig. 26 shows, reuse characteristics,
tensor dimensions, functionality, and sparsity can vary signifi-
cantly for different DNN layers. Hence, a single dataflow may
not always be effective for acceleration. Fig. 25 provides two
such examples that lead to low PE-array utilization. The coarse
weight stationary dataflow processes different 2D filters on
different PEs. So, it is inefficient for DW-CONV. Similarly,
output-stationary or input-stationary dataflows can result in
low utilization of PEs for processing later layers of deep
CNNs. With the vast space of execution methods and the
growing development of new models (with variations in tensor
dimensions), it becomes hard for non-experts to figure out
optimized execution methods and designs. Therefore, many
optimization tools have been proposed recently including
Timeloop [186], dMazeRunner [56], MAESTRO [57], and
Interstellar [23]. They analytically model the execution of
accelerators to estimate execution metrics and evaluate a set
of mappings from the pruned space of various dataflows.

2) Sparsity-aware dataflows: Dataflows for processing
sparse tensors are typically similar to those for dense ten-
sors while processing the data in compressed format. For
correct functionality, dataflow executions are facilitated by
extraction/orchestration of NZs, which is done either in PEs
[43], [115], on a different module [37], or by a separate
controller. For example, SCNN [115] used PT-IS-CP dataflow.
It processed planar tiles of feature maps with input station-
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TABLE XII
DATAFLOW MECHANISMS OF ACCELERATORS

Input Stationary [105], [113], [115]

Output Stationary
[30], [37], [41], [42], [60], [65], [66],

[68], [72], [93], [107], [109], [112],
[116]–[118], [122], [123], [133], [134]

Weight Stationary [105], [126], [127]
Coarse Weight Stationary [72], [114]

Row Stationary [20], [43]

ary dataflow. SCNN’s PT-IS-CP-sparse dataflow extended the
PT-IS-CP. It processed only NZ activations and weights in
compressed format while accessing them from memory and
performing computations. The coordinate computation module
in each PE ensured that partial products generated by all-to-all
multiplications of NZ inputs and weights were accumulated
correctly and stored in appropriate buffers. Table XII lists
sparsity-aware dataflow mechanisms used by accelerators.

EyerissV2 [43] used an enhanced row-stationary dataflow.
By using statically known sparsity of weights, more NZ
weights were allocated in local memories and global scratch-
pads. For example, each PE can store up to 192 NZ weights.
Mappings of CONV and FC layers of AlexNet with row-
stationary dataflow allocated 64–174 NZ weights, which cor-
responded to a total of 132–480 weights in the dense format.
With in-PE data extraction logic, each PE only processed NZ
values from CSC-encoded data. Thus, sparsity-aware dataflow
can be optimized with the pre-known (or expected bounds of)
sparsity and value similarity.

3) Optimization opportunities:
(i) Dataflow optimizations accounting for storage and com-

putational overheads for metadata and codebooks: Sparse and
value-shared tensors are processed along with metadata (indi-
cates positions of NZs) and codebook (common values shared
among tensor elements), respectively. It requires additional
processing, e.g., buffer management, communication via inter-
connects, and indexing the appropriate values. Depending on
the dataflow, such processing can amplify the execution costs,
which needs to be optimized. Existing tools for optimizing
dataflows target dense tensor computations. Accelerators EIE,
SCNN, and Cambricon-S process sparse tensor computations
but with customized dataflows. Hence, frameworks for map-
ping and design explorations need to consider the sparsity and
value similarity of tensors and their variations across layers/-
models. Such tools can include additional costs corresponding
to storage, communication, and extraction in their analytical
models. Explorations supporting multiple dataflows can help
to achieve efficient designs for handling different functionality
and variations in sparsity, shapes, and quantizations of tensors.

(ii) Sparsity-aware resource partitioning: Acceleration of
deep learning models is scaled by simultaneously processing
multiple layers. It is done either by partitioning resources
[171] of a scaled-up accelerator or on multiple accelerators
(scale-out) by leveraging model- or data-parallelism [187].
Techniques for resource partitioning aim to highly reuse data
from the on-chip memory of accelerators. It involves evaluat-
ing many-to-many mappings between layers and accelerators.
Such optimizations can be crucial for several applications

TABLE XIII
TECHNIQUES FOR LEVERAGING VALUE SIMILARITY.

Value sharing Weights [37], [42], [98], [117], [189]
Activations [99], [190]

Computation reuse
and memoization

Partial [98], [99], [125], [189]–[192]
Full [149], [188], [193]

Early termination of computations [194]–[196]

that require low latency, real-time processing, or high frame
rates (e.g., processing the frames for multiple object detec-
tion models of an autonomous vehicle’s perception system).
Exploiting sparsity can provide further opportunities due to
fewer computation, communication, and storage.

C. Leveraging Value Similarity

Several techniques have leveraged value similarity for accel-
erating DNNs by value sharing and computation reuse (Table
XIII). Video frames exhibit high similarity spatially (among
neighboring pixels) and temporally (over consecutive frames)
[99], [188]. After precision lowering, values of limited range
repeat frequently [27], [98], which are further compressed by
maintaining a codebook of unique values [42]. With repetition
of values, computation (outputs) can be reused, either partially
during processing a layer [98], [99] or by skipping process-
ing of a whole layer [149]. This subsection describes such
techniques and corresponding hardware enhancements.

1) Weight similarity: Prior studies have shown that weights
can be approximated with a small set of values. Hegde et al.
[98] showed that for 8b weights of DNNs, each NZ value
mostly repeated more than 10 times and even more than 100
times in later layers of AlexNet and ResNet-50 models. Han
et al. [27] pruned weights of DNNs with k-means clustering
for value sharing. Shared unique values were represented with
4 or 5 bits without dropping classification accuracy. Local
quantization (applying clustering separately over different sub-
tensors) can achieve even smaller codebooks [37]. Leveraging
the weight similarity can compress pruned models further by
up to an order of magnitude [27], [37].

Value-shared weights are processed by augmenting the
PE datapath with a weight decoder (e.g., in EIE [42]). For
processing NZ weights, the PE provides the encoded index of
the weight to the decoder and obtains shared value. Depending
on the lookup mechanism and total bits to be extracted at every
cycle, the decoder can incur considerable area and power costs
(e.g., for Cambricon-S [37], 32.56% and 3.98% of the total
on-chip area and power, respectively).

2) Input similarity: Audio or video frames can contain
high similarity spatially or temporally. This is because a
speech signal can be quasi-stationary for a short interval.
Also, successive executions of DNNs process overlapping
windows of audio frames for context extraction [99]. Feature
maps for CNNs exhibit high spatial correlation [190]. High
input similarity enables only storing unique values and reusing
computations by differential computing over non-similar data.

Riera et al. [99] showed that after uniform linear quantiza-
tion of inputs of DNNs (e.g., C3D [6], EESEN [197], CNN
for self-driving cars [198]), about 61% of input activations are
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indirection tables, partial summations of activation groups, and memoization
of partial outputs. (Figure adopted from [98].)

the same as previous execution, and 66% computations can be
avoided. Their accelerator maintains centroids of quantized in-
puts and the index corresponding to each input element. Then,
consecutive frames are processed layer-wise with differential
computing. For example, for each activation of an FC layer
(of a new frame), the accelerator calculates centroid and index,
and then it compares calculated centroid to memoized centroid.
If the difference is zero, then output from the previous execu-
tion is reused, and the next activation is processed. Otherwise,
a new value of the index is updated in the buffer, and new
values for output activations are computed by accumulating
multiplications of weights with the difference.

3) Computation reuse (partial during processing a
layer): UCNN [98] leverages the repetition of weights by
forming activation groups (summations of activations) that
share the same weight. It also reuses activation sub-groups,
i.e., memoizes partial summations of activations that can
repeatedly appear across different filters. Fig. 27(a) illustrates
an example. Weights A and C can be shared among corre-
sponding activation groups. For producing activation groups,
subgroups like (r+s) can be reused with memoization. So, an
output activation is calculated by indexing a unique weight
value and corresponding activation groups. Indirection tables
provide indices of the unique weight and grouped activations.
Fig. 27(b) shows corresponding modifications in the PE dat-
apath. UCNN reported up to 24% area overhead for a PE
and 1.8× speedup for CNNs as compared to execution on a
baseline accelerator without exploiting weight repetition.

Silfa et al. [191] showed that for RNNs (e.g., DeepSpeech2
[199], EESEN [197]), the relative difference between the
output activations over consecutive frames was about 23%.
Leveraging temporal similarity of outputs saved about 24%
computations with negligible accuracy loss. For predicting
whether an output activation leads to a value similar to the
previous output, their technique extended each RNN layer with
a binary neural network (BNN). With BNN outputs correlating
to actual outputs, execution of much smaller BNN layers led
to an efficient prediction of the temporal output similarity.

4) Computation reuse (skip processing of entire layer): A
few techniques predict outputs based on previous computations
and skip heavy computations of some layers. Gonçalves et

al. [188] showed that 18%–81% of computations in AlexNet
CONV layers could be reused due to spatial (intra-frame)
and temporal (inter-frame) redundancy of the inputs. They
leveraged such reuse with memory look-ups and avoided
executing CONVs. For YOLO-v3 [4], it processed only 22%–
32% frames while incurring negligible accuracy loss. Buckler
et al. [149] proposed skipping heavy processing of some CNN
layers for several frames (predicted) and executing precise
computations periodically for remaining (key) frames. For
predicted frames, their algorithm estimated motion in the input
frame. It used results for incrementally updating the output
saved from the last key frame. Unlike other value similarity
techniques that incur changes in PE datapath, such techniques
can be efficiently executed on a separate module (e.g., EVA2

[149]) or co-processor, while other modules of the same or
different accelerator process sparse tensors of DNN layers.
EVA2 identified 78%–96% of the frames for AlexNet and
40%–71% of the frames for Faster-RCNN as predicted frames
while processing the YouTube-BoundingBoxes dataset [200].

5) Early termination of computations by predicting
outputs: SnaPEA [194], SparseNN [195], and CompEND
[196] reduce ineffectual computations by early prediction of
the usefulness of outputs. They check whether computations
contribute to the effective inputs for the subsequent layer
(e.g., ReLU or max-pooling). If not, their PEs terminate such
computations. To reduce computations corresponding to output
sparsity, [194] statically re-ordered weights based on their
signs. PEs of its SnaPEA architecture contained prediction
activation units (with each MAC), which checked the sign-
bit of the partial summation and raised a termination signal to
notify the controller as the sign-bit was set.

6) Optimization opportunities:

(i) Joint exploration of spatial and temporal similarity of
inputs, weights, and outputs: Depending on the model’s con-
figurations (depth, layer dimensions, cardinality) and domain-
specific data, opportunities for value sharing and computation
reuse (at both fine-grain and coarse-grain levels) in processing
activations and weights can vary considerably. A joint explo-
ration for different tensors can help to identify storage-Ops-
accuracy trade-offs for efficient acceleration.

(ii) Leveraging value similarity through separate process-
ing: Determining value similarity and leveraging computation
reuse often demands modifications in PE-array, increasing the
accelerator’s area, latency, or power. Designers may obviate it
by providing a separate and compact module for differential
computing that handles necessary pre-processing or post-
processing and can be interfaced with the PE-array and on-
chip memory. Upon requirement, it can trigger execution on
PE-array for structured computations. Further, algorithms ex-
pressing the functionality of ML layers/models may be defined
in terms of differential computing (i.e., execution is conditional
to the input mismatch, reused otherwise). With efficient accel-
erator/model co-designs for differential computing of tensors,
accelerators may attain structured effectual computations with
fewer overheads of metadata or memoization.
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TABLE XIV
CLASSIFICATION OF LOAD BALANCING TECHNIQUES

Software
Directed

Data Clustering [65], [126], [127], [136]
Data Reorganization [116], [123], [130]

Model Regularization [37], [60]–[62], [68], [118], [137]
Hardware
Module

Work Prefetching [41], [42], [68]
Work Sharing [66], [89], [130], [137]

X. LOAD BALANCING OF EFFECTUAL COMPUTATIONS

Depending on the distribution of zeros, the inter-PE or intra-
PE imbalance can cause low utilization of PEs or their func-
tional units, which increases execution time and energy con-
sumption. This section summarizes sources of such imbalance,
and then it discusses different software-directed techniques
or hardware designs for balancing the computations. Table
XIV categorizes these techniques. Software-based techniques
facilitate structured computations by forming local regions of
dense elements, sorting the data by combining same-sparsity
tensor blocks, or regularizing models with structured pruning.
Although requiring low/no additional hardware, they are often
limited to static W -sparsity. Accelerators dynamically balance
computations by prefetching work in FIFOs or memory, ob-
viating fine-grained synchronization of computations on PEs.
Some accelerators achieve further run-time balance across PEs
by a central hardware module for work sharing.

A. Sources and Impact of Imbalance

1) Inter-PE imbalance: Zeros in different tensors can be
scattered, and their positions may not be determined statically
(e.g., unstructured IA-sparsity). For most accelerators, work
to be performed concurrently by PEs is fixed statically. Also,
executions with conventional dataflows usually require syn-
chronization among PEs (e.g., in SCNN [115], Cnvlutin [72]),
which is achieved by barriers implemented in software via
instructions or in hardware via PE architecture or controller
logic. Consequently, computations per PE during each execu-
tion pass can vary drastically (inter-PE load imbalance). So,
many PEs may finish their computations early, get stalled, and
wait for the next set of data due to synchronized execution,
while other PEs still process the previously allocated data.
It increases execution time and energy consumption. Kim et
al. [130] analyzed the distribution of NZ weights in AlexNet
CONV3 filters and showed that in an execution pass, NZs
processed by the leading and trailing PEs differed by up to
6.5×. Similarly, up to 40% cycles were idle for executions
of PEs in SCNN architecture [115]. Sensitivity analysis for
EIE showed that, without any load balance, about 47% of the
cycles were idle for the 64-PE accelerator [42].

2) Intra-PE imbalance: For SIMD or vector PEs, intra-PE
load imbalance can also contribute to a significant acceleration
loss. With unstructured sparsity of one or more tensors, enough
NZs may not be extracted to feed all the functional units
within PEs, which causes intra-PE load imbalance. Sensitivity
analysis for the SNAP accelerator showed that with moderate
sparsity, utilization of multipliers falls below 80% and up to
20% for 90% sparsity [107]. Similarly, SCNN [115] reported
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Fig. 28. Distribution of NZ weights for executing CONV1 of AlexNet [201]
with coarse weight stationary dataflow on a 4×3 PE-array. Distribution shows
NZ weights in different workgroups (each workgroup contains NZs for 12
PEs): (a) without load balance (b) after sorting. (Figure inspired by [130].)

below 80% utilization of multipliers for all GoogLeNet [96]
layers and 20% for the last two inception modules. Moreover, a
few architectures use PE designs with multiple subunits in each
PE. For SIMD processing, a subunit works in synchronization
with other subunits of the same PE, e.g., in Cnvlutin [72],
[60], and [112]. With unstructured sparsity, multipliers and
accumulators in some subunits can often be idle, while trailing
subunits process computations.

B. Software Directed Load Balance

1) Clustering of NZs for populating dense data regions:
As described in section VI-A, a few techniques targeted high
W -sparsity. They used structured pruning or data combining
approaches for clustering the tensor elements in locally dense
regions that can be dispatched to PEs for processing in a
conventional manner [126], [127]. Thus, they achieve high
PE utilization and lower invocations to accelerator resources.
However, such techniques may not be effective when algo-
rithms cannot generate or pack structured sparse data (e.g.,
dynamic unstructured sparsity).

Concise convolution rules (CCR) [65] partitioned sparse
convolutions into effective and ineffective sub-convolutions for
processing locally dense regions of filters and input feature
maps. It eliminated a majority of ineffectual computations
and their storage (for VGG-16, achieving reduction of about
79% and 51%, respectively) [65]. Sub-convolutions after CCR
transformation were executed on the SqueezeFlow accelerator
[65]. However, with PEs performing only all-to-all multiplica-
tions, it may not support generic tensor operations; it can be
challenging to extend CCR methodology for other algorithms.

2) Data reorganization before work allocation: In ZENA
[130], each PE processed a different set of filters for processing
a sub-workgroup. For balancing computations among these
PEs, filters were sorted by sparsity and allocated to PEs such
that all PEs executed filters of similar sparsity.

To determine the efficacy of such sorting, we considered
AlexNet [201] for ImageNet classification. We obtained the
pruned model through the neural network distiller [202] with
a pruning algorithm similar to [25]. For accelerating AlexNet
[201] CONV1 layer with coarse weight stationary dataflow,
Fig. 28 presents distributions of NZs in filters before and after
reorganization. For processing 64 filters of size 3×11×11 on
4×3 PEs, we consider execution through 16 different work-
groups. Each workgroup contains NZ weights for concurrent
processing of four filters and three channels on 12 PEs (up
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to 11×11 on a PE). The next workgroup is initiated once
all PEs entirely use previously allocated weights. Fig. 28(a)
shows that before data re-organization, the total NZ weights
allocated to PEs within workgroups differed by up to 21.4×
(5 vs. 107 for 11×11 filters) and 6.09× on average. Fig. 28(b)
shows that after sorting the weights (both filter-wise and input
channel-wise), it leads to an almost equal number of NZs for
computations onto 12 PEs during each workgroup. The total
allocated NZ weights differed by only 1.36×.

After static sorting, ZENA achieved about 20%–32% more
acceleration for CONV layers of AlexNet and VGG-16 [130].
Depending on the sparsity, distribution of NZs, and achievable
sorting granularity, the work allocated to PEs may differ
considerably even after sorting. Moreover, such transforma-
tions are usually feasible only statically. So, ZENA also used
dynamic work sharing, which we discuss in section X-C.

3) Accelerator-aware regularization of the model: Re-
cent accelerators, including Sparse Tensor Cores in NVIDIA
Ampere architecture [61], [60], and [118], execute models
pruned with k:n block-sparsity (e.g., 2:4 sparsity supported by
Ampere [61]). Their PEs contain multiplexers that use indices
of k NZ weights to select k out of n dense activations. Then,
functional units process extracted values. Like k:n block-
sparsity, ESE [68] used a load-balance aware pruning for
RNNs. It considered sub-matrices to be processed by different
PEs and induced the same sparsity into all sub-matrices.

In some architectures, all PEs receive the same set of NZ
activations. They process them with their unique weights and
produce distinct output activations. One such architecture is
Cambricon-S [37] which used a coarse-grained pruning of
weights. The block size for pruning depends on the total
number of PEs (16). Over local regions, the pruning removed
all connections between an input activation and all (16) output
activations. So, when PEs processed output neurons, they
processed the same number of NZ input activations and
weights for computing MACs.

C. Load Balancing with Hardware Structures

1) Facilitating asynchronous computations by prefetch-
ing allocated work: One way to improve PE utilization (in the
presence of load imbalance) is to prefetch the allocated work
for PEs and avoid their fine-grain synchronization. So, even
if there is a different amount of work (e.g., MACs per input
activation), all the PEs may perform effectual computations
at the same time (e.g., work on different activations). Thus,
each PE can be engaged in performing some computations,
before it runs out of the available data. This can be achieved
by offloading more data into the FIFO or memory of each
PE. For example, in EIE [42], activations are broadcast to
FIFOs of all PEs. Once a PE finishes multiplying an activation
to corresponding NZ weights or does not find any matching
weights, it processes the next activation from its queue. FIFO
size of 8 or higher ensured each PE almost having an NZ
activation to process (during 87%–91% of computation cycles)
and lowered idle time of PEs from about 47% to 13% [42].

Cambricon-X [41] allows asynchronous communication of
weights to PEs. A centralized data extraction mechanism
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Fig. 29. Load balance mechanism in LNPU [66] (Figure adopted from [66]).

provides NZ activations to each PE via a unicast network,
and compressed weights are loaded in the memory of each
PE (2 KB). The memory access port is assigned to each PE
for a short period, where it fetches several chunks of weights
via DMA transfer. Depending on the prefetching interval and
unstructured sparsity, each PE may asynchronously work on
useful computations in most of the execution cycles.

While asynchronous execution improves the utilization of
PEs, the work allocated to PEs is still fixed. Plus, in-PE data
fetching mechanisms may restrict PEs from finding the pend-
ing work in other PEs and sharing it. For highly imbalanced
computations, straggling PEs can still be the bottleneck.

2) Centralized load balance: In some accelerators, data is
multicast to one or more rows (or columns) of PEs. A central
logic processes the metadata (indices) of the tensor tiles to be
distributed along with control signals from PE-rows and finds
out work distribution. Then, it feeds the fast-acting rows/lanes
of PEs and facilitates work sharing. For instance, ZENA [130]
allocates work dynamically through down counters. Differ-
ent PE-groups (e.g., PE-rows) process the same filters with
different activation tiles. A central distribution mechanism
contains down counters that store the number of remaining
activation tiles for each PE-group. When a leading PE-group
finishes its work (counter is zero), it obtains an activation
tile from a straggling group (has the biggest count value)
and then continues processing output activations. The work
sharing improved acceleration by about 10% for CONV layers
of AlexNet and VGG-16 [130]. Memory port contention may
occur when multiple leading groups simultaneously attempt to
fetch the same set of input activation tiles. ZENA’s execution
mechanism overcomes this problem by reassigning only one
activation tile at a time (to the leading group) and performing
reassignments only during bus idle time.

LNPU [66] uses an input load balancer (ILB) which is
shared among PE-rows. As Fig. 29 shows, ILB contains
address generator units to determine the indices of the com-
pressed elements that need to be fetched. Once ILB fetches
them, the skip-index decoder unit determines the appropriate
indices for data extraction. It pushes them along with the
NZ values into the FIFO of a PE-row. It also calculates
bitmaps, which are used for pushing the data (indices and NZs)
selectively into FIFOs of PE-rows at run time. Due to ILB,
PE utilization in LNPU was increased by 2%–26% for 10%–
90% sparsity of the inputs (activations or their gradients) [66].
Thus, centralized load balancing mechanisms can leverage the
information about data allocation for PEs and provide equal
work to PEs or feed the fast-acting PEs during run-time.
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D. Optimization Opportunities

(i) Software-level or hardware/software/model co-design
optimizations for low-cost load balance: Most accelerators
lack special support to balance computations among PEs, e.g.,
to avoid area and power overheads due to special hardware
logic. (a) One technique is to reorganize the data [116], [130].
But, it can mostly exploit only static W -sparsity for inference
at no/low hardware cost. So, we may require additional co-
design optimizations for regularizing dynamic sparsity. (b)
For pre-known or estimated sparsity, sparsity-aware mapping
optimizations for accelerators may identify efficient dataflows
that sustain high PE utilization. (c) When sparsity may be
regularized at modest accuracy loss (e.g., for several DNNs),
accelerator/model co-designs can induce the balance. It can be
either done via structured pruning of activations or refactoring
the operators (nonlinear activations, batch normalization [77],
or quantization of outputs). Consequently, the co-designs may
achieve structured computations over both activations and
weights to an extent, leading to further accelerations.

XI. WRITE-BACK AND POST-PROCESSING

Once PEs process allocated data, they write (partial) outputs
back via interconnect. For unstructured sparsity, managing
write-backs (WBs) can be challenging because different PEs
can produce outputs of different sizes at different times. More-
over, operations like ReLU, pooling, and batch-normalization
need to be performed on outputs. They are usually not
performance-critical like CONV or MLP. So, they can be
either executed on PEs before WBs of outputs (in SCNN [115],
Cambricon-S [37], and EIE [42]) or post-processed on central
modules (in MAERI [177], ZENA [130], and SqueezeFlow
[65]). Central modules often assemble the outputs collected
from PEs, transform data for the next layer, and encode sparse
outputs on the fly.

A. Write-Back from PEs

1) Simultaneous WB: Cambricon-X [41] and SCNN [115]
use fat-tree networks or point-to-point links, which allows
simultaneous WBs from multiple PEs. Whenever ready, PEs
can execute in a dataflow manner and immediately write out-
puts back after computations. This is important for processing
unstructured sparsity because different PEs may process a
different number of NZs and produce different amounts of
output values for WB at different time intervals. With such
high bandwidth, communication time can be reduced and
interleaved with computations, which is important for process-
ing models with low arithmetic intensity. These PEs write to
a central module for post-processing (e.g., in Cambricon-X
[41]), the on-chip memory [41], or off-chip memory (e.g., in
SCNN [115]). Although simultaneous WBs are faster, such
a fat-tree network can incur considerable overhead due to
increased bandwidth and inefficient bandwidth utilization in
some scenarios. So, accelerator designs can instead use a
common bus that is time-shared among multiple PEs; PEs can
write the data back turn-wise or asynchronously.

2) Sequential WB: PEs in several accelerator designs
operate in a lock-stepped manner, where data blocks com-

mon to PEs are broadcast to them, and all PEs synchronize
for processing the outputs (idle when done). Synchronized
execution can allow WB in a specific sequence (e.g., a PE
with the lowest PE-index writes the data first and so forth).
It makes the programming of the accelerator easier. It also
obviates overheads of specialized hardware/software support,
which is required otherwise for asynchronous WB.

3) Asynchronous WB: With unstructured sparsity, PEs
process a different amount of data and can asynchronously
request WB during the execution. For facilitating such support,
accelerator designs can employ additional hardware logic. For
example, ZENA [130] used a common bus for multicasting
blocks of filters and feature maps to PEs and collecting the
output. Output buffers of PEs were flushed to the memory
during the idle period of the bus, which avoided bus contention
between broadcasting activations from memory and WB of
partial summations. For prioritizing the requests from PEs to
access the bus for WB, it determined the PE groups with a
high number of pending output tiles.

B. Data Assembling

PEs often process large output tiles. So, they perform fine-
grained assembling of outputs locally. For example, SCNN
[115] PEs use a coordinate computation unit that determines
appropriate indices for arbitrating partial outputs to the local
accumulator buffer. In other accelerators, PEs produce meta-
data and supplies it with outputs for correctly indexing the
memory (e.g., in ZENA [130]) or assembling outputs on a
central module (e.g., in Cambricon-X [41], CoNNA [114]).
The central module uses the metadata (e.g., output coordinates)
from PEs or pre-known indices of PEs to assemble collected
outputs before WB or post-processing. In some designs, data
assembling is done by global accumulators that reduce par-
tial summations and update outputs into appropriate memory
banks (e.g., SNAP [107]). The data assembling logic typically
also handles data layout transformation (e.g., in [111], [114]),
which is required for processing the subsequent layer.

C. Data Layout Transformations

1) Data reorganization: Accelerators are often designed for
efficient vector or matrix multiplications. So, for processing
convolutions, they (e.g., [72], [111]) require data layout in
NHWC (channels-first) format [203], which is also used for
processing on CPUs and GPUs. Fig. 30(b) shows data reorga-
nization for striding execution of the convolution of Fig. 30(a).
It shows iterative processing of the spatial data with channels-
first processing. For example, an output activation 1A can be
processed by fetching a block containing all channels of the
first filter and ifmap. Vectors corresponding to channels can
be processed iteratively. Sparse data blocks are also processed
similarly but with computations on appropriate NZs.

2) Transformations to Toeplitz matrix: Processing with
NHWC format allows executing CONVs as iterative vector-
vector multiplications, but it requires hardware support to
fetch appropriate blocks. So, for processing CONVs as sparse
GEMMs, a few accelerators, including ERIDANUS [126] and
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Fig. 30. Data layout transformation for executing convolution. (a) Convolution
of two 2×3×3 feature maps with two 2×2×2 filters. (b) Reorganizing data
for striding execution. (c) Transforming feature maps into Toeplitz matrix.

[127], transform sparse feature maps into Toeplitz matrix with
im2col transformation [204].Once transformed matrices are
obtained and sparsity-encoded, accelerators compute sparse
matrix multiplication. Fig. 30(c) illustrates the transformation
for tensors of Fig. 30(a). It shows that neighborhood values
for computing an output with a 2D CONV are combined
as a vector. For multiple input channels of ifmaps or filters,
corresponding elements are stacked in column-vectors or row-
vectors. However, transforming ifmap into Toeplitz matrix
duplicates neighborhood data and yields storage overhead
(Fy×Fx times higher memory for unit-strided CONV).

D. On-the-fly Encoding

Several accelerators, such as SparTen [116], SqueezeFlow
[65], Eyeriss [20], and CompAct [111], use an encoding
module. Such a module encodes blocks of output tensor on
the fly and typically before WB. It reduces accesses to off-
chip memory significantly [20], [65]. On-the-fly encoding
allows efficient processing of dynamically sparsified tensors,
i.e., sparse activations for DNN inference and tensors in the
training of models. It typically consumes low on-chip area
and power, e.g., 2.5% and 3.06% for the RLC encoder-
decoder unit in SqueezeFlow [65] and 0.3% of the total on-
chip area for the RLC unit in Eyeriss. The complexity of the
hardware logic required for encoding depends on the coding
format (section V). For example, single-step processing for
bitmap, RLC, or COO-1D incurs low overhead. A central
bitmap-encoder in SparTen consisted of comparators (XNOR
gates) for determining NZs and additional logic for shifting
NZs to populate data vector. The encoding overhead may be
lowered for block-sparse tensors, which requires indicating
only positions of blocks of NZs.

Sticker [117] facilitates sparsity-aware encoding. It uses
three modes to encode DNN tensors of high, medium, or low
sparsity with COO, bitmap, and dense format. The three modes
are controlled by two threshold values. Since weights can be
processed offline for DNN inference, they are pre-encoded in
appropriate formats. To encode activations online, Sticker uses
a sparsity adaptor module. . It consists of a sparsity detector, a
four kB buffer, an encoder, and a controller. Sparsity detector
contains counters that count zeros in activations of consecutive

16 channels. After the detector processes output activations
(obtained after ReLU), they are stored in the buffer. Then,
the controller determines the encoding mode with which the
encoder can encode the data in the buffer.

XII. COMPILER SUPPORT

This section provides an overview of the compiler support
for sparse deep learning accelerators. It focuses on:
• Intermediate representations (IRs). They determine what

type of code the compiler can support and what kind of
compiler transformations it can perform.

• Support for sparse tensors. This subsection discusses com-
pilation challenges in supporting sparse deep learning and
compilers developed to overcome these challenges.

• Compiler optimizations. This subsection provides an
overview of state-of-the-art techniques that allow the com-
piler to apply advanced optimizations and generate the most
efficient code from high-level neural network descriptions.

• Accelerator ISAs and code generation. This subsection fo-
cuses on accelerator ISAs (e.g., instruction set for high-level
tensor operations) and the compiler support for machine
code generation for accelerators.

A. Intermediate Representations

IR determines which types of code can be represented by the
compiler, whether it can support sparse tensor computations,
the types of code transformations that can be done, and even
the scalability of the compiler.

1) Need for high-level representations: A common ex-
ample of low-level IR is LLVM IR which is well suited
for low-level code optimizations such as register allocation
but not for many high-level code optimizations needed for
optimizing sparse deep learning. This is mainly because low-
level IRs do not preserve information about loop structures
and data layouts, and reconstructing such information is not
trivial [205]. That is why many deep learning compilers such
as TVM [206], Tiramisu [205], and Halide [207] apply many
code optimizations on a high-level IR (an IR that has loops
and represents multi-dimensional tensors). This is also one of
the motivations for creating MLIR [208], which serves as a
high-level IR for low-level compilers like LLVM.

2) Mathematical abstractions of code: While previous IRs
have focused on representing program statements and program
structure, many compilers use an additional mathematical
representation (abstraction) to represent iteration domains1

and array accesses of statements. These mathematical rep-
resentations are usually used in conjunction with the IR to
simplify iteration domain and array access transformations.
This subsection presents two major families of mathematical
representations and compares their strengths and weaknesses.

2.A. Polyhedral representation. It is a unified mathemat-
ical representation for the iteration domains of statements,
code transformations, and dependencies. It relies on two main
concepts: integer sets and maps. Integer sets represent iteration

1The iteration domain of loop iterators in a loop is all possible values that
loop iterators can take.
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domains. Maps are used for representing memory accesses and
transforming iteration domains and memory accesses.

An integer set is a set of integer tuples described using affine
constraints. An example of a set of integer tuples is

{(1, 1); (2, 1); (1, 2); (2, 2); (1, 3); (2, 3)}
Instead of listing all the tuples, we can describe the set
by using affine constraints over loop iterators and symbolic
constants as follows:

{S(i, j) : 1 ≤ i ≤ 2 ∧ 1 ≤ j ≤ 3}
where i and j are the dimensions of the tuples in the set.

A map is a relation between two integer sets. For example,
{S1(i, j)→ S2(i+ 1, j + 1) : 1 ≤ i ≤ 2 ∧ 1 ≤ j ≤ 3}

is a map between tuples in the set S1 and tuples in the set S2.
More details about the polyhedral model and formal definitions
can be found in [209]–[211].

Polyhedral compilers: Notable polyhedral compilers for
deep learning include Tiramisu [205], Tensor Comprehensions
[212], Diesel [213], and TensorFlow XLA [214] (through
affine MLIR dialect [208]). General-purpose compilers that
support deep learning include PENCIL [211], Pluto [215],
Polly [216], PolyMage [217], AlphaZ [218], and CHiLL [219].

Strengths of the polyhedral representation:
• Unified representation: It eliminates friction within compiler

IRs and greatly simplifies design of code transformations.
• Instance-wise representation: The representation granularity

is instances of statement executions where each instance is
a single execution of a statement during one loop iteration.
Instance-wise representation includes iteration domains, data
dependencies, data accesses, and code transformations,
which allows the compiler to have a precise representation.

• Support for the whole class of affine transformations: It al-
lows applying any affine transformation on iteration domain
and data accesses. An example of a complex affine transfor-
mation is iteration space skewing, which allows extracting
parallelism from multi-layer recurrent neural networks to
increase hardware occupancy.

• Non-rectangular iteration domains: The representation al-
lows compilers to naturally express non-rectangular iteration
domains (i.e., iteration domains with an affine conditional).

Weaknesses of the polyhedral representation:
• Limited support for non-affine code: The polyhedral model

mainly represents code and transformations using sets and
maps described using affine constraints. So, it does not nat-
urally support code that leads to non-affine constraints. This
includes code with non-affine loop bounds, non-affine array
accesses, and non-affine conditional. While the classical
polyhedral model does not support non-affine constraints,
recent work has extended the polyhedral representation to
support non-affine array accesses, non-affine loop bounds,
non-affine conditionals [220], and parametric tiling [221].
The efficiency of these techniques has been demonstrated
in practice by PENCIL [222] and Tiramisu [205].

• Slower compilation: While polyhedral operations are
precise, they are computationally expensive. So, polyhedral
compilers are slower than non-polyhedral compilers. Recent
techniques reduce the number of statements by clustering
groups of statements into macro-statements and scheduling

macro-statements instead of individual statements [223],
reducing the compilation time notably.

2.B Non-polyhedral representation. A common non-
polyhedral representation used in deep learning compilers is
interval-based representation. It uses intervals and interval
arithmetic to represent iteration domain and code transforma-
tions, respectively. Using intervals, N-dimensional loops are
represented with N-dimensional boxes, e.g., iteration domain
of a loop nest can be represented as: (i, j) ∈ ([0, N],[2, M-2]).

Non-polyhedral DNN compilers: Their examples include
TVM [206], Halide [207], DLVM [224], and Latte [225].

Strengths of interval-based representations:
• Better support for non-affine code: Non-polyhedral compil-

ers can naturally support non-affine code transformations
such as parametric tiling (loop tiling with parametric tile
size). This is because the interval-based representation does
not rely on using affine sets and affine relations to represent
the code or dependencies. However, non-polyhedral com-
pilers also have limited support for non-affine code (e.g.,
indirect memory accesses) and code transformations.

• Faster compilation: Operations on intervals are computation-
ally less expensive than polyhedral equivalent operations on
sets of integer points, which yields faster compilation.
Weaknesses of interval-based representations:

• Limited expressiveness: Interval-based non-polyhedral com-
pilers cannot naturally represent non-rectangular iteration
spaces (e.g., when bounds of loop iterators depend on a
condition). It is also hard to perform certain complex affine
transformations such as iteration space skewing.

• Lack of support for programs with cyclic data-flow graphs:
To simplify checking the legality of a schedule, many
interval-based compilers assume that the program has an
acyclic dataflow graph. This prevents users from expressing
many programs with cyclic dataflow. For example, when
a value produced by a loop is read by another loop,
Halide [207] does not allow fusion of the two loops (with
compute_with command). While it avoids illegal fusion,
it prevents legal loop fusions in common cases. Polyhedral
compilers avoid these over-conservative constraints by using
dependence analysis [226] to check for the correctness of
code transformations, which enables more schedules. While
interval-based compilers can also implement non-polyhedral
dependence analysis (by computing dependence distance
vectors [227]), it is not as precise as polyhedral dependence
analysis [226].

B. Support for Sparse Tensors

1) Challenges in supporting sparse tensors: While com-
piler support is needed in general for targeting ML hardware
accelerators with diverse features, sparse tensor computations
with various dataflows especially need further support. The
code for manipulating sparse tensors exhibits non-static loop
bounds, non-static array accesses, and conditionals, which are
difficult to analyze at compile time. The following pseudo-
code shows one example of a direct convolution with sparse
tensors (bounds of j and accesses of in are non-static).
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for each output channel c_o
for j in (W.row_ptr[c_o], W.row_ptr[c_o + 1])
{

coeff = W.value[j]
offset = W.col_idx[j]
for y in (0, out_H)
for x in (0, out_W)

out[c_o][y][x] += coeff*in[y*out_W+x+offset]
}

2) DNN compilers supporting sparsity: Their examples
include Tiramisu [205], Acorns [81], and Taichi [228].

Tiramisu supports W -sparsity by extending the polyhedral
model in a way similar to [220]. For example, a non-affine
conditional is transformed into a predicate that is attached to
computation. The list of accesses of the computation is the
union of the accesses of the computation in the two branches
of the conditional, which is an over-approximation. During
code generation, a pre-processing step inserts the conditional
back into generated code. Non-static loop bounds and tensor
accesses are represented as parameters in the polyhedral
model. Statements that define those parameters are inserted
just before the original statements that have non-static code.
These techniques introduce approximations in the compiler.
Their efficiency was demonstrated by [220] and confirmed by
PENCIL [222] and Tiramisu [205].

Acorns [81] optimizes the CNNs with IA-sparsity. It fuses
operators in a computation graph of a deep CNN, followed
by sparse layout conversion (which ensures that dense/sparse
tensors produced by each operator are compatible with the next
operation), followed by code optimization and code genera-
tion. Acorns introduces a data layout for exploiting the sparsity
structure of input data in certain domains (face detection, Li-
DAR, etc.) where only certain data regions are NZs. For code
optimization and generation, the compiler processes a set of
template codes for CNN operators (e.g., convolution, pooling)
and applies optimizations such as loop tiling, vectorization,
and weight packing. It does not implement advanced loop-
nest optimizations like iteration space skewing.

TACO [229] uses a specific representation (iteration graphs)
to generate code for sparse tensor operations and uses a
scheduling language to guide the code optimization.

C. Compiler Optimizations

To generate efficient code for NN operators, a compiler has
to apply a large set of complex code optimizations. It includes
operator fusion; multi-level tiling and register blocking which
improve data reuse; loop reordering, array packing [230] and
data prefetching; loop skewing which enables the extraction of
wavefront parallelism from multi-layer RNNs; parallelization;
loop unrolling; vectorization; full/partial tile separation; tuning
optimization parameters to the target architecture (e.g., tile
sizes or loop unrolling factors). There are two major families
of optimizing compilers: compilers that allow semi-automatic
code optimization and fully automatic compilers.

1) Compilers with semi-automatic code optimization
(scheduling languages): The main idea in these compilers is
to separate the algorithm from optimizations. A program, in
this case, has two parts: The first part specifies the algorithm
without specifying how it is optimized. The second part speci-
fies how the algorithm is optimized (transformed). This is done

through a set of high-level scheduling commands for common
optimizations. Halide [207], Tiramisu [205], and TVM [206]
are examples of compilers that allow semi-automatic optimiza-
tion. The main advantage of this approach is it allows a user
to have full control over how code should be optimized. This
is important because fully automatic optimization techniques
do not always succeed in providing the best performance.

Semi-automatic deep learning compilers usually provide
a library of highly optimized deep learning operators. The
compiler then only needs to decide automatically whether
to apply certain optimizations such as operator fusion. All
other optimizations are encoded manually in the library using
scheduling commands. This minimizes the number of deci-
sions that the compiler needs to make and thus guarantees the
best possible performance. Note that semi-automatic compilers
usually also have automatic optimization modules, but such
modules can be disabled if necessary.

2) Fully automatic compilers: Tensor Comprehensions
[212] and Diesel [213] are examples of fully automatic com-
pilers for deep learning. Other examples of fully automatic
compilers include PENCIL [211], [222], Pluto [215], and Polly
[216]. All of them use Pluto [215] algorithm to automatically
optimize code (choosing the schedule of statements). The main
idea of Pluto algorithm is to use integer linear programming
to model the problem of automatic code optimization where
constraints are dependencies of the program and the objective
function is the minimization of the distance between producer
and consumer statements. Other compilers such as PolyMage
[217] use a custom algorithm for automatic optimization.

All these compilers do not have a scheduling language
and therefore do not allow the user to have fine-grain con-
trol over optimizations. Although fully automatic compilers
provide productivity, they may not always obtain the best
performance. Performance can be sub-optimal because they do
not have a precise cost model to decide which optimizations
are profitable. For instance, the Pluto [215] algorithm does
not consider the redundant computations, data layout, or the
complexity of the control flow of generated code.

Cost models for automatic code optimization: The goal of
an automatic code optimization pass in a compiler is to find the
best combination of code optimizations that minimizes the ex-
ecution time. This can be modeled as a search problem where
the search space is a set of combinations of code optimizations.
Then, the compiler needs a search technique and a cost model
to evaluate each combination. Classical compilers use hand-
tuned cost models [231], while others use machine learning to
build cost models [232]. Both of these models do not precisely
capture hardware complexity (different memory hierarchies,
out-of-order execution, hardware prefetching, communication
latency, etc.). Instead, state-of-the-art models are built using
deep learning for better accuracy [233], [234]. For example,
Ithemal [234] is a cost model that predicts the throughput
of a basic block of x86 instructions and gets less than half
the error of state-of-the-art hand-tuned models (llvm-mca in
LLVM [235] and Intel’s IACA).
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D. Accelerator ISAs and Code Generation

Accelerators, such as Cambricon-X [41], Scaledeep [236],
Thinker [128], and DnnWeaver [184], expose a high-level ISA
where some instructions perform tensor operations (e.g., dot
product, matrix-matrix multiplication, convolution, pooling,
and sigmoid). They simplify the compiler’s mission because
it can invoke high-level operations instead of generating and
optimizing a low level-code. However, it still has to manage
data copies automatically. This subsection describes such high-
level ISAs used by accelerators and machine code generation.

1) Instruction sets: For tensor computations on hardware
accelerators, ISAs typically feature instructions for arithmetic,
logical, and data transfer operations with matrix, vector, and
scalar data. Layers of ML models feature loops iterating thou-
sands of times; dynamic instances of repetitive instructions can
significantly increase the bandwidth requirements for deliver-
ing them to PEs at each cycle and the energy consumption.
To mitigate such overheads, accelerators are designed with
an array of vector or SIMD PEs. It allows PEs to process a
single instruction for performing multiple computations on the
blocks of tensors. Alternatively, PEs contain additional control
logic such that they process an instruction once, but repeatedly
perform the sequence of execution for a certain interval.

Cambricon ISA for machine learning [237] contains in-
structions for matrix and vector processing with arithmetic
and logic operations, control (conditional branch and jump),
and data transfer. Each operand of the instruction is either
an immediate value or one of the 64 32b general-purpose
registers. The registers are used for temporarily storing scalars
or register-indirect addressing of the on-chip scratchpad mem-
ory. The tensor blocks are communicated between computa-
tional units from the on-chip scratchpad that is transparent
to the compiler and programmers. The instructions support
commonly used primitives in various ML models, e.g., mul-
tiplication, addition, subtraction, and division operations on
matrices and vectors. It also supports max-pooling with a
vector-greater-than-merge instruction and provides dedicated
instruction for random vector generation with uniform distri-
bution of values within [0, 1]. For supporting weight update
during the training of DNNs, Cambricon provides additional
instructions such as outer product, scalar-matrix multiplication,
and matrix-matrix addition. However, it lacks support for
managing data in the local memory of PEs and configuring
NoC for communication in various dataflows. Moreover, it
does not provide specific instructions for handling sparsity,
e.g., predicated execution of encoded sparse data.

The instruction set for Sticker [164] consists of instructions
for high-level operations. For processing each layer, one of
the instructions is executed only once. It configures instruction
registers and common control signals that correspond to the
sparsity levels and tensor dimensions. Then, at a certain time
interval, a dynamic 32b instruction executes for computing
convolution over data blocks on PE-array. Meanwhile, the
accelerator controller distributes the next instruction, if there
is no collision between the current and the next instruction.
It allows hiding the execution of other dynamic instructions
including the write-back and encoding of outputs and trans-

ferring data between on-chip and off-chip memory.

2) Finite state machines (FSMs): Some accelerators use
FSMs for PE executions. The parameters of FSMs or PE’s
control logic correspond to tensor shapes and target func-
tionality, and they are configured once (e.g., through bit-
streams [20]) before executing a model or a layer. Accelerator
controllers (which usually initiate the data movement between
on-chip and off-chip memory and configure PEs and NoC)
can also contain FSMs. For example, in Thinker architecture
[128], a finite-state controller is used for configuring the
accelerator at three levels, i.e., PE-array level, model layer
level, and PE level. Configuration word for PE-array level
handles partitioning of the PE-array, and it points to the
memory address of configurations for model layers. Each
configuration word for a layer contains information about
tensor dimensions and their memory addresses. Lastly, layer
configurations for PEs correspond to PE functionality and the
interval (loop iterations) of computations and idle time.

3) Library support and code generation: The instructions
for cycle-level executions or primitives are usually obtained of-
fline. Accelerator system designers often provide users a tem-
plate library that defines high-level primitives such as model
layers or low-level primitives such as vector/matrix operations.
Using these primitives, users can construct the model of their
interest. Then, the low-level code is obtained automatically by
the compiler or using the pre-defined optimized code [236],
[238]. For example, Zhang et al. [41] programmed Cambricon-
X accelerator with a set of library functions (written in C/C++)
for primitives like convolution and matrix/vector multiplication
and addition. Chen et al. [237] proposed a programming
framework consisting of assembly language, an assembler,
and run-time support for executing ML models with their
Cambricon ISA. For executing common layers, it also replaced
the primitives with pre-defined code blocks.

TVM [206] supports defining custom back-ends for accel-
erators, which was demonstrated using a vanilla accelerator
with a matrix-multiply engine. For executing primitives on
accelerators, TVM enables Tensorization [206], i.e., decou-
pling the target hardware intrinsic from the schedule while
mapping ML operators. To demonstrate code generation for
the vanilla accelerator, TVM enabled a driver library and
runtime support that constructs the instructions and offloads
them to the accelerator. Its code generation module translated
the program into appropriate function calls of the runtime API.
Moreau et al. [239] leveraged the TVM stack and proposed
a JIT compiler and a runtime system to generate code for a
programmable VTA accelerator.

It is important that the accelerator can support multiple
front-ends corresponding to different ML frameworks such as
TensorFlow [49], PyTorch [48], and MXNet [240]. Integration
of the programming, compilation, and runtime environment
with the common frameworks for ML application development
is necessary for supporting different compact ML models.
Leveraging the existing system stack (e.g., TVM) can provide
such opportunities to accelerator system developers. Note that
although TVM supports defining custom accelerator back-
ends and can lower optimized mappings to accelerator-specific
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Fig. 31. Co-designs can enable efficient accelerations of compact models.

code, it currently does not provide support for sparse tensors.

XIII. TRENDS AND FUTURE DIRECTIONS

A. Hardware/Software/Model Co-designs

1) Hardware-aware compression techniques: The frame-
work for exploring efficient model compression (either of
quantization, pruning, and size reduction) should be aware
of hardware features and provide directed search accordingly.
For example, bit-widths of tensors that can be efficiently pro-
cessed by different hardware platforms vary considerably (e.g.,
from multiples of 8-bits to arbitrary bit-widths). Accelerators
typically support only uniform widths of tensors (activations
and weights), and many accelerators do not support value
sharing. Also, when hardware only supports widths that are
multiple of 4 or 8 bits, quantization with other bit-widths
requires zero paddings, which incurs inefficient storage and
processing. Instead, the compression algorithm can opt for
improving the accuracy, increasing sparsity, or trading off the
bit-widths among layers for achieving higher compression and
acceleration. Similarly, depending on the hardware support
for fine-grained or block-sparsity, hardware-aware pruning can
better achieve the compression objectives (model exploration
time, performance, and energy efficiency, while meeting target
accuracy). Efficiency can be further improved when compres-
sion techniques leverage execution models of hardware ac-
celerators (e.g., energy-aware pruning [40]). Relatively simple
logic modules of hardware accelerators have enabled recent
techniques to estimate execution metrics through analytical
cost models. Accommodating such cost models (including
for different sparsity levels/patterns, precisions) enables the
compression algorithms to select effective pruning ratios/struc-
tures, tensor shapes, and tensor precisions, which can help to
achieve desired accelerations.

2) Joint and automated exploration of sparsity, precision,
and value similarity: Recent compression techniques typi-
cally employ structured or fine-grained data pruning during
training with a fixed precision of tensors. Techniques for
adaptive quantization often do not explore pruning. Joint
explorations of pruning and quantization may achieve high
compression due to the interplay of these compression mech-
anisms. For instance, quantization can increase sparsity con-
siderably [121], as more values can be represented as zero after
compressing the range [31]. Likewise, pruning may reduce bit-
widths further since fewer non-zero values in the pruned model
may be expressed with a much lower numeric range and preci-
sion. Moreover, such compression techniques do not leverage

temporal and spatial value similarity in inputs, outputs, or
weights. So, joint exploration algorithms may be developed
that use multiple compression strategies during training and
automatically explore combinations that compress the model
further. Recent techniques for automated explorations include
CLIP-Q [241], [58], and [242]. Exploring a wide range of
compression combinations during the training may not be
feasible. Therefore, model designers may reduce the space
of compression choices by limiting effective options before
beginning resource-extensive training, and if required, further
limiting the search space by quick evaluations with a pre-
trained model and fine-tuning.

Compression benefits achieved through joint explorations
need to be translated into efficient hardware accelerations.
So, the exploration heuristic should not preclude experts from
expressing a directed search for hardware-friendly executions,
e.g., specifying pruning with 1D or k:n block-sparsity, con-
straints for bit-widths, tolerable accuracy loss, etc. Moreover,
the heuristic should also provide automated optimization/ex-
ploration of hyperparameters (including using cost models
of accelerators). This is because the compression algorithm
needs to adjust the strategy of pruning or quantization and its
hyperparameters. For instance, the pruning algorithm needs
to find out the pruning ratio for each iteration (epoch);
pruning mechanism (which values to prune, e.g., below a
certain threshold); pruning pattern (fine-grain, block size); bit-
widths of tensors (quantization). All such hyperparameters or
strategies need to be adjusted automatically (to an extent) such
that the memory footprint or computations are greatly reduced,
with no or tolerable accuracy loss.

3) Value-aware neural architecture search (NAS) and ac-
celerator/model co-designs: Techniques for NAS or AutoML
can automatically obtain efficient models that surpass the accu-
racy of models devised by human developers. However, there
remains scope for considerably improving NAS for obtaining
highly compact models. Recent techniques [243]–[246] have
explored accelerator/model co-designs that support quantized
models and layers of different shapes. However, the efficiency
can be further amplified by including the sparsity and adaptive
bit-widths of model layers and analytically considering their
implications on hardware accelerators.

A major challenge faced by the model search techniques
and automated accelerator/model co-designs is the vast search
space. As Fig. 31 shows, explorations can be performed for (i)
ML models (i.e., NAS) [31], (ii) compression strategies (e.g.,
automated pruning and quantization) [247], (iii) mappings of
models on accelerators [179], [186], and (iv) specifications of
hardware accelerators [57], [179]. The explorations of (i) and
(ii) directly impact compression and accuracy, while search
optimizations for (iii) and (iv) affect the performance and
energy-efficiency of the accelerator for given models. Among
these exploration spaces, NAS can be significantly time-
consuming (several GPU days [31]), followed by automated
model compression (e.g., [247]). Therefore, the resultant joint
space for value-aware NAS and accelerator/model co-designs
is many-folded. So, it may require notable efforts for devel-
oping automated exploration of co-designs that can obtain
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extremely efficient and accelerator-friendly compact models.

4) Facilitating structured computations of sparse ten-
sors: Designers may opt for accelerators that are effective
for structured computations of dense tensors, e.g., systolic
arrays (as near-data accelerators or coupled to processor cores)
and in-memory processing with resistive crossbars. While
sparsity or size reduction of tensors may need to be lever-
aged, significant design modifications are often infeasible due
to design requirements (area/power budgets) or the increase
in complexity of the system stack. So, techniques for pre-
processing can be developed, which can arrange structured
dense regions for feeding underlying engines or achieve struc-
tured data through sparsification/reorganization at almost no
accuracy loss. Such pre-processing can be done on additional
hardware modules or the host processor that handles the
non-performance-critical tasks. Such disjoint mechanisms can
obviate heavy design modifications in systolic arrays (e.g.,
[127]) or in-memory/near-data processing engines (e.g., Re-
Com [248], SNNrram [249]) while leveraging various sparsity
and value similarity opportunities across different models.

B. Design Tools and Frameworks

1) Framework for analyzing performance gains of ac-
celerators due to sparsity: Given that tensors of several ML
models are sparse, it is important to design accelerator sys-
tems that can exploit performance gains for multiple models
through low-cost hardware modules and enhanced software
support. As we discussed in sections V–XII, each enhancement
presents multiple implementation choices at the hardware
or software level. Although crafting a cycle-level simulation
infrastructure for such a wide design space may be infeasible,
a data-driven quantitative model can be significantly helpful
for design explorations. It can process the actual data (or
discover distributions of zeros), provide high-level modeling
of common choices, and estimate the performance gains for
each combination of the implementation choices. For newer
models or functionality, hardware designers can run through a
set of implementation choices in an early design phase. They
can explore the implications of sparsity for the desired choice
of encoding, data extraction logic, functional units, NoC, load
balancing, and dataflow mechanism.

2) Accelerator design frameworks for compact models:
Several frameworks for developing and simulating FPGA or
ASIC based accelerators have recently been proposed, includ-
ing DNNWeaver [184], DNNBuilder [250], T2S-Tensor [251],
and HeteroCL [252] for FPGAs and NVDLA [120], VTA
[239], MAGNet [253], MAERI [177], and AutoDNNChip
[176] for specialized accelerators. Similarly, hardware con-
struction languages or representations such as Chisel [254]
and µIR [255] enable expressing microarchitectural features
through high-level primitives. Such infrastructures are key
for the community since they can serve as a good learning
resource for training the new professionals and provide a kick-
starter baseline for developing new design features.

However, most frameworks support designs for dense ten-
sors of fixed bit-widths and lack support for sparsity-tailoring

features. Such frameworks can provide some pre-built mod-
ules for encoding/extracting sparse data (e.g., with common
formats like RLC, bitmap, or for block-sparsity), dynamic load
balancing or data reorganization, configurable functional units,
and configurable interconnects for sparse and bit-adaptive
computing, etc. Even with limited features, they may serve
as reusable logic that can be leveraged by designers for quick
prototyping and design explorations. Further, abstractions and
specifications for constructing sparsity-tailored hardware and
dataflows can enable automated and efficient design explo-
rations and easier programming of accelerators.

C. Accelerating Training of ML Models

While there have been significant advances in performing
inference on hardware accelerators, efficient training of the
models on hardware accelerators has received relatively little
attention. Training has been done in high-performance com-
puting environments containing CPU and GPU platforms and
recently on FPGAs and TPU accelerators. Hardware acceler-
ators can offer significant benefits to the model training in
both edge and datacenter-scale computing environments, and
they can notably improve performance and energy efficiency,
respectively. In particular, they are promising for enabling
online learning on edge devices through compact models.

Accelerators, such as [21], ScaleDeep [236], and HyPar
[187], have been proposed for efficiently training the models.
However, they either do not leverage sparsity, or may not be
efficiently utilized for irregular-shaped tensors, or lack support
for various precisions of weights, activations, gradients, and
weight updates. This presents further opportunities for per-
formance gains and energy efficiency. Additionally, designers
can leverage cross-layer optimizations (e.g., by reusing the
data of gradients during back-propagation) and support mixed-
precision of tensors during the training of compact models.

D. Applying Techniques for Sparsity to Other Domains

In this work, we considered a wide variety of techniques
that leverage sparsity for the machine learning domain, which
represents an enormous research effort. Many other domains
face similar challenges in exploiting sparsity, and accelerators
have been proposed for some of the more processing-intensive
domains; this includes graph processing [256], [257], database
operations [258], genomics [259], [260], and compression
[261]. In some cases, computation primitives even extend
across domains. For example, finding intersecting non-zeros
is analogous to joins in a database context [110]. Applying
the lessons learned from extensive research on sparsity in an
ML context can likely speed innovation in a broader context.

XIV. RELATED WORK

Deep learning models and their applications: Surveys
[45], [46] described different deep learning models along with
different frameworks and datasets. Gu et al. [262] discussed
applications of CNNs in computer vision and language pro-
cessing. Recent surveys have also discussed applications of
deep learning in medical image analysis [13], biomedical ap-
plications [263], wireless and networking [16], and embedded
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systems [15]. Elsken et al. [264] surveyed techniques for
neural architecture search.

Compact models: Cheng et al. [265] surveyed techniques
for parameter pruning and low-rank factorization. Wang et
al. [266] surveyed techniques for pruning, precision lower-
ing, weight sharing, low-rank factorization, and knowledge
distillation. Deng et al. [31] described techniques to obtain
compact models including sparsification, quantization, tensor
decomposition, and joint-way compression.

Hardware accelerators for dense ML models: Shawahna
et al. [267] surveyed FPGA accelerators for processing dense
tensor computations of deep learning applications. Venieris et
al. [268] discussed different CNN-to-FPGA toolchains and de-
scribed their hardware architectures, design space exploration
techniques, and support for different precisions of tensors.
They also compared execution metrics of the designs obtained
with various toolchains and those with the previously proposed
FPGA accelerators for CNNs. Sze et al. [44] presented a
survey about efficiently executing DNNs on hardware acceler-
ators. It described different DNNs, different compression tech-
niques for compact models, and optimized dataflows for spatial
architectures. Reuther et al. [269] benchmarked executions of
different ML accelerators. Li et al. [270] discussed different
ML frameworks and compilers for deep learning models.

Hardware accelerators for compact ML models: Mittal
[271] surveyed executing compact models, including BNNs,
on FPGAs. It also discussed processing convolutions with
the Winograd algorithm and executions on multiple FPGAs.
Deng et al. [31] surveyed hardware accelerators that support
bit-adaptive computing and the data extraction modules for
leveraging the sparsity of inputs, weights, or outputs. Du et al.
[272] recently proposed MinMaxNN system for dynamically
switching NN models. They surveyed techniques for design-
ing self-aware NN systems (which can continuously sense
information from the environment and dynamically react),
including leveraging sparsity and tensor quantization. Wang et
al. [266] surveyed hardware implementations for processing
tensors of lower precisions (binary, ternary, and logarithmic
quantizations). Ignatov et al. [273] benchmarked executions
of quantized deep learning models on mobile AI accelerators.

In contrast to the above surveys, this work highlights sources
of sparsity and size reduction of tensors in ML models and
challenges in efficiently executing them on hardware acceler-
ators. Then, it surveys and discusses the corresponding hard-
ware and software support, including encodings and extraction
of sparse data, sparsity-aware dataflows, memory management
and on-chip communication of sparse tensors while leveraging
data reuse, load balancing of computations, and compiler
support. It also discusses techniques for computations of
mixed-precision and value-shared sparse tensors.

XV. SUMMARY

For efficient and hardware-friendly processing, compact
deep learning models have been designed. They consume
less storage and computations and consist of tensors with
considerable sparsity, asymmetric shapes, and variable pre-
cisions. While these compact models can be accelerated on

hardware accelerators efficiently, it requires special hardware
and software support. We have highlighted challenges in
efficiently accelerating their sparse and irregular tensor compu-
tations. Leveraging sparsity, especially unstructured, requires
a significant redesign to store, extract, communicate, compute,
and load-balance only non-zeros. Moreover, the sparsity levels
and patterns due to various sources lead to unique challenges
and solutions in hardware/software/model co-designs.

In this article, we have discussed how exploiting sparsity
effectively depends on tailoring the data encoding and extrac-
tion, dataflow, memory bank structure, interconnect design,
and write-back mechanisms. We provided an overview of
corresponding enhancements in accelerator designs and their
effectiveness in exploiting sparsity. Categorization of different
techniques informs how they leveraged structured or unstruc-
tured sparsity of weight or activations during learning or in-
ference of ML models (Tables I, II). For recent DNNs, we an-
alyzed achievable accelerations for a few popular accelerators
(section IV-B). The analysis showed that accelerators exploit
moderate sparsity and achieve high speedups as sparsity in-
creases. However, exploiting high or hyper sparsity can further
provide considerable opportunities, which would also need
efficient mechanisms for data extraction and load balancing.
Also, configurable architectures for NoCs, functional units,
and buffers are required for catering to various functionalities
and metadata management.

Our analysis of sparsity-encodings describes their storage
efficiency for various sparsity and the decoding requirements.
While bitmaps and RLC/CSC formats are commonly used for
moderate and high sparsity, respectively, storage efficiency
can be improved with block-sparse tensors (especially at
hyper sparsity). We have introduced a taxonomy for non-zero
extraction techniques that are used for feeding the functional
units of PEs. Existing data extraction mechanisms (e.g., in
EIE [42], EyerissV2 [43], Cambricon-X/S [37], [41]) exploit
moderate sparsity. But, they may not extract enough NZs at
high or hyper sparsity of large tensors (e.g., sparse BERT
[71]), achieving lower speedups. We also discuss how block-
sparsity can simplify data extraction and facilitate balanced
computations. For exploiting diverse sparsity across tensors
of different models, designers can explore multiple or config-
urable mechanisms for decoding and extraction of non-zeros.

Data reuse opportunities in processing common DNNs vary
significantly, and sparsity lowers the reuse due to fewer
effectual computations. However, compressed tensors allow
to fit and reuse more data in on-chip memory, which re-
duces accesses to off-chip memory and overall latency. We
have discussed techniques for memory bank management to
support unstructured accesses for sparse computations and
hiding the memory access latency. At high or hyper sparsity,
execution may become bandwidth-bounded, as enough data
may not be prefetched always. Hence, techniques for efficient
data management (e.g., cross-layer, on-chip data reuse) and
exploiting high bandwidths need to be explored. Different
accelerator designs have used various interconnects for the
distribution of operands, reduction of partial outputs, and
collecting the outputs. They vary in terms of the bandwidth
requirement and exploiting spatial data reuse. Configurable
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interconnects (e.g., in EyerissV2 [43], SIGMA [105]) are
required for accelerating different DNNs of diverse sparsity,
functionality, and tensor shapes, since they can support a mix
of communication patterns. They are important for enabling
asymmetric spatial accumulations of partial outputs (for sparse
tensor computations) and concurrent spatial processing of
different groups, e.g., for DW-CONV.

Processing compressed tensors can impose significant ma-
neuvering efforts in the PE architecture design. We discuss fur-
ther opportunities including configurable designs of functional
units for efficient vector processing and flexible sparsity-aware
dataflows for high utilization across variations in sparsity and
functionality of different layers. We also surveyed techniques
for approximated computing through multiplier-free PEs and
leveraging temporal and spatial similarity of values, which im-
prove execution efficiency further. Sparse tensor computations
over different PEs can be highly imbalanced. We have sur-
veyed different techniques that sustain the acceleration by bal-
ancing the work through hardware modules for asynchronous
computations or work sharing (e.g., EIE [42], ZENA [130]).
Software-directed regularization such as structured sparsity
eliminates load imbalance, e.g., in leveraging weight/activation
sparsity for Cambricon-S [37] and 50% weight sparsity for
NVIDIA A100 [61]. Techniques including data transforma-
tions and refactoring of DNN operators may achieve low-cost
load balance, including for dynamic sparsity. We have also
surveyed mechanisms for asynchronous write-backs of outputs
and sparsity-aware encodings on the fly. Compilation for the
accelerators requires the ability to efficiently express spar-
sity in intermediate representations, flexibly apply different
compiler optimizations, and emit efficient accelerator-specific
code. The survey has discussed techniques that can enable
such support and open challenges.

Accelerator/model co-designs can efficiently leverage var-
ious precision and value similarity of different tensors and
induce sparsity for accelerator-friendly executions. Automated
and joint explorations of accelerator-aware compression al-
gorithms can advance acceleration opportunities further. We
have highlighted future directions for such co-designs and
the system stack development (section XIII). In individual
sections, we have also discussed further opportunities for
tailoring different hardware or software enhancements for
sparsity. While our discussions focused on leveraging sparsity
for ML models, exploiting diverse sparsity can also aid the
efficient processing of applications of other domains [92], [93].

In conclusion, while different accelerators and compression
algorithms have been proposed for efficiently processing com-
pact ML models, it remains an active research frontier. In
particular, hardware/software/model co-designs and automated
and joint explorations of tensor sparsity, adaptive quantization,
shape reductions, and dataflow will likely provide further
opportunities for innovations across the system. With a boost
in energy-efficient accelerations of the learning and inference
at the cloud and edge, they can be anticipated to further
improve the intelligence of various systems or applications.

APPENDIX
HARDWARE ACCELERATORS CAN

EXPLOIT SPARSITY BETTER

Exploiting acceleration opportunities due to sparsity (espe-
cially unstructured) is relatively hard for execution on CPUs
and GPUs [37], [41], [105]. The performance of ML models
can even degrade, as compared to the execution with dense
data (e.g., for a GEMM, when unstructured W -sparsity is
below 70% [274]). For executing AlexNet layers on GPUs,
[28] analyzed speedup for processing CSR-encoded matrices
with cuSPARSE and dense matrices with cuBLAS. Their ex-
periments showed obtaining limited speedups (below 1.4×) or
even slowdowns for high sparsity. This is because unstructured
sparsity may yield poor data locality for scattered effectual
NZs. Plus, it is challenging to skip ineffectual computations
and equally distribute the work among multiple threads or
computational units of processor cores. Zhang et al. [41] ana-
lyzed performance benefits of executing sparse models (LeNet,
AlexNet, and VGG-16) on CPU (with sparse BLAS) and GPU
(with cuSPARSE) platforms, as compared to processing dense
models (with Caffe [204]). For average sparsity of 90.94%,
they reported geomean speedup of only 23.34% for GPU and
110% more time on CPU. In their sparsity-sensitivity analysis,
CPU and GPU showed marginal speedup only at moderate or
high sparsity due to non-trivial costs of sparse data processing.
But, for Cambricon-X [41], performance gains were reported
for 5% or more sparsity due to its design tailored for sparse
tensor computations. For hyper sparsity, it achieved high
speedups (e.g., 15.5× for CONV and 48.5× for FC layer), as
compared to executing dense tensors [41]. Thus, with special
support for sparse and irregular tensor computations, hardware
accelerators can achieve notable speedups and efficiency.
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