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Abstract—As a promising distributed machine learning
paradigm, Federated Learning (FL) trains a central model with
decentralized data without compromising user privacy, which
makes it widely used by Artificial Intelligence Internet of Things
(AIoT) applications. However, the traditional FL suffers from
model inaccuracy, since it trains local models only using hard
labels of data while useful information of incorrect predictions
with small probabilities is ignored. Although various solutions
try to tackle the bottleneck of the traditional FL, most of
them introduce significant communication overhead, making the
deployment of large-scale AIoT devices a great challenge. To ad-
dress the above problem, this paper presents a novel Distillation-
based Federated Learning (DFL) method that enables efficient
and accurate FL for AIoT applications. By using Knowledge
Distillation (KD), in each round of FL training, our approach
uploads both the soft targets and local model gradients to the
cloud server for aggregation, where the aggregation results are
then dispatched to AIoT devices for the next round of local
training. During the DFL local training, in addition to hard
labels, the model predictions approximate soft targets, which
can improve model accuracy by leveraging the knowledge of soft
targets. To further improve our DFL model performance, we
design a dynamic adjustment strategy of loss function weights
for tuning the ratio of KD and FL, which can maximize the
synergy between soft targets and hard labels. Comprehensive
experimental results on well-known benchmarks show that our
approach can significantly improve the model accuracy of FL
without introducing significant communication overhead.

Index Terms—AIoT, dynamic adjustment strategy, federated
learning, knowledge distillation, model accuracy.

I. INTRODUCTION

ALONG with the proliferation of Artificial Intelligence
(AI) and Internet of Things (IoT), Federated Learning

(FL) [1]–[3] techniques are increasingly used in safety-critical
AI IoT (AIoT) applications (e.g., autonomous driving, com-
mercial surveillance, and industrial control [4], [5]). Differ-
ent from centralized machine learning, FL enables keeping
data samples distributed while sharing the sample knowledge
among all the AIoT devices. In FL, the cloud server is
responsible for dispatching and aggregating model gradients
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rather than collecting samples from AIoT devices through
the network, which can greatly reduce the communication
overhead and protect the data privacy of AIoT devices during
the model training process.

Although FL enables effective collaboration among AIoT
devices and the cloud server, it drastically suffers from its
model inaccuracy caused by the loss of knowledge during
model training [6]. The optimization objective of FL local
training is to minimize the distance between the correct
prediction and the hard label and ignore all the incorrect
predictions [1]. However, the ignoring of incorrect predictions
results in the loss of knowledge since the knowledge is a
learned mapping from input vectors to output vectors, and all
the sample-to-prediction mappings are part of the knowledge
according to [6], [7]. The probability of incorrect predictions
represents the similarities between the current sample and
other different categories. Therefore, the traditional FL based
on hard labels loses some knowledge during the model training
process, resulting in decreased FL model accuracy.

Since Knowledge Distillation (KD) can enhance the model
knowledge and the model generalization ability, it is used to
improve the model accuracy [6]. During the “student model”
training process, there are two optimization objectives, i.e.,
hard labels of data and soft targets from the “teacher model”.
The loss function of the “student model” is defined as the sum
of the cross-entropy loss function (i.e., the distance between
model predictions and the corresponding hard labels of data)
and the Kullback-Leibler divergence loss function (i.e., the
distance between model predictions and the corresponding
soft targets from the “teacher model”). As an online paradigm
of KD, Federated Distillation (FD) implements collaborative
training of different device models only by interacting soft
targets between the cloud server and all the devices [8]–[10].
However, all these methods focus more on the fundamental
problems of network resource limitation for large-scale archi-
tecture rather than the FL performance improvement.

To improve the FL model accuracy, various methods have
been proposed, e.g., global control variable-based meth-
ods [11], [12], reinforcement learning-based methods [13],
device grouping-based methods [14], [15], and KD-based
methods [16]. However, all these mentioned methods improve
FL performance using complex reinforcement learning strate-
gies or global variables with large sizes. Therefore, most
of them are unsuitable for AIoT applications with limited
network and memory resources. Moreover, these KD-based
methods require collecting data distribution and sample cate-
gories from all devices or constructing public datasets, which
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brings huge risks to data privacy protection. Therefore, how
to design an efficient and accurate FL without introducing
significant communication overhead and ensuring data privacy
is becoming a great challenge in AIoT design.

In order to address the above challenges, this paper presents
a novel Distillation-based FL method named DFL that can ef-
fectively enhance the model knowledge during the FL training
process. Unlike the traditional FL that only trains models based
on hard labels of device samples, our proposed DFL method
set two optimization objectives for the model, i.e., the hard
labels of data samples and the corresponding soft targets. We
aggregate label-wise sample logits as the soft targets of the
“teacher model” and dispatch them together with the global
model for FL model training, which introduces negligible extra
network overhead as the soft target size is always much smaller
than the global model. In this way, our DFL method can
increase the model accuracy by incorporating the knowledge
of soft targets into the model training. This paper makes the
following three major contributions:
• To improve the model accuracy of DFL, we present

a novel architecture that combines the merits of both
global soft targets and model gradients for the purpose
of knowledge enhancement.

• To wisely utilize the knowledge represented by soft
targets, we design a dynamic adjustment strategy, which
can tune the ratio of loss functions of soft targets and
hard labels during the DFL training.

• We conduct both theoretical and empirical analysis on the
convergence of DFL and prove that DFL converges as fast
as FedAvg in arbitrarily heterogeneous data scenarios.

We implement our approach using our proposed DFL ar-
chitecture and the dynamic adjustment strategy. Comprehen-
sive experimental results show that our proposed approach
can achieve better performance than state-of-the-art methods
without introducing drastic communication overhead.

The rest of this paper is organized as follows. After the
introduction to related works in Section II, Section III gives
the details of our DFL approach. Section IV presents the ex-
perimental results, showing the effectiveness of our approach.
Finally, Section V concludes the paper.

II. RELATED WORK

As more and more safety-critical AIoT applications adopt
FL, the FL model accuracy is becoming a major concern
in AIoT design. To improve the model accuracy, Hinton et
al. [6] proposed Kederated Distillation (KD) to enhance the
model knowledge with soft targets. To apply the benefits of
KD to AIoT applications, various online versions of KD have
been investigated. For example, Anil et al. [7] proposed the
co-distillation method with data samples shared by all the
AIoT devices. Based on FD and federated data augmenta-
tion, Jeong et al. [9] used Generative Adversarial Networks
(GAN) [17] to generate a public dataset and carried out KD
on the public dataset during the model training process. By
leveraging an unlabeled public dataset, Itahara et al. [18]
proposed a distillation-based semi-supervised FL algorithm
that exchanges outputs of local models among mobile devices.

However, all these FD approaches above focus on reducing
communication overhead rather than improving model accu-
racy. Moreover, these methods with public datasets introduce
risks of privacy exposure that cannot be ignored.

In order to improve the FL model inference accuracy,
various methods have been investigated. For example, Karim-
ireddy et al. [11] proposed a method named SCAFFOLD,
using global control variables to correct the “client-drift” in
the local training process. Similar to SCAFFOLD, Huang et
al. [12] presented a method employing the federated attentive
message passing to promote more cooperation among similar
devices. However, all the two methods upload/dispatch addi-
tional large-size controllers (i.e., the global control variables
and the attentive messages) along with the model gradient
between the cloud server and devices. By using built-in
generators, Zhu et al. [19] proposed a data-free KD approach
named FedGen to address the problem of heterogeneous FL.
Lin et al. [16] proposed an ensemble distillation method
that trains the central model with unlabeled data and the
corresponding outputs of device models. Nonetheless, these
two methods are not feasible to deploy in real scenarios, since
they require each device to upload their data distribution or
sample categories, which brings the risk of data exposure and
huge communication overhead. Moreover, it is impractical to
construct built-in generators or public datasets that are helpful
for model training. Therefore, the above methods are unsuit-
able for AIoT applications with data privacy requirements and
limited network communication capabilities.

Although KD techniques are promising in enhancing the FL
performance, their combination faces the aforementioned tech-
nical challenges. Moreover, existing distillation approaches
did not consider that the knowledge of soft targets changes
with the model training process. Generally, the knowledge
of soft targets increases with the number of training rounds
since the model accuracy is improved. To the best of our
knowledge, our work is the first attempt that fully explores the
synergy between the model gradients and global soft targets to
further enable knowledge sharing among AIoT devices. Due
to the enhanced knowledge obtained by soft targets using our
proposed architecture and dynamic adjustment strategy, the
accuracy of DFL models can be significantly improved, while
the communication overhead is negligible.

III. OUR DFL APPROACH

Typically, an AIoT application involves a cloud server and
plenty of AIoT devices, where each AIoT device has limited
communication and memory capacities. In this paper, we focus
on the model performance rather than the problem of incentive
or fairness. Therefore, we assume that at the beginning of our
DFL architecture deployment, data samples are collected by
each device and used for local model training. The model to be
trained is initially placed on the cloud server and dispatched
to AIoT devices at the beginning of each training round. Since
soft targets can enhance the model knowledge and the model
generalization ability [6], our approach introduces KD into our
architecture to improve the model accuracy. Unlike existing
FD methods, our DFL approach uploads/dispatches model
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Fig. 1: Architecture of our DFL approach

gradients and soft targets (generated using local samples in the
previous round) simultaneously during the interaction between
AIoT devices and the cloud server. When a new device joins
the AIoT application, it will receive the latest global model and
soft targets from the cloud server and perfectly fit into the DFL
model training. The proposed DFL model training procedure
is divided into two parts: i) the cloud server training part,
which includes the dispatching, aggregation, and update of
both model gradients and soft targets, and ii) the local training
part, which trains local models using both local samples and
dispatched soft targets. Once the local training finishes, an
AIoT device needs to figure out new label-wise sample logits
for the following aggregation. The following subsections will
detail the key components and the convergence analysis of our
DFL approach.

A. Architecture of Our DFL Approach

Figure 1 depicts the overall architecture of our proposed
DFL approach, which is inspired by KD and FL methods. It
mainly consists of a central cloud server and plenty of AIoT
devices. To guarantee data privacy, data samples are collected
by AIoT devices and cannot be shared with other devices and
the cloud server. As shown in Figure 1, our DFL architecture
has three parts, i.e., the FL processing part (marked in yellow),
the Soft Target Processing Module (STPM) in the cloud server
(marked in blue), and the STPM in AIoT devices (marked in
red). Our approach uses STPM in the cloud server to aggregate
the label-wise sample logits as the global soft targets and
dispatches them to selected AIoT devices. The STPM in AIoT
devices involves three functions: i) receiving the global soft
targets from the cloud server; ii) performing local training
using both the global soft targets and the hard labels of local
samples; and iii) generating new label-wise sample logits using
updated local models. The details of the FL processing part are
neglected here since they are similar to that of the traditional

FL. Note that designers can customize the models they need
to train according to the requirements and available resources
of AIoT applications.

B. Training Procedure of DFL

The model training procedure of our DFL approach consists
of two parts, i.e., the cloud server procedure and the local
update procedure. At the very beginning of the model training,
AIoT devices randomly collect a set of data samples and save
them in their local memory for model training, while the cloud
server initializes the global model and soft targets. Similar
to the classic FL method (i.e., FedAvg [1]), our approach
randomly selects a fraction of AIoT devices participating in
each round of model training due to the limited network
resources of real AIoT applications. The collaboration of the
cloud server and AIoT devices of our proposed DFL method
will be detailed in the following two subsections.

1) Cloud Server Procedure: When the model training of
our DFL approach starts, the cloud server first dispatches the
current global model and soft targets to the selected AIoT
devices. After receiving the latest model and soft targets, the
selected AIoT devices will conduct several epochs of local
training, respectively. At the end of round r, we upload both
model gradients and the newly generated label-wise sample
logits of all the selected AIoT devices to the cloud server for
aggregations using the following formulas:

wr+1 = wr +

∑K
k=1 |Dk| ×∆k

r+1∑K
k=1|Dk| .

(1)

Yr+1 =

∑K
k=1 |Dk| × Y k

r+1∑K
k=1|Dk| .

(2)

where w and Y represent the model weight and the label-
wise soft targets, respectively. K denotes the number of AIoT
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devices selected in each round of model training. ∆k
r+1 and

Y k
r+1 indicate the model gradient and sample logits of device k

in round r+1, |Dk| represents the size of the dataset contained
by the kth AIoT device.

Algorithm 1: Cloud Server Procedure of DFL

Input: i) N , # of total AIoT devices;
ii) c, fraction of devices on each round;

iii) R, # of training rounds;
iv) D = {D1, · · · , DN}, set of datasets;

1. Initialize(w,Y );
2. K ← Max(c ·N, 1);
for r ← 1 to R do

3. S ← random set of K devices;
4. Dispatch(wr,Yr, S);
for each device k ∈ S do

5. (∆k
r+1,Y

k
r+1)← DeviceUpdate(wr,Yr);

end

6. wr+1 = wr +
∑K

k=1 |DIdx(Sk)|×∆k
r+1∑K

k=1|DIdx(Sk)|
;

7. Yr+1 =
∑K

k=1 |DIdx(Sk)|× Y k
r+1∑K

k=1|DIdx(Sk)|
;

end

Algorithm 1 shows the key steps involved in our DFL
algorithm. Step 1 initializes the global model and soft targets
with w and Y using the function Initialize. In step 2, we
calculate the number of selected AIoT devices K participating
in each round of model training with the function Max, where
C and N denote the fraction and the number of total AIoT
devices. At the beginning of round r, step 3 randomly selects
the devices participating in the model training of round r,
where S is used to save the selected devices. Step 4 dispatches
the global model and soft targets to all the selected devices
in S. In step 5, all the selected devices upload both model
gradients and the newly generated label-wise sample logits
to the cloud server. Once the cloud server receives model
gradients and label-wise sample logits from all the selected
devices, steps 6-7 perform the aggregation.

2) Local Update Procedure: When selected AIoT devices
receive the latest global model w and soft targets Y , they
conduct the local update procedure. The local update pro-
cedure of our DFL approach involves two stages, i.e., the
local training stage and the new label-wise sample logit
generation stage. Similar to FedAvg, the predictions of our
DFL model approximate the hard labels of local samples. To
further improve the model accuracy, our approach makes the
model predictions approximate to the soft targets related to the
corresponding hard labels as well. Therefore, to make wisely
use of the knowledge of both hard labels and soft targets, we
design our loss function in model training as follows:

L(w) = ρ F(y|w, Y ) + (1− ρ) G(y|w,Y ). (3)

where F(y|w, Y ) denotes the cross-entropy loss function,
which is the distance between the prediction y and the cor-
responding hard label Y of the sample. G(y|w,Y ) indicates
the Kullback-Leibler divergence loss function, which is the

distance between the prediction y and the corresponding label-
wise sample logits Y (extract from the global soft targets) of
the sample. The hyperparameter ρ (ρ ∈ [0, 1]) is the ratio of
the two loss functions (see Section III-C). Since the objective
of local training is to minimize the loss function L(w), we
can get the model update for each epoch as follows:

w = w − η∇L(w). (4)

where η denotes the learning rate and ∇ indicates the gradient.
When the local training stage finishes, the new label-wise
sample logit generation stage will be implemented. All the
updated models perform predictions with local samples and
calculate the label-wise sample logits. To improve communi-
cation efficiency, all the selected AIoT devices upload their
model gradients (i.e., ∆) rather than the updated models to
the cloud server for aggregation at the end of each round.

∆k
r+1 = wkr+1 − wkr . (5)

Algorithm 2 presents the local update process of our DFL
in detail. In steps 1-2 of the algorithm, AIoT devices receive
the global model w and soft targets Y from the cloud server
and save the received global model. Steps 3-6 show the
implementation of the local training stage. At the beginning
of each local epoch, step 3 makes predictions of data samples
with the local model using the function Prediction. Step 4
calculates the current ratio of the two-loss functions ρ with
the index r and the number R of training rounds and the
threshold T . Steps 5-6 iteratively update the model weight,
where the loss function is defined in Formulas 3. After the
local training stage finishes, steps 7-9 generate the label-wise
sample logits. To save network resources, step 9 calculates the
model gradient for upload. Finally, step 10 uploads the model
gradient and label-wise sample logits to the cloud server for
aggregation.

Algorithm 2: Local Update Procedure of DFL

Input: i) E, # of local epochs;
ii) D, device dataset with hard labels Y ;
iii) η, learning rate;
iv) R, # of total communication rounds;
v) T , threshold of the loss function ratio;

DeviceUpdate(w,Y ):
1. Receive (w,Y ) from the cloud server;
2. temp = w;
for e← 1 to E do

3. y ← Prediction(w,D);
4. ρ← Max(1− r

R , T );
5. L(w) = ρ F(y|w, Y ) + (1− ρ) G(y|w,Y );
6. w = w − η∇L(w);

end
7. y ← Prediction(w,D);
8. Y ← LabelWiseAverage(y);
9. ∆ = w − temp;
10. Send (∆,Y ) to the cloud server;
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C. Dynamic Adjustment Strategy

The ratio of the two-loss functions plays an important
role in DFL local training since the weight of soft targets
greatly impacts the model training. Generally, the knowledge
of soft targets depends on the model accuracy, and the model
accuracy increases as the number of training rounds increases.
Therefore, there is insufficient knowledge of soft targets in the
early stage of the model training process since the model is
randomly initialized. In this case, the soft targets will make the
model optimize in the wrong direction, which will slow down
the model training. The knowledge of soft targets increases
as the training continues, which can enhance the model with
the knowledge that the hard labels do not have. However, the
model training cannot rely mainly on soft targets according
to [6]. Therefore, we need to set a threshold T to fix the ratio
of the two-loss functions in the late stage of the model training
process so that the model can achieve the best performance.
To maximize the use of the soft targets and reduce their side
effects, we design a dynamic adjustment strategy to control
the loss function ratio as follows:

ρ = Max(1− r

R
, T ). (6)

where r and R represent the index of the current round and
the total number of overall training rounds, respectively. T
denotes the threshold to fix the ratio of the two-loss functions.
As shown in Formula 6, in the early stage of the model
training process, the cross-entropy loss function is given a high
proportion and gradually decreases with the number of training
rounds, while the Kullback-Leibler divergence loss function is
the opposite. The discussion about the optimal threshold is in
the experimental part.

D. Convergence Analysis of Our DFL Approach

Inspired by [20], we analyze the convergence rate of our
DFL approach with two device participation scenarios (i.e.,
full device participation and partial device participation). We
define the distributed optimization model of our DFL approach
as follows:

min
w

{
Φ(w) ,

N∑
k=1

pk(Fk(w) + Gk(w))
}
. (7)

where N is the total number of all the AIoT devices, pk is
the probability of selecting the kth device such that pk ≥ 0
and

∑N
k=1 pk = 1. Fk(w) and Gk(w) are two loss functions

(i.e., the cross-entropy loss function and the Kullback-Leibler
divergence loss function) which are defined as follows:

Fk(w) ,
1

nk

nk∑
j=1

F(w;xk,j),

Gk(w) ,
1

nk

nk∑
j=1

G(w;x
′

k,j).

(8)

where nk is the number of local samples in the kth device,
xk,j is the local training samples concluding pictures and hard
labels, x

′

k,j is the combination of the local samples and its
corresponding soft targets.

Similar to [20], to analyze the convergence rate of our DFL
approach, we make the following five assumptions on the
functions F1, · · · ,FN and G1, · · · ,GN .

Assumption 1. F1, · · · ,FN and G1, · · · ,GN are all L −
smooth: for all v and w, Fk(v) ≤ Fk(w)+(v−w)T∇Fk(w)+
L
2 ||v−w||

2, Gk(v) ≤ Gk(w)+(v−w)T∇Gk(w)+ L
2 ||v−w||

2.
Assumption 2. F1, · · · ,FN and G1, · · · ,GN are all µ −

strongly convex: for all v and w, Fk(v) ≥ Fk(w) +
(v − w)T∇Fk(w) + µ

2 ||v − w||2, Gk(v) ≥ Gk(w) + (v −
w)T∇Gk(w) + µ

2 ||v − w||
2.

Assumption 3. Let ξkt and δkt be sampled from the kth de-
vice’s local data uniformly at random. The variance of stochas-
tic gradients in each device is bounded: E||∇Fk(wkt , ξ

k
t ) −

∇Fk(wkt )||2 ≤ α2
k for k = 1, · · · , N and E||∇Gk(wkt , δ

k
t ) −

∇Gk(wkt )||2 ≤ β2
k for k = 1, · · · , N .

Assumption 4. The expected squared norm of stochastic
gradients is uniformly bounded, i.e., E||∇Fk(wkt , ξ

k
t )||2 ≤ G2

1

and E||∇Gk(wkt , δ
k
t )||2 ≤ G2

2 for all k = 1, · · · , N and t =
1, · · · , T − 1.

Assumption 5. From the tth local SGD, the distribution
of soft targets no longer changes, so that Gk(w) is the only
dependent variable of w.

Based on the assumptions above, we first analyze the
convergence rate of our DFL approach with full device partic-
ipation. The update of our DFL model can be described with
the following formulas:

vkt+1 = wkt − ηt(∇Fk(wkt , ξ
k
t ) +∇Gk(wkt , δ

k
t )),

wkt+1 =

{
vkt+1, if T - t+ 1,∑N
k=1 pkv

k
t+1, if T | t+ 1.

(9)

where wkt is the local model parameter maintained in the kth

device at the tth SGD step, vkt+1 is the immediate result of wkt
with one step of SGD update. T is the local SGD steps within
one training round. If T | t+1, our DFL activates all the AIoT
devices. In our analysis, we define two virtual sequences:

vt =

N∑
k=1

pkv
k
t , wt =

N∑
k=1

pkw
k
t . (10)

By combining Formulas 9 and 10, we always have vt =

wt. For convenience, we define gt =
∑N
k=1 pk

[
∇Fk(wkt ) +

∇Gk(wkt )
]

and gt =
∑N
k=1 pk

[
∇Fk(wkt , ξ

k
t )+∇Gk(wkt , δ

k
t )
]
.

Therefore, vt+1 = wt − ηtgt and E[gt] = gt. We have:

||vt+1 − w?||2 = ||wt − ηtgt − w? − ηtgt + ηtgt||2

= ||wt − w? − ηtgt||2︸ ︷︷ ︸
A1

+ 2ηt < wt − w?ηtgt, gt − gt >︸ ︷︷ ︸
A2

+ η2
t ||gt − gt||2︸ ︷︷ ︸

A3

.

(11)

Note that EA2 = 0. We next focus on bounding A1. Again
we divide A1 into three terms:

A1 = ||wt − w? − ηtgt||2

= ||wt − w?||2 − 2ηt < wt − w?, gt >︸ ︷︷ ︸
B1

+ η2
t ||gt||2︸ ︷︷ ︸
B2

. (12)
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We aim to bound B1:

B1 = −2ηt < wt − w?, gt >

= −2ηt

N∑
k=1

pk < wt − w?,∇Fk(wkt ) +∇Gk(wkt ) > .

(13)

where
< wt − w?,∇Fk(wkt ) +∇Gk(wkt ) >

=< wt − wkt ,∇Fk(wkt ) > + < wkt − w?,∇Fk(wkt ) >

+ < wt − wkt ,∇Gk(wkt ) > + < wkt − w?,∇Gk(wkt ) > .
(14)

By Cauchy-Schwarz inequality and the inequality of Arith-
metic and Geometric Means (AM-GM), we can get:

− < wt − wkt ,∇Fk(wkt ) >

≤ 1

2ηt
||wt − wkt ||2 +

1

2
ηt||∇Fk(wkt )||2

− < wkt − w?,∇Fk(wkt ) >

≤ −(Fk(wkt )−Fk(w?))− µ

2
||wkt − w?||2

− < wt − wkt ,∇Gk(wkt ) >

≤ 1

2ηt
||wt − wkt ||2 +

1

2
ηt||∇Gk(wkt )||2

− < wkt − w?,∇Gk(wkt ) >

≤ −(Gk(wkt )− Gk(w?))− µ

2
||wkt − w?||2.

(15)

Therefore, B1 can be presented as Formula 16 based on
Formulas 13, 14, and 15, i.e.,

B1 ≤ ηt
N∑
k=1

pk(
1

ηt
||wt − wkt ||2 + ηt||∇Fk(wkt )||2)

− 2ηt

N∑
k=1

pk(Fk(wkt )−Fk(w?) +
µ

2
||wkt − w?||2)

+ ηt

N∑
k=1

pk(
1

ηt
||wt − wkt ||2 + ηt||∇Gk(wkt )||2)

− 2ηt

N∑
k=1

pk(Gk(wkt )− Gk(w?) +
µ

2
||wkt − w?||2).

(16)

By using Assumption 1, Fk(·) and Gk(·) can be bounded
with the following formulas:

||∇Fk(wkt )||2 ≤ 2L(Fk(wkt )−F?k ),

||∇Gk(wkt )||2 ≤ 2L(Gk(wkt )− G?k).
(17)

Consequently, B2 can be bounded using Formula 18 based
on the convexity of || · ||2 and Formula 17:

B2 = η2
t ||gt||2 ≤ η2

t

N∑
k=1

pk||∇Fk(wkt ) +∇Gk(wkt )||2

≤ 2η2
t

N∑
k=1

pk

[
||∇Fk(wkt )||2 + ||∇Gk(wkt )||2

]
≤ 4Lη2

t

N∑
k=1

pk

[
(Fk(wkt )−F?k ) + (Gk(wkt )− G?k)

]
.

(18)

Therefore, A1 can be presented as Formula 19 by combining
Formulas 12, 16 and 18, i.e.,

A1 ≤ (1− 2µηt)||wt − w?||2 + 2
N∑

k=1

pk||wt − wk
t ||2

+6Lη2t

N∑
k=1

pk(Fk(w
k
t )−F?

k ) + 6Lη2t

N∑
k=1

pk(Gk(wk
t )− G?k)︸ ︷︷ ︸

C

−2ηt
N∑

k=1

pk(Fk(w
k
t )−Fk(w

?))− 2ηt

N∑
k=1

pk(Gk(wk
t )− Gk(w?))

︸ ︷︷ ︸
C

.

(19)

We next aim to bound C. We define γt = 2ηt(1 − 3Lηt),
Γ = Φ? −

∑N
k=1 pkF?k −

∑N
k=1 pkG?k . We split C into three

terms:

C = −2ηt(1− 3Lηt)

N∑
k=1

pk(Fk(wk
t )−F?

k )

− 2ηt(1− 3Lηt)

N∑
k=1

pk(Gk(wk
t )− G?k)

+ 2ηt

N∑
k=1

pk(Fk(w?)−F?
k ) + 2ηt

N∑
k=1

pk(Gk(w?)− G?k)

= −γt
N∑

k=1

pk(Fk(wk
t )− Φ?)− γt

N∑
k=1

pk(Gk(wk
t )− Φ?)

+ (2ηt − γt)
N∑

k=1

pk(Φ? −F?
k − G?k)− γtΦ?

= −γt
N∑

k=1

pk(Fk(wk
t )− Φ?)− γt

N∑
k=1

pk(Gk(wk
t )− Φ?)︸ ︷︷ ︸

D

+ 6Lη2t Γ− γt
N∑

k=1

pkΦ?.

(20)

To bound D, we have:
N∑

k=1

pk(Fk(wk
t )− Φ?)

=

N∑
k=1

pk(Fk(wk
t )−Fk(wt)) +

N∑
k=1

pk(Fk(wt)− Φ?)

≥
N∑

k=1

pk < vFk(wt), w
k
t − wt > +

N∑
k=1

pkFk(wt)− Φ?

≥ −1

2

N∑
k=1

pk
[
ηt||vFk(wt)||2 +

1

ηt
||wk

t − wt||2
]

+

N∑
k=1

pkFk(wt)− Φ?

≥ −
N∑

k=1

pk
[
ηtL(Fk(wt)−F?

k ) +
1

2ηt
||wk

t − wt||2
]

+

N∑
k=1

pkFk(wt)− Φ?.

(21)

where the first inequality of Formula 21 is from the convexity
of Fk, the second inequality of Formula 21 is from AM-
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GM inequality and the third inequality of Formula 21 is from
Formula 17. We use the same method to bound terms related
to Gk. Then we have:

D ≤ γt
N∑
k=1

pk

[
ηtL(Fk(wt)−F?k ) +

1

2ηt
||wkt − wt||2

]
− γt(

N∑
k=1

pkFk(wt)− Φ?)

+ γt

N∑
k=1

pk

[
ηtL(Gk(wt)− G?k) +

1

2ηt
||wkt − wt||2

]
− γt(

N∑
k=1

pkGk(wt)− Φ?).

(22)

Therefore, by combining Formulas 20 and 22, we can get:

C ≤ γt(ηtL− 1)

N∑
k=1

pk(Fk(wt)− Φ?)

+
γt
2ηt

N∑
k=1

pk||wkt − wt||2 + γtηtL

N∑
k=1

pk(Φ? −F?k )

+ γt(ηtL− 1)

N∑
k=1

pk(Gk(wt)− Φ?)

+
γt
2ηt

N∑
k=1

pk||wkt − wt||2 + γtηtL

N∑
k=1

pk(Φ? − G?k)

+ 6Lη2
tΓ− γt

N∑
k=1

pkΦ?

≤ γt(ηtL− 1)

N∑
k=1

pk(Fk(wt)−
1

2
Φ?)

+ γt(ηtL− 1)

N∑
k=1

pk(Gk(wt)−
1

2
Φ?) +

γt
ηt

N∑
k=1

pk||wkt − wt||2

+ γtηtL

N∑
k=1

pk(
1

2
Φ? −F?k ) + γtηtL

N∑
k=1

pk(
1

2
Φ? − G?k)

+ 6Lη2
tΓ− γt(ηtL− 1)Φ? + γtηtLΦ? − γtΦ?

= γt(ηtL− 1)

N∑
k=1

pk(Fk(wt) + Gk(wt)− Φ?)

+
γt
ηt

N∑
k=1

pk||wkt − wt||2 + γtηtL(Φ? −F?k − G?k) + 6Lη2
tΓ

≤ 2

N∑
k=1

pk||wkt − wt||2 + (6Lη2
t + γtηtL)Γ

≤ 2

N∑
k=1

pk||wkt − wt||2 + 8Lη2
tΓ.

(23)

where in the last inequality, we use the following three facts:
i) ηtL−1 ≤ − 3

4 ≤ 0 and
∑N
k=1 pk(Fk(wt)+Gk(wt)−Φ?) =

Φ(wt) − Φ? ≥ 0, ii) Γ ≥ 0 and 6Lη2
t + γtηtL ≤ 8η2

tL, and

iii) γt
2ηt
≤ 1. Recalling the expression of A1 and plugging C

into it, we have:

A1 ≤ (1− 2µηt)||wt − w?||2 + 4

N∑
k=1

pk||wt − wk
t ||2 + 8Lη2t Γ.

(24)

The variance of the stochastic gradients F and G in device
k is bounded by α2

k and β2
k . Consequently, we have:

E||gt − gt||2

= E

∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

pk(∇Fk(w
k
t , ξ

k
t ) +∇Gk(wk

t , ξ
k
t )−∇Fk(w

k
t )−∇Gk(wk

t ))

∣∣∣∣∣
∣∣∣∣∣
2

= E

∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

pk(∇Fk(w
k
t , ξ

k
t )−∇Fk(w

k
t ))

+

N∑
k=1

pk(∇Gk(wk
t , ξ

k
t )−∇Gk(wk

t ))

∣∣∣∣∣
∣∣∣∣∣
2

=

N∑
k=1

p2kE||∇Fk(w
k
t , ξ

k
t )−∇Fk(w

k
t ))||2

+

N∑
k=1

p2kE||∇Gk(w
k
t , δ

k
t )−∇Gk(wk

t ))||2

≤
N∑

k=1

p2k(α
2
k + β2

k).

(25)

Since our DFL requires a communication round each T
SGD steps. Therefore, for any t ≥ 0, there exists a t0 ≤ t,
such that t−t0 ≤ T−1 and wkt0 = wt0 for all k = 1, 2, · · · , N .
Based on the fact that ηt is non-increasing and ηt0 ≤ 2ηt for
all t− t0 ≤ T − 1, we can get:

E
N∑

k=1

pk||wt − wk
t ||2

= E
N∑

k=1

pk||(wk
t − wt0)− (wt − wt0)||2

≤ E
N∑

k=1

pk||wk
t − wt0 ||

2

≤
N∑

k=1

pkE
t−1∑
t=t0

(T − 1)η2t ||∇Fk(wk
t , ξ

k
t ) +∇Gk(wk

t , δ
k
t )||2

≤
N∑

k=1

pkE
t−1∑
t=t0

(T − 1)η2t 2
[
||∇Fk(wk

t , ξ
k
t )||2 + ||∇Gk(wk

t , δ
k
t )||2

]
≤ 2

N∑
k=1

pk

t−1∑
t=t0

(T − 1)η2t0(G2
1 +G2

2)

≤ 2

N∑
k=1

pkη
2
t0(T − 1)2(G2

1 +G2
2)

≤ 8η2t (T − 1)2(G2
1 +G2

2).
(26)

Therefore, we can obtain Formula 27 by combining Formu-
las 24, 25 and 26.

E||wt+1 − w?||2 ≤ (1− 2µηt)E||wt − w?||2 + η2
tB,

B = 32(T − 1)2(G2
1 +G2

2)

N∑
k=1

p2
k(α2

k + β2
k) + 8LΓ.

(27)
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TABLE I: IID and non-IID device data settings for MNIST, CIFAR-10, and CIFAR-100

Dataset MNIST CIFAR-10 CIFAR-100
Training Sample # in Total 60000 50000 50000

Training Sample # per AIoT Device 600 500 500
Label # in Total 10 10 20

Scenario Data Setting
IID Uniform distribution

non-IID 80% belong to one label,
the remaining 20% belong to other labels

For a diminishing stepsize similar to [20], ηt = β
t+γ for

some β > 1
µ and γ > 0 such that η1 ≤ min{ 1

µ ,
1

4L} =
1

4L and ηt ≤ 2ηt+T . We will prove ∆t ≤ v
γ+t where v =

max
{

β2B
2βµ−1 , (γ + 1)∆1

}
.

We prove it by induction. Firstly, the definition of v ensures
that it holds for t = 1. Assuming the conclusion holds for some
t, it follows that:

E||wt+1 − w?||2 ≤ (1− 2βµ

t+ θ
)
v

t+ θ
+

β2B

(t+ θ)2

=
t+ θ − 1

(t+ θ)2
v +

[ β2B

(t+ θ)2
− 2βµ− 1

(t+ θ)2
v
]

≤ v

t+ θ + 1
.

(28)

Then, by the L-smoothness of Φ(·), we can get:

E
[
Φ(wt)

]
− Φ? ≤ L

2
E||wt − w?||2 ≤

L

2

v

θ + t
. (29)

where

v = max
{ β2B

2βµ− 1
, (γ + 1)∆1

}
. (30)

and

B = 32(T − 1)2(G2
1 +G2

2)

N∑
k=1

p2
k(α2

k + β2
k) + 8LΓ. (31)

Therefore, our DFL converges to the global optimum at a
rate of O( 1

t ) for strongly convex and smooth functions. For
the case of partial device participation, similar to [20], we can
claim that the convergence rate of partial device participation
is the same as that of full device participation.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the effectiveness of our DFL approach, we
implemented the approach on top of a cloud-based architecture
consisting of a cloud server and a series of AIoT devices. Our
DFL architecture was built on a workstation (with Intel i7-
9700k CPU, 64GB memory, NVIDIA GeForce GTX 2080Ti
GPU), and ten Nvidia Jetson Nano boards (with ARM Cortex-
A57 processor and 4 GB memory). Note that in the experi-
ment, only 10 of the AIoT devices were emulated by the Jetson
Nano boards, while the remaining devices were simulated

on the workstation. The Jetson Nano boards connect to the
workstation via a WiFi environment. Since not all devices
are able to participate in each round of model training in the
real AIoT application scenario, we set the fraction of AIoT
devices to C = 0.1, i.e., 10 devices were randomly selected
to participate in each round of model training. For each AIoT
device, we set the batch size, learning rate, and epoch of local
training to 50, 0.01, and 5, respectively. For the performance
comparisons of five methods, we set the threshold T = 0.6 as
an empirical optimal choice, which is detailed in Section IV-C.
Note that for the other hyperparameters of each baseline, we
follow the parameters provided by the paper authors.

We conducted experiments on four well-known benchmarks,
i.e., MNIST, CIFAR-10, CIFAR-100 [21] and FEMNIST [22],
respectively. In the experiments, we assumed that there are
100 AIoT devices for the first three benchmarks, respectively.
Considering that all the AIoT devices are memory limited,
we set the training samples of each benchmark equally to all
the AIoT devices while putting the 10000 test samples in the
cloud server. In order to verify the model performance for
different data distributions, we set two data scenarios (i.e.,
the IID scenario and the non-IID scenario) shown in Table I
based on the Dirichlet Distribution according to [24]. For
the IID scenario, all data samples were uniformly distributed
on all the 100 AIoT devices. For the non-IID scenario, we
set that 80% of the data samples on each device belong to
one label, while the other 20% belong to other labels evenly.
Note that the CIFAR-100 dataset has two types of sample
labels, i.e., the fine-grained label (100 classes) and the coarse-
grained label (20 superclasses). According to the settings of
our experimental scenario, we chose the coarse-grained labels
as the sample categories to better distinguish the performance
of different methods. For the dataset FEMNIST from LEAF,
we considered a non-IID scenario with 180 AIoT devices,
where each device consists of more than 100 local samples 1.
Note that the raw data of FEMNIST is naturally non-IID
distributed, involving class imbalance, data imbalance, and
data heterogeneity.

To fairly validate the effectiveness of different methods,
we conducted experiments using four randomly initialized
models, i.e., CNN models used in [1], and three popular mod-
els (ResNet-20, VGG-16, and MobileNetV2) from Torchvi-
sion [23]. The authors in [1] designed CNN models for MNIST

1Using the command: ./preprocess.sh -s niid –sf 0.05 -k 100 -t sample
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(c) CIFAR-100

Fig. 2: Test accuracy comparison for the IID scenario using CNN

TABLE II: Test accuracy comparison for the IID scenario using four models

Dataset Model Test Accuracy of Different Methods(%)
FedAvg FD SCAFFOLD FedGen DFL (Ours)

MNIST

CNN 99.08 78.36 98.84 99.24 99.33
ResNet-20 97.86 74.68 98.22 98.91 98.93
VGG-16 99.13 88.40 98.79 99.19 99.38

MobileNetV2 98.96 11.36 99.35 99.18 99.23

CIFAR-10

CNN 57.92 31.69 58.32 55.22 61.48
ResNet-20 63.06 30.11 62.99 63.35 64.18
VGG-16 79.81 33.39 81.63 80.27 82.30

MobileNetV2 65.45 11.52 66.82 65.67 69.64

CIFAR-100

CNN 32.73 6.69 34.46 33.09 35.28
ResNet-20 42.65 18.62 42.86 41.66 43.16
VGG-16 55.21 5.06 55.39 55.73 56.10

MobileNetV2 41.76 15.69 41.28 40.83 42.85

and CIFAR-10. For the FEMNIST dataset, we modified the
output of the MNIST CNN model to 62, which is the labels
of the samples. For the CIFAR-100 dataset, we modified the
output of the CIFAR-10 CNN model to 20, which is the
coarse-grained labels of the samples. The Torchvision platform
can provide the corresponding model interfaces according to
the benchmarks we set. Therefore, the structure of these three
models was fine-tuned according to different benchmarks.

The following sub-sections firstly compare the performance
of our proposed DFL with the state-of-the-art methods (i.e.,
FedAvg [1], FD [9], SCAFFOLD [11] and FedGen [19]).
Then, we investigate the impact of the loss function ratio and
find the empirical optimal ratio of the two-loss functions with
a series of experiments. To avoid the interference of random
model initialization and out-of-order dataset training on the
experimental results, we ran each experiment ten times and
took its mean value for a fair comparison.

B. Performance Evaluation

1) Performance Comparison for IID Scenarios: In the first
experiment, we compared the performance of our method
with four baseline methods using the IID scenario set in
Table I. During the model training process of all the five
methods, we tested the inference accuracy of the global models
after each round of model aggregation in the cloud server.
The model accuracy is equal to the ratio of the correctly
predicted samples over the total testing samples using the

cloud aggregated model. Due to the space limitation, we show
the model accuracy trends using the CNN model on three
benchmarks (i.e., MNIST, CIFAR-10, CIFAR-100) along with
the number of training rounds in Figure 2. For each figure,
the X-axis denotes the number of training rounds, and the Y-
axis indicates the model accuracy. Five curves with different
colors represent the trends of the model inference accuracy of
five different methods. From Figure 2, we can find that the
model accuracy of all the methods improves with the increase
of training rounds. When the model accuracy does not increase
significantly, we believe that the model converges. Since the
FD method converges difficultly, we adaptively present the
model convergence process of other methods in Figure 2.

From Figure 2, we can find that our DFL method achieves
the highest model accuracy compared with the other four
methods on all three benchmarks. Since our dynamic ad-
justment strategy gives the soft targets a small proportion in
the early stage of model training, we can greatly reduce the
side effects on model convergence caused by the insufficient
knowledge of soft targets. We increase the proportion of
the soft targets along with the training process, which can
improve the model accuracy by maximizing the knowledge
of soft targets. Therefore, our method can effectively im-
prove the model inference accuracy without slowing down
the model convergence rate. The model accuracy improvement
of SCAFFOLD for the IID scenario is insignificant, and the
model convergence speed of SCAFFOLD slows down. This is
mainly because the added randomly-initialized global variable
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Fig. 3: Test accuracy comparison for the non-IID scenario using CNN

misleads the optimization direction of the model in the early
stage of model training. FedGen uses its built-in generators to
generate extra samples, thereby speeding up model training.
However, the samples generated by the generators of FedGen
is naive, which will decrease the model accuracy in the late
stage of the model training.

Table II presents the complete experimental results of the
model accuracy of five methods. We tested the model accuracy
of all the methods using four models on three benchmarks,
and the highest model accuracy with the same model for the
same dataset is bolded. From Table II, we can find our DFL
method achieves the highest model inference accuracy in 11
out of 12 cases. For example, when training the CNN model
on the CIFAR-10 dataset, the inference accuracy of FedAvg
is 57.92%, while SCAFFOLD can achieve 58.32%, FedGen
can achieve 55.22%, and our DFL can achieve 61.48%. This
is mainly because the soft targets added by our method
can improve the model inference accuracy effectively by
enhancing the model knowledge. The global variables added
in the SCAFFOLD method are based on the data distribution
relationships among the AIoT devices to guide the model
optimization direction of each AIoT device. Therefore, this
method does not greatly improve the model inference accuracy
for the IID scenario. Since the knowledge of the soft targets
of FD is less than that of the model gradient, the FD model
accuracy is lower than the FedAvg model accuracy. Note
that the generators of FedGen can only generate simple data.
Therefore, the model accuracy of this method becomes worse

as the dataset becomes more complex.
2) Performance Comparison for Non-IID Scenarios: To

evaluate the performance of our DFL method for the non-
IID scenario, we compared the five methods (i.e., FedAvg,
FD, SCAFFOLD, and FedGen) using four benchmarks (i.e.,
MNIST, CIFAR-10, CIFAR-100, and FEMNIST), where the
former three benchmarks follow the non-IID setting presented
in Table I and the dataset FEMNIST follows the non-IID
setting provided by LEAF. Figure 3 shows the trends of model
accuracy using the CNN model along with the number of
training rounds. Similar to the observations from Figure 2, we
can find that our approach outperforms the other four methods.
Our DFL method achieves the highest model accuracy and the
fastest model convergence speed on all four datasets.

Table III presents the complete experimental results of the
model accuracy for the non-IID scenario. From Table III,
we can find that our DFL method can achieve the best
performance in 14 out of 16 cases. For example, when training
the CNN model on the CIFAR-10 dataset, our DFL method
outperforms FedAvg, SCAFFOLD and FedGen by 7.06%,
5.73% and 9.68%, respectively. The reason why our approach
is superior is mainly because the added soft targets can
enhance model knowledge, which is effective for both IID
and non-IID scenarios. Therefore, the local training process
can use the knowledge of soft targets to improve the model
accuracy. Note that the model accuracy of the FD method is
11.53% for this case, which is similar to that of a randomly
initialized model. This is mainly because the knowledge of soft
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TABLE III: Test accuracy comparison for the non-IID scenario using four models

Dataset Model Test Accuracy of Different Methods(%)
FedAvg FD SCAFFOLD FedGen DFL (Ours)

MNIST

CNN 98.70 23.27 98.42 99.08 99.12
ResNet-20 95.91 35.31 96.07 96.90 97.28
VGG-16 98.71 13.24 98.31 99.33 99.26

MobileNetV2 98.34 11.05 98.45 98.44 98.62

CIFAR-10

CNN 51.48 11.53 52.81 48.86 58.54
ResNet-20 50.86 20.55 54.29 50.64 53.03
VGG-16 64.55 17.12 66.74 62.46 72.18

MobileNetV2 38.01 10.66 39.66 30.94 40.06

CIFAR-100

CNN 27.54 5.59 30.53 28.65 31.93
ResNet-20 17.62 7.31 23.48 23.92 31.35
VGG-16 33.51 6.13 33.37 32.09 35.21

MobileNetV2 17.41 6.13 19.26 22.14 22.29

FEMNIST

CNN 81.22 30.09 81.29 82.56 84.83
ResNet-20 76.78 38.26 75.43 78.72 81.93
VGG-16 83.50 26.38 83.07 82.49 85.21

MobileNetV2 81.09 28.55 80.99 82.10 83.17

TABLE IV: Size of models and generators

Model Name Model Size (KB) Generator Size (KB)MNIST CIFAR-10 CIFAR-100 FEMNIST
CNN 265.9 249.7 253.1 643.5 338.2

ResNet-20 908.7 909.9 1024 962.2 691.1
VGG-16 32768 137830.4 139366.4 32870.4 8806.4

MobileNetV2 9420.8 9420.8 9932.8 9728 2867.2

targets is insufficient to train a model. Therefore, the model
trained by FD using soft targets alone is inaccurate.

3) Comparison of Communication Overhead: Table IV
illustrates the size of different models as well as the generators
used by FedGen, expressed in KB. The network resources
occupied by SCAFFOLD are always twice that of FedAvg
due to the additional global variable of each AIoT device.
FedGen needs to dispatch both built-in generators and model
gradients, where the size of generators is shown in Table IV.
Although the information interaction of FD occupies few
network resources, the model trained by FD is inaccurate,
which makes it unable to be deployed in the AIoT applications.
The communication cost of our DFL method equals the
sum of FedAvg and FD since our method adds soft targets
based on FedAvg. The size of soft targets is only determined
by the number of categories of datasets (i.e., 3.2 KB for
CIFAR-100 and 0.8 KB for the other benchmarks). Therefore,
the larger the training model, the smaller the proportion of
communication cost increased by our method than FedAvg.
For example, when training the model ResNet-20 on dataset
FEMNIST using our DFL approach, the total size of both
model gradients and soft targets is 963 KB, which needs 0.36
seconds on average for one DFL training round. However,
SCAFFOLD needs 0.71 seconds for one training round, where
the total size of both the global model and the global control
variable is 1924.4 KB. The total size of both the global model
and built-in generators involved in FedGen is 1653.3 KB,
which requires 0.48 seconds for the interaction between the
cloud server and devices. Compared with the state-of-the-art

methods (i.e., SCAFFOLD and FedGen), our DFL method
has less communication overhead while trained models can
achieve higher accuracy.

C. Impacts of Dynamic Adjustment Strategy

Since the ratio (i.e., ρ) of the two-loss functions controls
the proportion of hard labels and soft targets during the local
training, it plays an important role in our DFL approach.
To investigate the impacts of dynamic adjustment strategy,
we conducted a series of experiments to verify the role of
loss function ratio in different stages of model training. As a
representative, Figure 4 shows the trends of model accuracy
of FedAvg and our DFL method with three different loss
function ratio settings using the CNN model for the IID
scenario of CIFAR-10. In Figure 4, four curves with different
colors represent the model accuracy trends of four methods,
i.e., DFL method with Fixed loss function Ratio named DFL-
FR (marked in blue), DFL method with Dynamic changing
Ratio without the Threshold named DFL-DRw/T (marked in
yellow), DFL method with Dynamic changing Ratio and the
Threshold named DFL-DRwT (marked in green), and FedAvg
(marked in red).

From Figure 4, we can find that the model accuracy of
DFL-DRwT and DFL-DRw/T increases rapidly in the early
stage of training while the DFL-FR model accuracy increases
slowly. This is mainly because the knowledge of soft targets
is insufficient in the early stage of model training, which can
mislead the model optimization direction. The knowledge of
soft targets increases as the model trains. In the late stage of



12

TABLE V: Test accuracy comparison with different thresholds

Scenario Model Test Accuracy (%)
T=0 T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 T=0.6 T=0.7 T=0.8 T=0.9 T=1

IID

CNN 33.94 59.74 59.31 59.76 59.16 59.58 61.48 60.03 60.24 59.42 57.92
ResNet-20 52.68 62.85 62.67 62.8 62.07 62.28 64.18 63.64 63.08 61.89 63.06
VGG-16 79.13 80.98 81.55 81.67 81.63 81.18 82.30 82.23 81.24 80.12 79.81

MobileNetV2 64.09 68.96 69.01 69.41 69.59 69.72 69.64 68.93 68.82 68.12 65.45

non-IID

CNN 18.45 51.35 51.57 51.27 52.37 53.34 58.54 54.26 55.29 54.38 51.48
ResNet-20 24.65 27.74 36.03 39.76 45.67 46.55 53.03 52.44 50.34 51.59 50.86
VGG-16 67.03 68.73 68.81 68.18 68.67 69.86 72.18 68.26 68.83 66.47 64.55

MobileNetV2 33.89 35.18 34.01 37.48 38.85 39.96 40.06 39.82 35.88 38.34 38.01
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Fig. 4: Model accuracy trends of four methods

training, there is sufficient knowledge of soft targets to guide
the model training. Therefore, assigning a higher proportion
to soft targets is beneficial to the model training as the number
of training rounds increases. However, the model accuracy
drops sharply in the final stage of the DFL-DRw/T model
training. This is mainly because the proportion of hard labels
is too small, and the model trained with soft targets alone is
inaccurate. Therefore, we need to control the ratio between
the two-loss functions to achieve the best model performance
after the soft targets gain sufficient knowledge.

To investigate the empirical optimal threshold of the loss
function ratio, we conducted experiments with thresholds from
0 to 1 with a step length of 0.1. Table V shows the exper-
imental results of the model accuracy obtained on CIFAR-
10 using different thresholds and our two data distribution
settings, and the highest model accuracy is bolded. We can
find that our DFL method achieves the highest model accuracy
in 7 out of 8 cases when the threshold is set to 0.6. Only when
MobileNetV2 is used for the IID scenario the model does not
achieve the highest accuracy at T = 0.6. In this case, the
model obtains the highest accuracy at T = 0.5, which is only
0.08 more than T = 0.6. Therefore, to achieve the best model
performance, we set T = 0.6 to maximize the use of soft
targets and hard labels.

V. CONCLUSION AND FUTURE WORK

Although Federated Learning (FL) techniques are becoming
popular in Artificial Intelligence Internet of Things (AIoT)
applications, they are suffering from the problem of model
inaccuracy. How to improve the model accuracy of FL under

the limited network bandwidth and memory resources is be-
coming a major bottleneck in the design of AIoT applications.
To address the above problem, this paper presents a novel
FL architecture based on Knowledge Distillation (KD) named
DFL, which can increase the model generalization ability.
By adding soft targets to each round of model training, our
proposed approach can increase the inference accuracy of the
FL model without introducing significant communication and
memory overhead. To further improve the performance of our
DFL model, we designed a strategy to dynamically adjust the
ratio of the two loss functions in KD to maximize the use of
knowledge of soft targets. Comprehensive experimental results
on four well-known benchmarks prove the effectiveness of
our approach. For future work, we need to consider a better
dynamic adjustment strategy, where the loss function ratio is
controlled by the feedback of the model accuracy.
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Ivanov, C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan, T. Van,
D. Petrou, D. Ramage, and J. Roselander, Towards federated learning
at scale: System design, in: Proc. of Machine Learning and Systems
(MLSys), 2019, pp. 1–15.

[4] P. Li, Z. Chen, L. Yang, Q. Zhang, and M. Deen, Deep convolutional
computation model for feature learning on big data in internet of things,
IEEE Transactions on Industrial Informatics, vol. 14, no. 2, pp. 790–798,
2018.

[5] W. Lim, Z. Xiong, J. Kang, D. Niyato, C. Leung, C. Miao, and X. Shen,
When information freshness meets service latency in federated learning:
A task-aware incentive scheme for smart industries, IEEE Transactions
on Industrial Informatics, vol. 18, pp. 457–466, 2022.

[6] G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural
network, arXiv:1503.02531, 2015, pp. 1–9.

[7] R. Anil, G. Pereyra, A. Passos, R. Ormándi, G. Dahl, and G. Hinton,
Large scale distributed neural network training through online distilla-
tion, in: Proc. of International Conference on Learning Representations
(ICLR), 2018, pp. 1–12.

[8] F. Sattler, A. Marbán, R. Rischke, and W. Samek, Communication-
efficient federated distillation, arXiv:2012.00632, 2020, pp. 1–15.

[9] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S. Kim,
Communication-efficient on-device machine learning: federated distil-
lation and augmentation under non-IID private data, arXiv:1811.11479,
2018, pp. 1–6.

[10] D. Sui, Y. Chen, J. Zhao, Y. Jia, Y. Xie, and W. Sun, FedED: Feder-
ated learning via ensemble distillation for medical relation extraction,
in: Proc. of Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020, pp. 2118–2128.

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/2012.00632
http://arxiv.org/abs/1811.11479


13

[11] S. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. Suresh,
SCAFFOLD: stochastic controlled averaging for on-device federated
learning, arXiv:1910.06378, 2019, pp. 1–12.

[12] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang,
Personalized cross-silo federated learning on non-IID data, in: Proc. of
Applications of Artificial Intelligence (AAAI), 2021, pp. 7865–7873.

[13] H. Wang, Z. Kaplan, D. Niu, and B. Li, Optimizing federated learning on
non-IID data with reinforcement learning, in: Proc. of IEEE Conference
on Computer Communications (INFOCOM), 2020, pp. 1698–1707.

[14] M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, J. Jiang, and C. Zhang,
Multi-center federated learning, arXiv:2005.01026, 2020, pp. 1–14.

[15] C. Briggs, Z. Fan, and P. Andras, Federated learning with hierarchi-
cal clustering of local updates to improve training on non-IID data,
arXiv:2004.11791, 2020, pp. 1–9.

[16] T. Lin, L. Kong, S. Stich, and M. Jaggi, Ensemble distillation for robust
model fusion in federated learning, in: Proc. of Annual Conference on
Neural Information Processing Systems (NeurIPS), 2020, pp. 1–13.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, Generative adversarial networks,
Commun. ACM, vol. 63, no. 11, pp. 139–144, 2020.

[18] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Ya-
mamoto, Distillation-based semi-supervised federated learning for
communication-efficient collaborative training with non-IID private data,
arXiv:2008.06180, 2020, pp. 1–11.

[19] Z. Zhu, J. Hong, and J. Zhou, Data-free knowledge distillation for
heterogeneous federated learning, in: Proc. of International Conference
on Machine Learning (ICML), 2021, pp. 12878–12889.

[20] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, On the Convergence
of FedAvg on Non-IID Data, in: Proc. of International Conference on
Learning Representations (ICLR), 2020, pp. 1–12.

[21] TorchvisionData, Dataset of mnist, fashion-mnist, cifar-10 and cifar-100,
https://pytorch.org/docs/stable/torchvision/datasets.html, 2019.

[22] S. Caldas, P. Wu, T. Li, J. Konecny, H. McMahan, V. Smith, and A. Tal-
walkar, LEAF: a benchmark for federated settings, arXiv:1812.01097,
2018, pp. 1–9.

[23] TorchvisionModel, General models from torchvision, https://pytorch.org/
docs/stable/torchvision/models.html, 2019.

[24] T. Hsu, H. Qi, and M. Brown, Measuring the effects of non-identical
data distribution for federated visual classification, arXiv:1909.06335,
2019, pp. 1–5.

Tian Liu received the B.S. and M.E. degrees from
Department of Computer Science and Technology,
Hohai University, Nanjing, China, in 2011 and 2014
respectively, and the Engineer degree from Depart-
ment of Information and Statistic, Polytech’Lille,
France, in 2012. He is currently a Ph.D. student
in the Software Engineering Institute, East China
Normal University. He is also a lecturer in the
Department of Information Science and Engineering,
Zaozhuang University. His research interests are in
the area of federated learning, machine learning,

internet of things and cloud computing.

Zhiwei Ling received the B.S. degrees from De-
partment of Education Information Technology, East
China Normal University, Shanghai, China, in 2021.
He is currently a Master student in the Software
Engineering Institute, East China Normal University.
His research interests are in the area of federated
learning, machine learning, and internet of things.

Jun Xia received the B.S. degree from the Depart-
ment of Computer Science and Technology, Hainan
University, Hainan, China, in 2016 and the M.E.
degree from Department of Computer Science and
Technology, Jiangnan University, Wuxi, China in
2019, respectively. He is currently a Ph.D. student
in the Software Engineering Institute, East China
Normal University, Shanghai, China. His research
interests are in the area of federated learning, AIoT
applications, cloud computing, and heterogeneous
computing.

Xin Fu (SM’10) received the Ph.D. degree in Com-
puter Engineering from the University of Florida,
Gainesville, in 2009. She was an NSF Comput-
ing Innovation Fellow with the Computer Science
Department, the University of Illinois at Urbana-
Champaign, Urbana, from 2009 to 2010. From 2010
to 2014, she was an Assistant Professor at the
Department of Electrical Engineering and Computer
Science, the University of Kansas, Lawrence. Cur-
rently, she is an Associate Professor at the Electrical
and Computer Engineering Department, the Univer-

sity of Houston, Houston. Her research interests include high-performance
computing, machine learning, energy-efficient computing, mobile computing.
Dr. Fu is a recipient of 2014 NSF Faculty Early CAREER Award, 2012 Kansas
NSF EPSCoR First Award, and 2009 NSF Computing Innovation Fellow.

Shui Yu (SM’12) obtained his PhD from Deakin
University, Australia, in 2004. He currently is a
Professor of School of Computer Science, University
of Technology Sydney, Australia. Dr Yu’s research
interest includes Big Data, Security and Privacy,
Networking, and Mathematical Modelling. He has
published four monographs and edited two books,
more than 400 technical papers, including top jour-
nals and top conferences, such as IEEE TPDS, TC,
TIFS, TMC, TKDE, TETC, ToN, and INFOCOM.
His h-index is 63. Dr Yu initiated the research field

of networking for big data in 2013, and his research outputs have been
widely adopted by industrial systems, such as Amazon cloud security. He
is currently serving a number of prestigious editorial boards, including IEEE
Communications Surveys and Tutorials (Area Editor), IEEE Communications
Magazine, IEEE Internet of Things Journal, and so on. He served as a
Distinguished Lecturer of IEEE Communications Society (2018-2021). He
is a Distinguished Visitor of IEEE Computer Society, a voting member of
IEEE ComSoc Educational Services board, and an elected member of Board
of Governor of IEEE Vehicular Technology Society.

Mingsong Chen (M’08–SM’11) received the B.S.
and M.E. degrees from Department of Computer
Science and Technology, Nanjing University, Nan-
jing, China, in 2003 and 2006 respectively, and the
Ph.D. degree in Computer Engineering from the
University of Florida, Gainesville, in 2010. He is
currently a Professor with the Software Engineering
Institute at East China Normal University. His re-
search interests are in the area of cloud computing,
design automation of cyber-physical systems, paral-
lel and distributed systems, and formal verification

techniques. He is an Associate Editor of IET Computers & Digital Techniques,
and Journal of Circuits, Systems and Computers.

http://arxiv.org/abs/1910.06378
http://arxiv.org/abs/2005.01026
http://arxiv.org/abs/2004.11791
http://arxiv.org/abs/2008.06180
https://pytorch.org/docs/stable/torchvision/datasets.html
http://arxiv.org/abs/1812.01097
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
http://arxiv.org/abs/1909.06335

	I Introduction
	II Related Work
	III Our DFL Approach
	III-A Architecture of Our DFL Approach
	III-B Training Procedure of DFL
	III-B1 Cloud Server Procedure
	III-B2 Local Update Procedure

	III-C Dynamic Adjustment Strategy
	III-D Convergence Analysis of Our DFL Approach

	IV Experimental Results
	IV-A Experimental Setup
	IV-B Performance Evaluation
	IV-B1 Performance Comparison for IID Scenarios
	IV-B2 Performance Comparison for Non-IID Scenarios
	IV-B3 Comparison of Communication Overhead

	IV-C Impacts of Dynamic Adjustment Strategy

	V Conclusion and Future work
	References
	Biographies
	Tian Liu
	Zhiwei Ling
	Jun Xia
	Xin Fu
	Shui Yu
	Mingsong Chen


