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Abstract—Energy load balancing is an essential issue in design-
ing wireless sensor networks (WSNs). Clustering techniques are
utilized as energy-efficient methods to balance the network energy
and prolong its lifetime. In this paper, we propose an improved
soft-k -means (IS-k -means) clustering algorithm to balance the
energy consumption of nodes in WSNs. First, we use the idea of
“clustering by fast search and find of density peaks” (CFSFDP)
and kernel density estimation (KDE) to improve the selection of
the initial cluster centers of the soft k -means clustering algorithm.
Then, we utilize the flexibility of the soft-k -means and reassign
member nodes considering their membership probabilities at the
boundary of clusters to balance the number of nodes per cluster.
Furthermore, the concept of multi-cluster heads is employed
to balance the energy consumption within clusters. Extensive
simulation results under different network scenarios demonstrate
that for small-scale WSNs with single-hop transmission, the
proposed algorithm can postpone the first node death, the half of
nodes death, and the last node death on average when compared
to various clustering algorithms from the literature.

Index Terms—Clustering by fast search and find of density
peaks (CFSFDP), energy load balancing, kernel density estima-
tion (KDE), multi-cluster heads, soft k -means, wireless sensor
networks (WSNs).

I. INTRODUCTION

THE general concept of Internet-of-Things (IoT) is to

facilitate the network connection of billions of devices

to collect and exchange information to provide various ser-

vices [1], [2]. Wireless sensor networks (WSNs) are among

important parts of an IoT system because they can be used

to gather and send data [3]. WSNs are like the eyes and ears

of the IoT and they build the bridge between the real and the

digital worlds. WSNs typically consist of a large number of

low-cost sensor nodes with restricted battery supplies. Sensor

nodes are deployed in various application scenarios to monitor

and collect physical conditions of the surrounding environment

such as temperature, humidity, pressure, position, vibration,

and sound, to name a few [4]. The collected data is then sent

to the base station (BS) for further analysis and processing.
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Reducing energy consumption is a key challenge in WSNs,

as sensor nodes can be placed in hard-to-reach areas and/or

their batteries may not be rechargeable [5]. Clustering in

energy-limited WSNs has been widely investigated to re-

duce the energy consumption [6]. Clustering-based algorithms

group sensor nodes into distinct clusters, where each sensor

node belongs to one cluster only. All member nodes sense their

surrounding environment and send the results to the cluster

heads (CHs). Then, CHs collect and process the data and

send information to the BS [7]. Each node consumes a certain

amount of energy when it collects, processes, and sends data,

and a node is defined to be dead when it runs out of energy [8].

Hence, it is crucial to develop efficient clustering algorithms

to balance the energy consumption among sensor nodes in

WSNs.

Different clustering techniques have been proposed to de-

sign energy-efficient WSNs and increase their lifetime. The

authors in [9] proposed a CH election method, which rotates

the CH positions among the nodes with higher energy in

different communication rounds. In particular, the method

considers the initial energy, residual energy, and an optimal

number of CHs to decide the next group of CHs among

the nodes in the network. Then, member nodes join different

CHs according to the distances between them and CHs to

form clusters. A joint clustering and routing algorithm is pro-

posed in [10] to improve the energy efficiency of large-scale

WSNs. This algorithm employs a back-off timer and gradient

routing to execute the CH selection and multi-hop routing

simultaneously. The authors in [11] presented a node-density-

based clustering and mobile elements algorithm (NDCMC) for

collecting data in WSNs. In NDCMC, the nodes surrounded by

more deployed nodes are selected as CHs in order to improve

the efficiency of intra-cluster routing. The authors presented a

fixed parameter tractable (FPT) approximation algorithm with

an approximation factor of 1.2 based on the parameterized

complexity theory in [12] in order to solve load balanced

clustering problem (LBCP) in WSNs. The FPT-approximation

algorithm determines which gateway each sensor node must

be assigned to, which can lead to more balanced load and

energy consumption among the gateways. On the other hand,

a routing tree for the inter-cluster communication is proposed,

which can distribute the overhead of the routing among almost

of all of the nodes. In [13], the authors further proposed an

FPT-approximation algorithm with an approximation factor of

1.1, which is more precise than previous approximation factors

http://arxiv.org/abs/2403.15700v1
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reported for LBCP. The FPT-approximation algorithm is used

to assign sensor nodes to gateways such that the maximum

load of the gateways is minimized. Then, an energy-aware

routing algorithm is employed to find the optimal routing tree

between gateways and the sink with the aim of balancing

the energy consumption of the nodes. The same authors

also considered another FPT-approximation algorithm with an

approximation factor of 1.1 in [14]. In order to make the FPT-

approximation algorithm to be practical in large-scale WSNs,

a virtual grid infrastructure with several equal-size cells is

used where the FPT-approximation algorithm runs in each

cell independently. In [15], a distributed multi-objective based

clustering algorithm is presented to assign sensor nodes to

appropriate CHs. Then, an energy-efficient routing algorithm

is proposed to balance the relay load among the CHs. In [16],

the authors implemented a distributed clustering algorithm

by considering a trade-off between the energy efficiency and

coverage requirement. This algorithm can form unequal-size

clusters to balance the load of the CHs. The same authors

in [17] proposed a distributed fuzzy logic-based unequal

clustering approach and routing algorithm (DFCR) to solve

the hot spot problem, which is caused by the fact that some

CHs deplete their energy much faster as compared to other

CHs. The DFCR algorithm designs an unequal clustering

mechanism by reducing the cluster size nearest to the BS.

The authors in [18] proposed a modified k-means clustering

algorithm that considers two factors, namely, (i) distances

among CHs and their member nodes, and (ii) the remaining

energy of nodes, to reduce the overall energy consumption and

extend the network lifespan. In [19], the authors proposed a

hybrid clustering algorithm based on the k-means clustering

algorithm and LEACH [20], where balanced clusters are

generated by k-means and CHs are selected by LEACH. This

hybrid algorithm outperforms LEACH in terms of the energy

consumption. However, due to the frequent re-clustering, the

energy consumption of the nodes may increase in the phase of

cluster formation and CH selection. An energy efficient clus-

tering protocol based on k-means (EECPK-means) is proposed

in [21] with the aim of balancing the load of CHs in WSNs.

The midpoint method is used to improve the initial selection

of centroids in the k-means algorithm in order to generate bal-

anced clusters. In [22], the authors proposed a method based

on fuzzy c-means clustering and particle swarm optimization

(FCM-PSO) to reduce the total energy consumption of the

network and reduce the number of network disconnects. The

FCM-PSO algorithm considers the energy consumption and

constraints of communication in the calculations of the CHs

and nodes’ membership probability. The energy-efficient k-

means LEACH (KM-LEACH) algorithm is proposed in [23]

to create symmetric clusters and reduce the average intra-

cluster communication distance, which can save nodes’ energy

and improve the network lifetime. To address the problem of

how to control the failure of a CH in each cluster, the k-

medoids clustering algorithm and vice CH scheme (VLEACH)

are used together with LEACH in [24]. Vice CH will become

a new CH in case the CH of a given cluster dies, which

helps to prolong the lifetime of WSNs by balancing the nodes’

energy consumption. The authors in [25] used the k-means and

Gaussian elimination algorithms to reduce energy consumption

of WSNs and extend their lifetime. An innovative classification

algorithm based on “clustering by fast search and finding of

density peaks” (CFSFDP) [26] algorithm for balancing energy

is proposed in [27]. The authors extend the original CFSFDP

algorithm to take into account residual energy (in addition

to local density and distance) to select CHs, and accordingly

cluster nodes based on the selected CHs.

Against the above background, in this paper, an improved

soft-k-means (IS-k-means) clustering algorithm is proposed

with the aim of balancing the energy consumption of all nodes

in WSNs and extending the network lifetime. The proposed IS-

k-means can be widely used in industrial control, smart home,

smart agriculture, environment perception, health monitoring,

etc., because it can extend the life of sensor nodes in these

application scenarios. The novelty of the proposed algorithm

can be summarized as follows.

1) Compared with existing clustering algorithms that select

the initial cluster centers randomly, we choose the initial

centroids of the IS-k-means clustering algorithm by using the

idea of density from CFSFDP and kernel density estimation

(KDE) [28] to achieve a better clustering result. The nodes

with high local density and relative large node distances are

chosen as the initial centroids.

2) After the proposed algorithm converges, we reassign

member nodes that are located at the boundary of two or more

clusters to balance the number of nodes per cluster according

to the flexibility of the soft-k -means.

3) Since the clustering process needs to be repeated con-

tinually, the communication cost during the clustering phase

is increased. We use multi-cluster heads (multi-CHs) scheme

to balance traffic load of CHs of different clusters and reduce

the frequency of clustering.

The rest of this paper is organized as follows. The necessary

background for our research is discussed in Section II. Section

III describes the proposed IS-k-means algorithm. In Section

IV, we compare the performance of the proposed IS-k-means

with other algorithms. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Soft k-Means

The soft k-means [29] is a kind of fuzzy clustering algo-

rithm where clusters are represented by their respective cen-

ters. Since traditional k-means clustering techniques are hard

clustering algorithms, which may fail to separate overlapping

clusters or properly cluster noisy data [30], the soft k-means

algorithm can be applied to address these cases. With the soft

k-means algorithm, each node may belong to one or more

clusters with different degrees of membership [31]. Nodes

located at the boundaries of clusters are not forced to fully

belong to a given cluster, but rather they can be members

of many clusters with membership degrees or probabilities

between 0 and 1 [32]. Nodes at the edge of a cluster may have

lower membership probabilities than nodes close to the center

of a cluster. This flexibility of the soft k-means clustering is

in sharp contrast with the k-means clustering, where a node

belongs to only a single cluster.
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For a set of nodes’ locations X = {x1,x2, . . . ,xn} in

WSNs, the goal of the soft k-means is to partition the n
nodes into k sets C = {c1, c2, . . . , ck} with small intra-cluster

distances and large inter-cluster distances. Thus, we define the

following cost function:

J(X;Z,M) =

k
∑

v=1

n
∑

j=1

zvj ||xj − µv||2, (1)

where M(µv; v = 1, . . . , k) is the matrix of cluster centers,

and Z(zvj ; v = 1, . . . , k; j = 1, . . . , n) is the membership

probability matrix of X . zvj is the membership value of the

jth node to the vth cluster and is defined as [29]

zvj =
e−β||xj−µv ||

2

∑k

l=1 e
−β||xj−µl||2

, (2)

where β is the stiffness parameter that impacts the membership

probability of each node. The best clustering solution is

obtained by minimizing J , which differs from the conventional

k-means since weighted squared errors are used in the cost

function instead of squared errors [29]. The result of the soft

k-means algorithm will depend on the choice of β. We will

discuss the choice of β when presenting simulation results.

In order to minimize the objective function in (1), zvj must

satisfy the following three constraints [29].

1) Each node is assigned a membership probability be-

tween 0 and 1 for belonging to a cluster:

zvj ∈ [0, 1], v = 1, . . . , k, j = 1, . . . , n. (3)

2) The sum of the membership probabilities for one node

over all clusters is equal to 1:

k
∑

v=1

zvj = 1, j = 1, . . . , n. (4)

3) There will be at least one node with some non-zero

membership probability for belonging to each cluster

n
∑

j=1

zvj > 0, v = 1, . . . , k. (5)

By minimizing the objective function, we can calculate the

cluster centers as [29]

µv =

∑n
j=1 zvjxj
∑n

j=1 zvj
. (6)

The operations of the soft k-means algorithm can be sum-

marized as follows: the algorithm calculates the member-

ship probabilities and the cluster centers according to (2)

and (6) in each round, respectively. If the changes of the

membership probabilities Z or the cluster centers M are

below given thresholds, the clustering process ends. Otherwise,

the algorithm recalculates the new membership probabilities

Z and the new cluster centers M . If the algorithm does

not converge after a given number of iterations, it will re-

initiate by choosing new initial cluster centers. Fig. 1 shows

an example of the clustering result of 100 nodes by the soft

k-means algorithm.

1 2 3 4 5
m

0

1

2

3

4

5

6

m

Fig. 1. Example of soft k-means clustering.

B. Kernel Density Estimation

Non-parametric estimators are flexible for modeling prob-

ability density function (PDF) of data points. They have no

fixed functional form and depend on data points to reach

an estimate when compared to parametric estimators [33].

Non-parametric estimators can be classified into histogram-

based and kernel-based estimation. A histogram-based esti-

mator needs large data sets to guarantee convergence, and it

cannot produce smooth continuous estimation curve [34]. KDE

finds the distribution characteristics from data points without

attaching any assumptions to data. It can ensure a smooth PDF

approximation for given data points [28]. In KDE, the kernel

function is centered at each data point, and it has the peak

value at the data point location while decreasing in intensity

with the distance from this location [28].

Using KDE, the PDF of the nodes’ locations X =
{x1, . . . ,xn} ∈ R

d is represented by a weighted sum of the

kernel functions [35]

f̂h(xi) =
1

nhd

n
∑

t=1

K
(

xt − xi

h

)

, (7)

where h is the smoothing parameter called the bandwidth

and it controls the size of the neighborhood around xi, i ∈
1, . . . , n. K(·) is called the kernel function, which is defined

in a d-dimensional space. The kernel function controls the

weight given to X at each point xi based on their proximity.

To yield meaningful estimates, a kernel function should satisfy

the following conditions [28].

1) Normalization:
∫

Rd

K(u)du = 1. (8)

2) Symmetry:

K(−u) = K(u). (9)

3) Non-negative and real-valued integrable:

K(u) > 0. (10)
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Fig. 2. An example of KDE. (a) Nodes distribution. (b) 3-dimensional density contour of nodes in (a). (c) 2-dimensional density contour of nodes in (a).

A multivariate kernel function can be seen as a product of

symmetric univariate kernel functions [36]

K(u) =

d
∏

j=1

φ(uj), (11)

where uj is the jth component of the d-dimensional vector

u, and φ(·) is a univariate kernel function. In our proposed

algorithm, we use the Gaussian kernel function due to its well-

known properties [37], which is defined as follows:

φ(uj) =
1√
2π

exp

(

−
u2
j

2

)

. (12)

Fig. 2 is an example of KDE for a set of data. The set of

discrete points is transformed into a smooth density map, as

shown in Fig. 2 (b), which displays its spatial distribution. The

higher the PDF value in a location is, the higher the density

is.

C. “Clustering by Fast Search and Find of Density Peaks”

Algorithm

CFSFDP is a new clustering algorithm proposed by Ro-

driguez and Laio [26]. It is based on the assumptions that

cluster centers are surrounded by lower local density neighbors

and they are at a relatively large distance from any nodes

with a higher local density. This method needs to calculate

two quantities for each node i: local density ρi and dis-

tance δi. The cluster centers are the nodes with higher local

density and larger distance. For a set of nodes’ locations

X = {x1,x2, . . . ,xn}, and nodes’ label set I = {1, . . . , n},

the local density of a node xi is defined as

ρi =
∑

i6=j

χ(dij − dc), (13)

where

χ(α) =

{

1, α < 0,

0, α ≥ 0,
(14)

dij is the distance between nodes xi and xj , and dc is the

cutoff distance. The choice of dc should yield an average

number of neighbors around 1 to 2% of the total number of

nodes. In essence, ρi can be seen as the number of nodes that

are neighbor to node xi in the range of dc.

Two cases need to be considered in calculating a node’s

distance. If node i has the highest density, then its distance δi
is the maximum value of distances from node i to all other

nodes in I. Otherwise, the distance of node i is defined as

the distance between node i and its nearest neighbor having a

higher density [38]. Specifically, the distance δi is expressed

as

δi =

{

max(dij)j∈I , if ρi is maximum,

min(dij)j∈I(i) , otherwise,
(15)

I(i) = {t ∈ I : ρt > ρi}, (16)

where I(i) is the nodes’ label set with node densities greater

than ρi. After these two quantities are calculated, the cluster

centers are selected from nodes with high values of both ρi
and δi. Then, the CFSFDP algorithm assigns other remaining

points to the nearest cluster center to form clusters. Specifi-

cally, if ρi is large and δi is small for node i, it means node i
is close to the cluster center but not the center. On the other

hand, if node i has small ρi and large δi, it implies that the

node is away from the cluster center [39].

Fig. 3 (b) shows the plot of δi as a function of ρi for each

node in Fig. 3 (a). This representation is called the decision

graph. According to the decision graph, we can have two nodes

with higher values of both density ρ and distance δ. Hence,

they can be chosen as cluster centers, as shown in Fig. 3 (c).

III. PROPOSED IS-k -MEANS ALGORITHM

The proposed IS-k-means algorithm involves two phases:

(i) set-up phase, and (ii) steady phases. During the set-up

phase, each node broadcasts a HELLO message including its

ID and location within the range of its coverage so that each

node can acquire information of its neighbor nodes. Next,

each node sends its information to the BS by the geographic

multi-hop routing algorithm [11] because it already knows the

positions of its neighbor nodes. The BS runs the proposed

IS-k-means algorithm according to the information received

from all nodes. The proposed algorithm uses CFSFDP and

KDE algorithms to optimize the selection of initial cluster

centers of the soft k-means clustering method. Then, the soft
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Fig. 3. CFSFDP in two dimensions. (a) Nodes distribution. (b) Decision graph for nodes in (a): X-coordinate is local density ρ, and Y-coordinate is δ. (c)
Two center nodes are determined.

k-means is used to form clusters and node reassigning scheme

is employed to balance the numbers of nodes in different

clusters. In order to balance the energy overhead of CHs, the

multi-CHs scheme is utilized. After formulation of clusters

and selection of CHs are completed, the BS broadcasts the

results to all nodes by the restricted flooding method [11].

Thus, each node can identify its role, e.g., CH or member

node, and choose to join a corresponding CH if it is a member

node. The steady phase is composed of many communication

rounds. In each round r, member nodes collect and transmit

data to CHs in their allotted time slots, and CHs aggregate

the data and send it to the BS. When the energy of a CH is

less then a threshold, it will broadcast a SWITCH message

to activate the next candidate CH in the same cluster as the

new CH and inform member nodes to send data to this new

CH. If all CHs in a certain cluster are enabled sequentially,

the last working CH will send a RESTART message to the

BS to trigger re-clustering. The flowchart of the proposed IS-

k-means algorithm is shown in Fig. 4.

A. Energy Model

The first-order radio model [20] is used to calculate the

energy consumption of the network. The transmitter’s en-

ergy consumption involves the transmitter circuitry and the

power amplifier, while the energy consumption of the receiver

accounts for the receiver circuitry. The free space and the

multipath fading models are used in the transmitter power

amplifier. If the distance between the transmitter and the

receiver is less than a threshold, the power amplifier uses the

free space model; otherwise, the multipath model is used [40].

The energy consumption of the transmitter and the receiver for

transmitting an l-bit message can be calculated as follows [20]

ET =

{

lEelec + lεfsd
2, d ≤ d0,

lEelec + lεmpd
4, d > d0,

(17)

ER = lEelec, (18)

d0 =

√

εfs

εmp

, (19)

where ET is the dissipated energy in the transmitter and ER

is the dissipated energy in the receiver. Eelec is the dissipated

Clustering start

Selection of initial cluster 

centers by CFSFDP and KDE

Formation of clusters by soft k-means

Selection of  multi-CHs

Steady phase

If residual energy of CH < Threshold

Has next CH?

Switching next CH

Y

Y

N

N

Fig. 4. Flowchart of the proposed algorithm.

energy per bit in both the transmitter circuitry and the receiver

circuitry. d is the transmission distance between the transmitter

and the receiver. d0 is the distance threshold. εfs and εmp

represent the radio amplifier energy parameter of the free space

and multipath fading models [11], respectively.

Because there are many rounds within the steady phase, the
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energy consumption of a CH in round r can be calculated as

ECH(r) = gcET + g(clEDA + ER), (20)

where EDA represents the dissipated energy of data aggrega-

tion and c is the data aggregation ratio. The first term of the

right hand side of (20) is the energy consumption of a CH

for sending aggregated data to the BS and the second term is

the energy consumption of receiving and aggregating data of

g member nodes. The energy consumption of a member node

sending data to its CH in round r is

EnonCH(r) = ET. (21)

Hence, the residual energy of node i in round r can be

computed by

Ei (r) =

{

Ei (r − 1)− ECH(r), i ∈ CHs,

Ei (r − 1)− EnonCH(r), i /∈ CHs,
(22)

where Ei (r − 1) is the residual energy of node i in the r− 1
round.

B. Selection of Initial Cluster Centers

We use CFSFDP and KDE algorithms to determine the

initial cluster centers as the input to the soft k-means clus-

tering algorithm to produce a better clustering result. Because

cluster centers are surrounded by neighbors with lower local

density and they are at a relatively large distance from any

points with a higher local density, they are selected by the

maximum distance δ and relatively high local density ρ, which

is illustrated in Fig. 3. First, we calculate the density of each

node and find the nodes’ set X ′ with relatively high density

ρ′. Then, the distances δ among nodes in X ′ are computed.

In order to choose cluster centers, we only choose nodes with

relatively high density, and then we multiply their density ρi
and distance δi together as

γi = ρi × δi, i ∈ {1, . . . ,m}, (23)

where m is the number of nodes with relatively high density.

Since each initial cluster center node should have a high γ
value, we choose nodes with relatively large γ value as the

initial cluster centers. In addition, the value of k is equal to

the number of the initial cluster centers. Algorithm 1 describes

the detailed steps.

C. Cluster Formation

Some k-means-based algorithms form clusters according

to the distances between normal nodes and CHs, such as

distributed k-means clustering algorithm [42] and improved

k-means cluster-based routing [41]. These k-means-based al-

gorithms can easily lead to a large gap in the number of

nodes in different clusters in WSNs and may cause unbal-

anced energy consumption of CHs. Hence, compared with

these k-means-based clustering algorithms, our proposed IS-

k-means algorithm uses the soft k-means clustering algorithm

to address this problem. Each node can be a member of more

than one clusters at the same time according to membership

probabilities in the soft k-means. However, member nodes

BS

CH

CH

a

Cluster B

Cluster A

HHHH

BS

Fig. 5. A node at the boundary of two clusters.

Algorithm 1: Selection of initial cluster centers

Input: X = {x1, . . . ,xn}
Output: Initial cluster centers: M

1: for i = 1 : n do

2: calculate ρi
3: end for

4: ρ = {ρ1, . . . , ρn}
5: choose nodes with local maximum density

X ′ = {x1, . . . ,xm} and get their density set

ρ′ = {ρ1, . . . , ρm},m < n
6: for i = 1 : m do

7: calculate δi
8: end for

9: ∆ = {δ1, . . . , δm}
10: calculate γi by (23) to determine the initial cluster

centers

11: return M = {µ1, . . . ,µk}

need to join only one cluster with the highest membership

probability at a time. Some boundary nodes may have similar

probabilities to join multiple clusters. After the convergence of

our proposed IS-k-means algorithm, we may reassign nodes to

different clusters to balance the number of nodes per cluster.

For example, node a is at the edge of two clusters and it

has a higher probability to join cluster A, as illustrated in

Fig. 5. Before reassigning node a, cluster A already has 10

member nodes and cluster B has 5 member nodes. Since all

member nodes send messages to their CH, CH of cluster A

will deal with more information from its member nodes. In

order to balance the energy consumption of CHs, it is better to

reassign node a to cluster B. Reassigning node a from cluster

A to cluster B may increase slightly the energy consumption

of transmitting messages between node a and its CH because

the transmission distance d is increased. However, this slight

increase of the transmission energy consumption is negligible

as compared to the total energy consumption in CH. If the

difference of the probabilities of a node belonging to two

clusters is less than a certain threshold, it will join the cluster

with low density. If a node is at the boundary of three or

more clusters, the proposed algorithm only choose the first two
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Algorithm 2: Cluster formation

Input: M = {µ1, . . . ,µk}, X = {x1, . . . ,xn}, the

maximum number of iterations rmax

Output: k clusters

1: for r =  : rmax do

2: for v =  : k do

3: for j =  : n do

4: z′ = 0
5: for l =  : k do

6: z′ = z′ + e−β||xj−µl||
2

7: end for

8: zvj =
e
−β||xj−µv ||2

z′

9: end for

10: end for

11: Zr =









z11 z12 · · · z1n
...

...
...

...

zk1 · · · · · · zkn









12: for v =  : k do

13: µv =
∑n

j=1 zvjxj
∑

n
j=1 zvj

14: end for

15: end for

16: final membership probabilities Zrmax

17: for j =  : n do

18: assign node j to cluster with the highest probability

according to Zrmax

19: end for

20: k clusters C = {c1, . . . , ck}
21: for j =  : n do

22: reassign node j located on the border to different

cluster

23: end for

24: return k new clusters C ′ = {c′1, . . . , c′k}

maximum probabilities and follow the same rule. Algorithm

2 outlines the cluster formation algorithm.

D. Selection of Multi-CHs

Normally, the numbers of nodes in different clusters are

different in WSNs. If only one CH is selected in each cluster,

CH will consume too much energy to deal with the information

from its member nodes in a high density cluster, which will

cause its death too early. Hence, our proposed IS-k-means

algorithm designs a scheme of multi-CHs. The number of

CHs is not fixed in each cluster, and it is determined by the

number of nodes per cluster. The larger the number of nodes

in a cluster is, the higher the number of CHs will be. The

remaining energy of nodes and distances between nodes and

their cluster centers are considered in choosing CHs. Nodes

close to their cluster center and having higher residual energy

than the average energy of the cluster can become CHs. We

define a matrix CHs = {CH1, . . . ,CHk}, which is composed

of all CHs of k clusters, and CHv, 1 ≤ v ≤ k, represents the

set of CHs of cluster v. The total remaining energy of cluster

BS

CH1

CH

Cluster B

Cluster A

CH2

CH3

C

CCHH

H11H1

CCCCCCHHHH333333

BSS

Fig. 6. Multi-CHs scheme.

Algorithm 3: Selection of multi-CHs

Input: C ′ = {c′1, . . . , c′k}
Output: CHs

1: for v =  : k do

2: calculate the size of cluster c′v: Sv

3: calculate average energy of cluster Eavev

4: p = Sv

constant
, the number of CHs of cluster v

5: for i =  : Sv do

6: Iterate xi from near the center of cluster

7: if Ei > Eavev and p > 0 then

8: p = p− 1
9: CHv (p) = xi

10: end if

11: end for

12: end for

13: return CHs = {CH1, . . . ,CHk}, CHs of k clusters

v ∈ {1, . . . , k} can be computed as

Ev =

Sv
∑

i=1

Ei (r) , (24)

where Sv is the size of cluster v, Ei (r) is the residual energy

of node i in current round r, which can be obtained from (22).

The average energy of cluster v is calculated as

Eavev =
Ev

Sv

. (25)

As an example, since the number of nodes in cluster B

is around 3 times that of cluster A in Fig. 6, cluster B will

have three CHs if only one CH is selected in cluster A.

After the number of CHs is determined, the nodes which

have larger remaining energy and close to the cluster center

are selected as CHs. This multi-CHs scheme can balance

the energy consumption of CHs per cluster in WSNs, and is

summarized in Algorithm 3.

After the set of CHs and clusters are determined, the first

node in each CHv is selected as the current CH in that cluster

and the BS notifies all member nodes to join the cluster

to which they belong. CHs broadcast time division multiple

access schedules to their member nodes for transmitting data in
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Algorithm 4: Switching to a next CH

Input: CHs of k clusters, CHs = {CH1, . . . ,CHk}
Output: Next CH

1: Current round

2: for v =  : k do

3: T = residual energy of CHv(p) in current round

residual energy of CHv(p) in last round

4: if T < Threshold then

5: if CHv has CHv(p+ 1) then

6: switch to CHv(p+ 1)
7: else

8: re-clustering

9: end if

10: end if

11: end for

different time slots to avoid data collision. Then, the network

enters the steady phase and begins to exchange data between

normal nodes and their CHs.

E. Switching to a Next CH

For balancing the energy consumption of CHs, if the energy

consumption ratio of a current CH of any cluster is below

a threshold value, the next candidate CH in that cluster is

enabled. Until all CHs in a given cluster are executed, the

algorithm starts re-clustering. The specific steps are described

in Algorithm 4.

F. Complexity Analysis

The run-time complexity of the proposed IS-k-means algo-

rithm mainly involves three phases. In the phase of selecting

initial cluster centers, IS-k-means needs o(n2) operations

[44] to execute CFSFDP and KDE to calculate the nodes’

densities and distances where n is the number of nodes. Then,

the algorithm requires o(nk2rmax) operations [45] to execute

the soft k-means and o(2n) operations to assign nodes to

form final clusters. Because the selection of initial cluster

centers has been optimized, the algorithm converges quickly

and the value of rmax is very small. In the third phase, the

algorithm needs o(n) operations to select CHs. Thus, the

overall time complexity of the proposed IS-k-means algorithm

is o(n2 + nk2rmax + 3n) operations. Obviously, the time

complexity of the IS-k-means depends mainly on the execution

time of the first phase. The time complexity of the soft k-

means algorithm is o(nk2rmax) operations [45], which is lower

than that of our proposed IS-k-means algorithm. However, the

higher complexity of the proposed IS-k-means algorithm can

be well justified by its ability to better balance the energy

consumption of nodes. As for the memory requirement, the

proposed algorithm needs o(n) memory units to store nodes

first. Then, it costs o(n) memory units [46] to store ρ and δ
in the phase of selecting initial cluster centers. Then, o(nk)
memory units are required to store membership probabilities

in the phase of cluster formation. Hence, the total storage

requirement of the proposed algorithm is o(2n+nk) memory

units.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Area 100m × 100 m, 200 m × 200 m

BS coordinates (50 m, 150 m), (100 m, 200 m)

Initial energy 0.2 J, 1 J

Packet length 4000 bits

Control length 100 bits

ET 50 nJ/bit

ER 50 nJ/bit

εfs 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

EDA 5 nJ/bit

d0 88 m

Number of sensor nodes 28, 100

Maximum communication range 250m [43]

IV. EXPERIMENT RESULTS AND ANALYSIS

A. Simulation Settings

To evaluate the performance of the proposed algorithm, we

consider two different scenarios. In Scenario 1, the network

size is 100m× 100m and the BS is located at (50m, 150m).
Scenario 2 has the size of 200m × 200m with the BS at

location (100m, 200m). The main simulation parameters are

selected as in [7] and listed in Table I. The experiments are

implemented using MATLAB R2017b.

B. Nodes Reassigning of Improved Soft k-Means Analysis

In this subsection, we will show the advantage of the node

reassigning scheme incorporated in the proposed IS-k-means

algorithm to balance the energy consumption of CHs. A total

of 28 sensor nodes are randomly distributed in scenario 1.

First, we use the k-means clustering method to classify these

nodes and obtain two clusters, as shown in Fig. 7 (a). It

is found that cluster 1 contains 20 nodes, which is quite

larger than the number of nodes in cluster 2. As a result,

CH of cluster 1 will be exhausted much earlier than that of

cluster 2. Fig. 7 (b) shows the clustering result of the soft k-

means algorithm. In Section III, we define β as the stiffness

parameter, which represents the tightness of a node belonging

to a cluster. Setting β = 0.2, we can find that the nodes at the

edge of two clusters having similar membership probabilities

belonging to these two clusters, such as node 1, node 2, node

3, node 4, and node 5, as shown in Table II. Furthermore,

if the value of β changes, the probabilities also will change.

When β = 1, all five nodes belong to the clusters with higher

probabilities when compared to the case where β = 0.2. In

our proposed algorithm, we set β = 0.2 in the following

simulations. According to the rule of node reassigning, node

2, node 3, node 4, and node 5 are reassigned to cluster 2 from

cluster 1 as shown in Fig. 7 (c), which balances the energy

overhead of CHs in these two clusters. The residual energy of

CHs, computed by (22), in each round could be used to check

the advantage of this scheme. Fig. 8 (a) and Fig. 8 (b) compare

the residual energy of CHs among k-means, soft k-means,
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Fig. 7. Comparison of different clustering results, β = 0.2. (a) k-means clustering result. (b) Soft k-means clustering result. (c) IS-k-means clustering result.
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Fig. 8. Comparison of residual energy of CHs. (a) Residual energy of CHs after 5 rounds. (b) Residual energy of CHs after 10 rounds.

TABLE II
PROBABILITIES COMPARISON

Probability Node 1 Node 2 Node 3 Node 4 Node 5

β = 0.2
Cluster 1 0.4852 0.5537 0.5684 0.6125 0.6120

Cluster 2 0.5148 0.4463 0.4316 0.3875 0.3880

β = 1
Cluster 1 0.0438 0.9787 0.9860 0.9919 0.9992

Cluster 2 0.9562 0.0213 0.014 0.0081 0.0008

and IS-k-means after 5 rounds and 10 rounds, respectively.

The IS-k-means algorithm achieves an equilibrium of energy

consumption in both CHs when compared to the k-means and

the soft k-means algorithms.

C. Network Lifetime

To test the performance of the proposed IS-k-means algo-

rithm, we compare it with KM-LEACH [23], VLEACH [24],

LEACH [20], k-means [47], EECPK-means [21], and EB-CRP

[13] with the same parameters shown in Table I. Here, we state

two things about the implementation of the EB-CRP algorithm

in our experiment. First, the original EB-CRP algorithm does

not need to select the CHs because the authors consider a

certain number of gateways with enough energy to act as

CHs in WSN. However, our implemented EB-CRP algorithm

needs to select CHs randomly from all sensor nodes because

the network considered in our simulation contains only sensor

nodes with the same initial energy and functionality. In order

to have a fair comparison, we set the number of CHs in

EB-CRP to be the same as that in our proposed algorithm.

Thus, the location of CHs may be different in each steady-

state phase because all nodes have the same chance to be

CHs. Second, the steady-state phase of the original EB-CRP

algorithm is composed of pre-specified 75 rounds. This is quite

reasonable because the authors set the initial energy of CHs to

be 10 J, which can maintain a high number of communication

rounds. However, considering the limited energy of CHs in our

simulation, each steady-state phase is composed of 20 rounds

in our implemented EB-CRP algorithm, which can achieve the

best results for the EB-CRP algorithm.

We assume there are 100 sensor nodes that are randomly

distributed in both scenario 1 and scenario 2. The obtained

results are the averages of 20 independent experiments. The

authors in [20] found the optimum number of clusters to be

between 3 and 5 for 100-node network in LEACH. Thus,

in scenario 1, we set 4 as the initial number of clusters in

LEACH. For the other six algorithms, we use CFSFDP and

KDE to determine the number of clusters in order to ensure the

same number of clusters for each algorithm. The initial number

of clusters found from the CFSFDP and KDE algorithms is

4 in scenario 1. In scenario 2, all algorithms are set with the

same number of clusters 6 that is determined by CFSFDP and

KDE. We assume that the death of 85% nodes means all nodes

are dead.

Fig. 9 shows the first node death (FND), half of nodes
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Fig. 9. Comparison of FND, HND, and LND. (a) Scenario 1. (b) Scenario 2.
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Fig. 10. Comparison of network lifetime of LEACH, k-means, VLEACH, EECPK-means, KM-LEACH, EB-CRP, and IS-k-means. (a) Scenario 1. (b) Scenario
2.

death (HND), and the last node death (LND) for these seven

algorithms when the number of nodes is 100. If an algorithm

can balance energy well, the first node death will be very

late. In Fig. 9 (a), the average number of rounds of FND in

k-means is 88, which is much earlier than 970 in LEACH

and 2627 in IS-k-means, and the average LND happens later

when compared to LEACH and the IS-k-means algorithms.

Thus, it is obvious that the energy consumption of k-means

is unbalanced. Although VLEACH uses the vice CH scheme

in each cluster to extend the network lifetime, it exhibits a

poor performance in balancing energy consumption because

its FND is 78 and LND is 3979, as shown in Fig. 9 (a).

EECPK-means improves the selection of initial cluster centers

of the k-means algorithm by using the midpoint algorithm.

It outperforms LEACH and KM-LEACH in both balancing

energy consumption and extending network lifetime. For the

EB-CRP algorithm, its FND is about 1.7 times that of LEACH,

19 times that of k-means, 21 times that of VLEACH, 1.5 times

that of EECPK-means, and 1.5 times that of KM-LEACH,

which demonstrates that the EB-CRP algorithm can postpone

the death of the first node when compared with the other five

algorithms. In addition, the HND of EB-CRP is 2579, which

is larger than 1462 in LEACH, 1244 in k-means, 2458 in

EECPK-means, and 1339 in KM-LEACH. This result means

that the EB-CRP algorithm can delay the death of the first 50%

of nodes as compared to LEACH, k-means, EECPK-means,

KM-LEACH. Thus, the EB-CRP shows a good performance in

balancing the energy consumption of the nodes and increasing

the network lifetime. In view of Fig. 9 (a), our proposed IS-

k-means algorithm can effectively postpone the FND, HND

and LND. The average FND of IS-k-means is 2627, which is

around 2.7 times that of LEACH, 30 times that of k-means,

34 times that of VLEACH, 2.3 times that of KM-LEACH, 2.4

times that of EECPK-means, and 1.5 times that of EB-CRP.

Instead of using a fixed number of communication rounds

during each steady-phase, like in the EB-CRP algorithm, the

communication rounds in our proposed IS-k-means algorithm

are determined by the residual energy of CHs. If the residual

energy of any CH is below the threshold, the algorithm will

stop the current steady-phase and trigger re-clustering, which

can avoid CHs to die earlier than EB-CRP. Thus, the IS-k-

means algorithm can keep all nodes in the network alive in

most rounds. The average HND of the IS-k-means is also

around 2 times among LEACH, k-means, and KM-LEACH.
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Fig. 11. Comparison of residual energy curve. (a) Residual energy after 400 rounds in scenario 1. (b) Residual energy after 1000 rounds in scenario 1. (c)
Residual energy after 100 rounds in scenario 2. (d) Residual energy after 300 rounds in scenario 2.

In Fig. 9 (b), the average FND, HND, and LND of all

algorithms are decreased. This is because extending the net-

work size will increase the communication distance of the

nodes which leads to an increase in the energy consumption.

The VLEACH and k-means algorithms still show a very poor

outcome in balancing the energy consumption, a consequence

of having small FND and large LND. However, EECPK-means

and EB-CRP have relatively large values of the FND and

HND, which means most nodes in these two algorithms live

longer when compared with k-means, VLEACH, and KM-

LEACH. In addition, it is evident that our proposed IS-k-

means algorithm has the best results in postponing the FND,

HND, and LND as compared with the other six algorithms.

Fig. 10 shows the network lifetime comparison of our

proposed IS-k-means algorithm and the other six algorithms.

As can be seen from Fig. 10 (a), the network lifetime curves of

KM-LEACH, LEACH, EECPK-means, and the proposed IS-k-

means algorithms are approximately vertical. This means that,

in these algorithms, the majority of nodes die approximately

after the same number of rounds. Furthermore, one can see that

the proposed IS-k-means algorithm outperforms KM-LEACH,

LEACH, and EECPK-means algorithms in terms of the energy

consumption equilibrium. The results in Fig. 10 (a) also show

that VLEACH has a longer network lifetime than our proposed

IS-k-means algorithm. This is reasonable since the objective

of VLEACH is to extend the network lifetime, whereas our

proposed IS-k-means algorithm aims to balance the energy

consumption in the network. As a result, some nodes die

very early and others die very late in VLEACH, which likely

results in the inability to collect sensing data from certain

areas where some nodes are dead. In Fig. 10 (b), although

none of the algorithms shows a nearly vertical curve, like

in Fig. 10 (a), our proposed algorithm still outperforms the

other six algorithms in balancing the energy consumption and

prolonging the network lifetime.
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TABLE III
COMPARISON OF ENERGY VARIANCE OF DIFFERENT ROUNDS

LEACH k-means VLEACH EECPK-means KM-LEACH EB-CRP IS-k-means

Scenario 1

200 rounds 0.0018 0.0374 0.0271 0.0127 0.0013 0.0019 0.0002

400 rounds 0.0039 0.0768 0.0496 0.0264 0.0025 0.0024 0.0004

600 rounds 0.0074 0.1161 0.0775 0.0396 0.0085 0.0026 0.0004

800 rounds 0.0108 0.1163 0.0756 0.0432 0.0098 0.0038 0.0005

1000 rounds 0.0168 0.1148 0.0882 0.0498 0.0094 0.0044 0.0008

1200 rounds 0.0172 0.1016 0.0904 0.0515 0.0055 0.0067 0.0007

1400 rounds 0.0095 0.0988 0.0901 0.0496 0.0024 0.0072 0.0009

Scenario 2

100 rounds 0.0081 0.0983 0.1070 0.0031 0.0112 0.0028 0.0022

200 rounds 0.0131 0.1642 0.1645 0.0058 0.0186 0.0052 0.0045

300 rounds 0.0248 0.1921 0.1899 0.0073 0.0258 0.0073 0.0046

400 rounds 0.0375 0.1806 0.1963 0.0105 0.0392 0.0094 0.0080

500 rounds 0.0388 0.1713 0.1821 0.0135 0.0312 0.0122 0.0110

600 rounds 0.0357 0.1491 0.1647 0.0167 0.0181 0.0168 0.0141

D. Energy Variance

Fig. 11 compares the average residual energy of all 100

nodes in WSNs among the seven algorithms after different

rounds in two scenarios. It is found that the residual energy

curve of all nodes in the IS-k-means algorithm is smoother

than that of the other six algorithms. This result demonstrates

that the IS-k-means algorithm is good at balancing the en-

ergy consumption of all nodes in WSNs. For the purpose

of estimating performance of the proposed algorithm, we

introduce a new parameter called energy variance (EV), which

is expressed as

EV =

∑n
i=1

(

Ei (r)− E
)2

n
, (26)

where E is the average energy of all nodes. Table III clearly

reveals that EB-CRP has relatively smaller variances than

LEACH, k-means, VLEACH, KM-LEACH, and EECPK-

means in different rounds. In addition, our proposed IS-k-

means algorithm achieves the smallest variances among seven

algorithms, which demonstrates that the IS-k-means can keep

the residual energy of 100 nodes to be the most uniform in

WSNs.

It is worthy to mention that the EB-CRP algorithm shows

better performance in extending the network lifetime for

WSNs with large network sizes [13], while the proposed

algorithm has good performance in balancing the energy

consumption and extending the network lifetime for smaller

network sizes. We briefly summarize the reasons why the

proposed algorithm performs better than the other six al-

gorithms for WSNs of smaller sizes. First, optimizing the

initial cluster centers of the soft k-means algorithm and

reassigning nodes can better balance the number of nodes

in different clusters to form good clustering results. Second,

our algorithm selects nodes with more residual energy as the

CHs, which can prevent the CHs from dying too early and

support a high number of communication rounds. Third, the

multi-CHs scheme of the proposed IS-k-means can reduce

the communication energy consumption in the set-up phase

caused by re-clustering because it reduces the number of re-

clustering. Thus, all sensors can save energy to maintain more

communication rounds in the steady phase, which extends

the network lifetime. However, for the EB-CRP algorithm,

it only chooses one CH in each cluster, which may cause

all nodes to re-cluster frequently because CHs may quickly

exhaust their energy. Fourth, instead of using a fixed number of

communication rounds during each steady-phase, like in EB-

CRP, the communication rounds in our proposed IS-k-means

algorithm are determined by the residual energy of CHs. If

the residual energy of any CH is below the threshold, the

algorithm will stop the current steady-phase and trigger re-

clustering, which can avoid CHs to die earlier than the EB-

CRP algorithm.

V. CONCLUSIONS

In this paper, we proposed an energy balanced IS-k-means

algorithm based on the soft k-means for WSNs. The proposed

algorithm improves the selection of initial cluster centers by

using CFSFDP and KDE algorithms. In order to balance the

number of nodes per cluster, the proposed algorithm reassigns

nodes at the edge of different clusters to a low-density cluster

according to the nodes’ membership probabilities. Further-

more, multi-CHs scheme was used in the selection of final

CHs, which can effectively balance the traffic load of CHs,

reduces the number of re-clustering and saves communica-

tion cost in the set-up phase. In order to show the advan-

tages of the IS-k-means in balancing energy consumption,

we compared it with LEACH, k-means, VLEACH, EECPK-

means, KM-LEACH, and EB-CRP. In scenario 1, simulation

results demonstrated that the proposed IS-k-means algorithm

postponed the FND by 2.7 times, 34 times, 2.3 times, 2.4

times, 30 times, and 1.5 times when compared to LEACH,

VLEACH, KM-LEACH, EECPK-means, k-means, and EB-

CRP on average, respectively. The HND of the IS-k-means

algorithm also was delayed by 2 times when compared to

LEACH, k-means, and KM-LEACH. In addition, the IS-k-

means algorithm achieved an excellent result in postponing

the FND and HND in scenario 2 as compared with other

mentioned algorithms. The IS-k-means algorithm also ex-

tended network lifetime in both scenarios as compared to
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KM-LEACH, EECPK-means, and EB-CRP. Furthermore, the

proposed algorithm also yields smoother average remaining

energy curves of all nodes in different rounds and smaller

average energy variances. Hence, the proposed IS-k-means

algorithm is promising in balancing energy consumption in

WSNs. In a future work, we plan to design an energy-

efficient multi-hop routing algorithm to extend the IS-k-means

algorithm to large-scale WSNs.
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