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Abstract—Stochastic computing (SC) has received considerable 

research interest in the past decade. Significant efforts have been 

devoted to reducing computation latency for the stochastic divider, 

which is the most complex unit in SC. However, current SC 

systems still lack dividers that can timely operate with other SC 

units by aligned processing periods. Moreover, all existing 

stochastic dividers cannot perform accurate division for input 

values near the center of the SC computation range. This paper 

proposes two Delta Sigma Modulator (DSM) based stochastic 

dividers. The proposed first-order DSM-based divider 

significantly reduces the additional clock cycles needed for 

division, and also slightly increases the accuracy (e.g., compared 

with the fastest existing divider of 10-bit resolution, a reduction of 

87.5% in the number of additional clock cycles is accomplished, 

with an average mean square error (MSE) that is decreased from 

10-3.9 to 10-4.0). Moreover, a fully compatible second-order DSM-

based divider is proposed. It achieves a higher division accuracy 

(e.g., MSE of 10-4.7 for 10-bit resolution) and does not require 

additional clock cycles, at the cost of a slightly increased hardware 

overhead. As an emerging application, SC-based neural networks 

are implemented as a case study to evaluate the advantages of the 

proposed designs. The synthesis results show that compared to the 

network implementation with the most efficient existing stochastic 

divider, the use of the proposed dividers reduces the total 

hardware overhead of the network by 32.0% to 46.6%, and 

slightly improves the classification accuracy. Overall, the 

proposed divider designs enable an SC system to operate with 

aligned timing, so resulting in a better implementation. 

 

Index Terms—Stochastic computing, divider, Delta Sigma Mod-

ulator, neural network, compatible SC units. 

 

I. INTRODUCTION 

As a large volume of data is collected, technologies such as 

Machine Learning (ML) and Artificial Intelligence (AI), utilize 

more complicated algorithms than ever. Thus, computation 

complexity of hardware plays a crucial role in current 

computing systems. Chip area and power dissipation are 

becoming critical for ML/AI-based designs. Especially for 

some applications that perform data processing on the edge of 

the network, such as Internet-of-Things (IoT) devices, a low 

complexity hardware design is preferred. In such devices, the 

hardware and power are limited, and conventional arithmetic 

logic units may prevent the use of large-scale algorithms.  

As a promising solution to address these concerns, stochastic 

computing (SC) has aroused research interest for its low 

hardware complexity implementation and inherent error 

tolerance [1]. For example, an SC scheme has been adopted for 

implementing neural network accelerators [2], [3]. In an SC 

system, real numbers are represented by stochastic sequences 

that are binary coded (i.e., composed of “1” and “0”), and their 

values are converted to the occurrence probability of “1” within 

the sequences. Since computations are performed based on 

sequences, SC arithmetic logic is rather simple [4], [5]; for 

example, a stochastic multiplier is implemented using an AND 

gate for the unipolar representation or an XNOR gate for the 

bipolar representation. Therefore, the use of SC enables high 

hardware efficiency for implementing systems that consist of a 

large amount of arithmetic computations, such as neural 

networks [2], [3], digital filters [6], [7], image processing [8], 

and decoders for error control codes [9], [10]. 

Among the different SC arithmetic blocks, the stochastic 

divider is regarded as challenging and crucial because of the 

significant latency it introduces. For an N-bit resolution SC 

system (i.e., the occurrence probability of “1” in sequences is 

represented using a N-bit number), the computing period of 

most SC elements such as the adders and multipliers is equal to 

the length of the stochastic sequence, so given by 2N clock 

cycles. However, a stochastic divider usually requires more 

cycles to generate the corresponding quotient sequence, or a 

large deviation from the correct quotient may appear [5]. This 

process significantly increases the entire computational latency 

of an SC system; it may also introduce in the design a rather 

complicated timing due to the different numbers of clock cycles 

required by the divider and other SC units. Even though 

improved schemes for reducing computational latency have 

been designed by calculating the quotient region by region [11], 

[12] or utilizing a parallel scheme [13], the required number of 

clock cycles is still considerably larger than for the remaining 

blocks of an SC system.  

In addition to latency, computational accuracy is another 

important issue of existing stochastic dividers. The mechanism 

of performing division in these designs is based on the 

multiplication of the divisor and the quotient-tracking dividend 

sequences. Hence, the limited accuracy is originated from the 

process of inefficiently adjusting unmatched errors between the 

two sequences. Moreover, the inaccurate computation of 
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stochastic multipliers for inputs near the center of the SC 

computation range [14] also leads to an accuracy loss in the 

divider, when the divisor and dividend are in such value region. 

Recently, a fast-converging divider based on a Delta sigma 

modulator (DSM) has been proposed [15]; this circuit operates 

on an efficient error adjustment process that is different from 

the traditional process. It provides significant improvement in 

both number of clock cycles and average computational 

accuracy compared to other stochastic dividers. However, the 

accuracy issue when dividend and divisor values are near the 

center of computation range, as well as the incompatibility issue 

in timing for the divider with other SC elements due to the 

additional clock cycles, are still not fully resolved.  

The above challenges of existing dividers motivate this paper 

to investigate stochastic divider designs with less processing 

time and compatibility with other elements for implementing an 

SC system. Moreover, when utilizing such short sequences, the 

proposed dividers still achieve a very high division accuracy. 

The main contributions of this paper are as follows: 

• An improved first-order DSM-based stochastic divider 

(named as DSM-U1) is proposed to perform an accurate 

division and generate shorter sequences compared to the 

existing DSM divider (named as DSM-PRE), which is 

the most efficient design among all existing dividers. For 

example, when N = 10 the proposed design reduces the 

required number of clock cycles from 1428 to 1040 (i.e., 

a reduction of 87.5% in the number of additional clock 

cycles compared to 2N as sequence length); it also 

improves the average mean square error (MSE) of 

computation from 10-3.9 to 10-4.0. 

• A second-order DSM-based divider (named as DSM-

U2) is then proposed. It achieves a fully timing 

compatible stochastic unit with a very competitive 

computing accuracy, especially for divisor and dividend 

values centered around the SC range. For example, it 

requires precisely 1024 clock cycles for N = 10 and 

achieves an MSE of 10-4.7. 

• The mechanism of error suppression of a DSM-based 

divider is analytically investigated; this proves that the 

proposed DSM-U2 provides high accuracy using shorter 

sequences. 

• Extensive simulations using both evenly and Gaussian 

distributed datasets (with different standard deviation 

values) are conducted to evaluate the computational 

performance of the proposed dividers under different 

conditions. 

• SC-based neural networks are implemented as an 

application to assess the advantages of the proposed 

dividers. Evaluation results show that when employing 

the proposed dividers, the SC network with DSM-U2 

(DSM-U1) achieves a reduction of more than 35.9% 

(32.0%) in the number of clock cycles compared to a 

network with DSM-PRE.  

The rest of the paper is organized as follows. In Section II, 

the SC representation and essential SC elements are briefly 

reviewed. Section III presents the proposed DSM-based 

dividers and analyzes their error suppression mechanisms. 

Then, the performance of the proposed designs is evaluated and 

compared with existing dividers in Section IV. In Section V, to 

assess the advantages and evaluate the performance of the 

proposed designs, SC-based neural networks with the proposed 

dividers are implemented as examples. Finally, the paper ends 

in Section VI with the conclusion. 

II. PRELIMINARIES 

A. Stochastic Sequence Representation 

 In an SC system, a real number X can be encoded in the 

unipolar or bipolar stochastic sequence representations within 

the value range of [0, 1] or [-1, 1], respectively. Define the 

number of bits “1” as q and the length of a stochastic sequence 

x as 2N; the real number X can be represented by X = p(x) = q/2N 

for the unipolar representation and X = 2∙p(x)-1 = (2∙q-2N)/2N 

for the bipolar representation, where p(x) is the occurrence 

probability of “1” in sequence x. Moreover, an additional sign 

bit associated with a unipolar stochastic sequence can also be 

used to represent a real number in [-1, 1], which is proposed for 

obtaining more accurate calculation results [16]. In general, SC 

utilizes sequences with no or low correlation to achieve a high 

computational accuracy [5]. Even though the correlation 

between multiple sequences has also been studied for 

computation [17], there is likely a significant difficulty when 

employing correlated sequences and implementing a large-size 

SC system. Therefore, an uncorrelated-based SC is targeted in 

this paper, and the correlated-based dividers (such as found in 

[18]-[21]) are not considered for comparison. 

The limited computational range of SC may result in an 

inaccurate result for some applications. To address this issue, 

the extended stochastic logic (ESL) has been proposed [22]; 

ESL utilizes the quotient of two stochastic sequences to 

represent a real number. Although both the numerator (xh) and 

the denominator sequences (xl) still represent numbers within 

the range of [0, 1] or [-1, 1], the range of the quotient xh/xl can 

be extended to [0, 2N) or (-2N-1, 2N-1) for the unipolar and bipolar 

representations, respectively; this is correct because X can be 

considered as 
±1

1/𝑋
 when it is smaller than -1 or larger than 1, so 

essentially extending the value range of SC. However, the use 

of two sequences also doubles the circuit size of the SC units. 

Therefore, a trade-off is often pursued between computational 

accuracy and hardware. For example, ESL units are only used 

to perform partial computations in an SC system and the 

remaining parts are calculated using standard SC units; this is 

explained in more detail in the case study presented in Section 

V.  

B. Basic Stochastic Logic Elements 

Prior to performing stochastic computation, real numbers are 

converted to stochastic sequences by using the stochastic 

number generator (SNG, shown in Fig. 1). For a probability p(x) 

(N-bit binary number), pseudorandom numbers from 0 to 2N-1 

are generated by a random number generator (RNG) and 

compared with p(x); if the pseudorandom number is smaller, a 

“1” is generated, and vice versa. After the entire conversion 

period of 2N clock cycles, the stochastic sequence representing 

p(x) is generated. The RNG is usually implemented by a linear 

feedback shift register (LFSR) or low-discrepancy (LD) 

sequences (e.g., Halton or Sobol sequences) [13], and the 

location of bits “1” and “0” is usually observed as evenly 
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distributed [5]. Compared with an LFSR-based stochastic 

sequence, an LD-based sequence performs better in terms of 

accuracy for combinational and integrator-based SC units (e.g., 

an adder, multiplier, or divider). Therefore, when achieving the 

same computational accuracy for these units, a Sobol-based 

sequence tends to require a shorter length, i.e., a smaller number 

of clock cycles to complete the computation. However, Sobol-

based sequences are not ready suitable to some SC units based 

on Finite State Machines (FSM) [13] that are usually used to 

implement the activation functions of an SC neural network. 

Additionally, deterministic sequences with arranged positions 

of “1” bits can be used for computation with a very high 

accuracy, but they usually require a significantly longer 

sequence length [23], [24]. 

 Once the stochastic computation is completed, the so-called 

probability estimator (PE) estimates the binary numbers from 

the sequences, which can be seen as the opposite process of the 

SNG. As shown in Fig. 1, a PE can be implemented by a 

counter. A stochastic multiplier is implemented by an AND 

(XNOR) gate for the unipolar (bipolar) representation; the ESL 

version of multiplier uses two AND or XNOR gates in each 

case. A typical unipolar/bipolar stochastic adder is 

implemented by a multiplexer; however, such an adder 

generates an output that scales the addition result by half. To 

address this issue, the ESL version of the adder can be used, 

because the scaling issue does not occur when appearing on 

both the numerator and denominator. An alternative solution is 

the use of an accumulation parallel counter (APC). APC 

calculates the sum of bits on the same position of paralleled 

input sequences and generates a result sequence that consists of 

binary values [25]. The stochastic divider and improved designs 

are reviewed in the next subsection.  

C. Stochastic Dividers 

 A conventional stochastic divider in a binary representation 

is also shown in Fig. 1. It is formed by a feedback loop that 

computes x2∙z to keep track of x∙y, where z is the quotient 

sequence of y/x; therefore, the quotient is obtained once the loop 

converges and the result sequence consists of the last 2N bits. 

However, generating an accurate result requires a very long 

period to converge; for example, for an N = 10 LFSR-based 

sequence, the simulated convergence requires 46341 clock 

cycles [12]. This number is significantly larger than for other 

units (such as an adder and multiplier) that require only 2N clock 

cycles. This will cause a very large computational latency for 

the entire SC system when different elements are involved. 

Several techniques have been proposed to shorten the division 

period, as introduced next.1  

1) Triple Modular Redundancy Based Divider 

The triple modular redundancy (TMR) technique is applied 

to reduce the latency introduced by the divider convergence 

process [11]. The binary searching TMR (BS-TMR) technique 

has been proposed to reduce latency by estimating the quotient 

probability of the up/down counter in binary ranges. In such 

case, the entire calculation process includes N steps of iterations 

of probability estimate for an N-bit quotient probability. Within 

each iteration step, three up/down counters with three SNGs 

(i.e., TMR blocks) are employed in parallel. After each iteration 

period, a voter decides the corresponding bit of the quotient. 

Thus, the N-step iteration process can estimate the quotient 

from the most significant to the least significant bits. After the 

estimate process, a stabilization phase is required by utilizing 

additional clock cycles for the final fine-tuning of the quotient; 

this is performed using a conventional divider by disabling two 

of the three TMR blocks. 

Similarly, a decimal searching TMR (DS-TMR) divider is 

proposed to reduce the latency further [12]. Compared to the 

BS-TMR, the iteration step of DS-TMR is decided by the 

system’s required resolution. For example, if N = 10, the 

resolution of the quotient is 10-3; thus, the iteration is set to 3 

steps, within each step ten sections of quotient probability are 

calculated in parallel to decide the corresponding decimal bit. 

The DS-TMR also contains voters for deciding in each iteration 

step as well as the stabilization phase for final fine-tuning.  

Although BS-TMR and DS-TMR have significantly reduced 

the required division time, for example, only requiring 9214 and 

4300 clock cycles when N = 10, the latency is still significantly 

higher than for other basic stochastic logic units (adders and 

multipliers). Moreover, due to the TMR blocks, the hardware 

overhead is higher than for the conventional divider.      

 
Figure 1. Stochastic computing elements (x, y, z, u, v, xh, xl, yh, yl, zh, zl are stochastic sequences). 

 

 

 

1 Due to page limitation, the existing dividers are briefly reviewed in this 

paper. For detailed information, please refer to the corresponding references 

[11], [12], [15].  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

2) DSM-Based Divider 

A fast-converging divider (i.e., the DSM-based divider, 

referred to as DSM-PRE in this paper), has been proposed to 

reduce the latency further [15]. As shown in Fig. 2, a negative 

feedback loop also exists in the DSM-PRE design, but the 

feedback data origins from the x∙z estimate within a WinLen-bit 

window. Since the “1” bits in a stochastic sequence are 

uniformly distributed, checking the number of “1”s in a small 

segment (i.e., the so-called window) can approximately 

estimate the real number represented by this sequence. The 

integer-based accumulator stores the accumulated unmatched 

error between the estimated y and x∙z; it then adjusts the output 

bit of z to reduce the error. The DSM-PRE is designed for a 

bipolar stochastic sequence; thus, a sign estimate block 

(Sign_est) is applied. This block is implemented by a counter; 

this circuit counts the number of “1”s in the first or second 

WinLen-bit window to estimate the sign of the sequence x.  

The divider converges fast due to its highly efficient scheme 

of controlling the unmatched errors between y and x ∙ z. 

Compared to the abovementioned dividers that adjust the 

quotient probability based mostly on the current values of y and 

x∙z bits and the pseudorandom output bit of the SNG, the DSM-

PRE adjustment introduces fewer errors. However, the 

Dividend Estimate block still requires WinLen clock cycles, and 

the Sign_est block also incurs in an additional number of cycles. 

Moreover, the Sign_est block may erroneously estimate the 

sign of the sequences for small dividend and divisor values that 

are nearly 0. Therefore, a divider design without such a 

Sign_est block could potentially achieve a better computational 

latency and accuracy; this is discussed and evaluated in the 

following sections of this paper. 

D. Challenges and Motivation  

 The challenges of stochastic divider circuit design focus on 

improving accuracy and increasing the computation speed 

while maintaining a low hardware overhead. 

• Accuracy. The existing stochastic dividers are inaccurate 

when the inputs are near the center of the entire possible 

range (e.g., [-0.2, 0.2] for a bipolar sequence). This is 

expected, because the fundamental operation of a divider is 

based on multiplication, so with a lower computational 

accuracy for inputs centered in the possible range [14]. 

This issue is mitigated in DSM-PRE by the continuous 

calibration of the accumulated error. However, it is still 

confronted with errors brought by the sign estimate. 

• Computation clock cycles. The other challenge of a 

stochastic divider design is the required convergence time 

of the computation, which results in significant latency and 

power dissipation for the entire system. For example, the 

conventional, BS-TMR, and DS-TMR dividers require 

46341, 9214, and 4300 clock cycles to complete the 

division respectively for N = 10 [11], [12]. The DSM-PRE 

divider (with a WinLen of 27) requires fewer clock cycles, 

but it still needs 1438 cycles (which is larger than 2N = 

1024) to complete the computation [15]. Major concerns 

are found on the sign estimate algorithm, which needs one 

or two times the number of WinLen cycles, and the 

dividend estimate process requiring an additional WinLen 

cycles. 

To mitigate the abovementioned issues and improve the 

performance of stochastic dividers, in this paper, we propose 

two types of DSM-based dividers: the improved first-order 

DSM divider (DSM-U1) to address the accuracy issue in a 

hardware-efficient way and the feed-forward second-order 

DSM divider (DSM-U2) to address the computation clock 

cycles issue.  

Compared to all existing stochastic dividers, the proposed 

dividers improve computation accuracy, especially with inputs 

near the center of the entire range. Additionally, the proposed 

DSM-U2 reduces the number of clocks to 2N by considering a 

trade-off between WinLen and accuracy. This design either does 

not require additional clock cycles compared to addition and 

multiplication with an acceptable accuracy, or offers higher 

accuracy with a smaller number of clock cycles than existing 

stochastic dividers.   

 The existing DSM-PRE divider uses a block to estimate the 

sign of the inputs, which decides the feedback calculation. This 

scheme may face difficulties if the input values are near 0 (for 

 

Figure 3. The proposed DSM-U1 stochastic divider with independent sign 

representation. 

 

 

Figure 4. The proposed DSM-U2 stochastic divider (blocks that are different 

from DSM-U1 shown in Fig. 3 are marked in red; the Divisor Estimate block is 

the same as that in DSM-U1). 

 

 

Figure 2. The existing DSM-based divider, DSM-PRE [15]. 
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the bipolar representation). Due to this limitation, the DSM-

PRE has similar performance with input values in this range 

compared to other stochastic dividers. A high-order DSM can 

mitigate this issue, while achieving a higher resolution; in a way 

like the definition of order in DSM analog to digital converters 

[26], the order in this design is defined as the number of stages 

of accumulator in the feedback loop. Thus, in this paper, a 

second-order DSM divider with feed-forward scheme is also 

proposed and discussed. 

III. PROPOSED DSM-BASED STOCHASTIC DIVIDERS 

  In this section, we propose an improved first-order DSM-

based divider DSM-U1 and a second-order DSM divider DSM-

U2 for accurate and low latency SC systems. The DSM-U1 and 

DSM-U2 use an additional sign bit and unipolar representation 

to achieve bipolar computation, which can solve potential errors 

introduced by sign estimate in the existing DSM-PRE design 

and reduce the hardware overhead. The DSM-U2 further 

reduces the size of WinLen, which leads to a shorter stochastic 

sequence length. Both proposed dividers achieve a better 

division computing accuracy.  

A. Proposed Circuit Design of DSM-U1 

  The proposed DSM-U1 is shown in Fig. 3. Compared to 

DSM-PRE, an additional bit of sign representation is added; the 

input values are converted to absolute values, and the operands 

during the bipolar computation are then converted to the 

unipolar representation. As shown in Fig. 3, the input value pair 

X and Y are now represented by xun with sign_x, and yun with 

sign_y, respectively; xun and yun denote the unipolar represented 

stochastic sequence of the absolute values of X and Y, and 

sign_x and sign_y denote the signs of X and Y, respectively.  

Similarly, the Dividend/Divisor Estimate block estimates the 

value of the input sequence by using a counter to check the 

number of “1” bits in a WinLen-bit segment. For a low 

complexity design, only the adding bit and the dumped bit of 

each segment are provided as input to the counter, so that the 

counter acts as a timing window moving along with the input 

sequence.  Due to the unipolar operation, the multiplication of 

the stochastic sequence changes from XNOR to AND, thus, the 

feedback generation is simplified by eliminating the two XNOR 

gates and adding a multiplexer (MUX) that has two 

log2WinLen-bit channels and is controlled by the output 

bitstream of the divider zun. The MUX generates the feedback 

value by selecting one channel data either from the Divisor 

Estimate block or “0”, thus forming the product of xun and zun. 

Note that the MUX can also be implemented by an AND array 

as an alternative solution. 

Then, the difference between the estimated yun and xun∙zun is 

sent to the integer-based accumulator (ACCUM) and added to 

the previously accumulated difference (Dacc). The bit width of 

the accumulator can be designed based on either a targeted level 

of computational accuracy, or the value range of a given 

application (e.g., checking the possible range of difference 

accumulation by simulation); in this paper, it is designed with 

16 bits as an example for all DSM-based dividers as sufficient 

to achieve a high accuracy. Since the goal of the divider design 

is to obtain a convergent feedback loop (i.e., making yun = 

xun∙zun), the quotient sequence z is adjusted by comparing the 

accumulated difference with 0. Specifically, if Dacc > 0, which 

means yun > xun∙zun, then the comparator generates a bit “1” to 

increase the value of z and make xun∙zun closer to yun. Here, the 

convergence mechanism of the loop can also be considered as 

pushing the accumulated difference to 0 (i.e., by eliminating 

these differences). In this case, when Dacc > 0, the “1” bit 

Algorithm 1 Feedback generation process of DSM-U1 

1: Counter = Counter + ABit - DBit; 

2: if zun = 1 

3:     feedback = Counter; 

4: else 
5:     feedback = 0; 

6: end 

7: Dacc = Dacc+ Input - feedback; 
8: if Dacc >= 0 

9:     zun = 1; 

10: else 

11:     zun = 0; 

12: end 

 

Algorithm 2 Feedback generation process of DSM-U2 

1:  Counter = Counter + ABit - DBit; 

2: if zun = 1 

3:     feedback = Counter; 

4: else 

5:     feedback = 0; 

6: end 

7: ACCUMstage1 = ACCUMstage1 + Input – feedback; ACCUMstage2 = AC-

CUMstage2 + ACCUMstage1; 

8: Dacc = Input + 2×ACCUMstage1 + ACCUMstage2; 

9: if Dacc >= 0 
10:     zun = 1; 

11: else 

12:     zun = 0; 
13: end 

 

 

Figure 5. Simplified block diagram and corresponding z-transform error 

analysis model of the proposed DSM-U1 divider. 

 

 

Figure 6. Simplified block diagram and corresponding z-transform error 

analysis model of the proposed DSM-U2 divider (blocks that are different from 

DSM-U1 shown in Fig. 5 are marked in red). 
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generated by the Comp unit is used (as an enable signal in the 

MUX unit) to choose a smaller value between the two possible 

results of the adder, that is added to Dacc in the next clock cycle. 

Specifically, the adder result is either equal to the counter value 

for yun subtracted by that for xun∙zun, or equal to the counter value 

for yun itself; since the first result is always smaller, it is selected 

by the enable signal in the MUX unit to be added to Dacc. 

Similarly, a “0” bit is generated by the comparator when Dacc < 

0 to either decrease the value of zun or choose a larger value 

between the possible outputs of the adder to be added in the 

accumulator. Finally, the loop converges based on the 

adjustment in each clock and the accurate quotient sequence zun 

is obtained. This process is given in Algorithm 1.  

Note that as the same as all existing dividers, the proposed 

designs also work when the dividend is larger than the divisor. 

In this case, the quotient sequence is the one reporesenting a 

real number of 1 or -1, which are the boundaries of the 

computaitonal range for standard bipolar SC. 

B. Proposed Circuit Design of DSM-U2 

 In oversampling ADC design, higher-order DSMs provide a 

higher signal-to-noise ratio (SNR), leading to a higher 

resolution [26]. This feature is exploited in the proposed 

second-order DSM divider with feed-forward paths to attain a 

higher accuracy with input values near 0. Moreover, due to its 

higher accuracy, the proposed DSM-U2 can be designed with a 

smaller WinLen. Thus, it makes DSM-U2 suitable to low 

latency SC applications.  

 Fig. 4 shows the proposed DSM-U2 stochastic divider. It is 

implemented by applying another stage of the accumulator 

(ACCUM). The proposed scheme has one negative feedback 

loop with two additional feed-forward paths, from the estimated 

input yun and the output of the first stage of ACCUM, to the 

adding node prior to the comparator. Unlike DSM-U1, Dacc in 

DSM-U2 is calculated by adding yun, 2×ACCUMstage1, and 

ACCUMstage2. This process is given in Algorithm 2; note that 

2×ACCUMstage1 is implemented by a simple one-bit shift to the 

left. 

C. Analysis of Expected Advantages 

 Like DSM, a higher order design (so with an additional stage 

of ACCUM in the loop) suppresses the accumulated error and 

adjusts the output bit with more flexibility, rather than utilizing 

rigid adjustments of the first order DSM-based dividers. To 

analyze error suppression, simplified models of the proposed 

DSM-U1 and DSM-U2 are investigated to obtain the signal 

transfer (STF) and error transfer (ETF) functions.  

 As shown in Fig. 5, the DSM-U1 circuit can be simplified 

with three major blocks, ACCUM, Comp as a quantizer that 

quantizes the accumulated error, and the multiply operation of 

xun and zun. Then, based on the simplified circuit, the 

corresponding z-transform model is established to obtain the 

ETF. From the z model, the error originates from two sources, 

the quantizer and multiplier. The quantization error (eQ) is the 

difference between the accumulated error and the output zun. 

While the multiplication error is from the computation of xun • 

zun and the estimate of the stochastic sequence segments of xun 

and zun through the WinLen-bit window. The analysis of ETF is 

required to investigate the relationship between one of the 

inputs (𝐼�̅�), and the output of the multiplier (𝑂𝑥𝑧̅̅̅̅ ). Thus, we can 

obtain the relationship as shown in the following equation: 

       𝑂𝑥𝑧̅̅̅̅ (𝑧) = (𝐼�̅�(𝑧) − 𝑂𝑥𝑧̅̅̅̅ (𝑧)) ∙
𝑧−1

1−𝑧−1 + 𝑒𝑄(𝑧) + 𝑒𝑀(𝑧),     (1) 

where eQ and eM are the quantization error and multiplication 

error, respectively. Then we can obtain the STF and ETF from 

      𝑂𝑥𝑧̅̅̅̅ (𝑧) = 𝑧−1 ∙ 𝐼�̅� + (1 − 𝑧−1) ∙ 𝑒𝑄(𝑧) + (1 − 𝑧−1) ∙ 𝑒𝑀(𝑧).    (2) 

Finally, from (2), we observe that yun is unaltered but delayed, 

while eQ and eM are differentiated and suppressed. Thus, we 

obtain the unaltered input with a differentiated quantization 

error and multiplication error.  

 Compared to the proposed DSM-U1, DSM-U2 has an 

additional stage of ACCUM, which suppresses the quantization 

and multiplication error further. From the simplified circuit 

block diagram and the corresponding z-transform model 

(shown in Fig. 6), we obtain the relationship between 𝑂𝑥𝑧̅̅̅̅  and 

𝐼�̅� as per 

 𝑂𝑥𝑧̅̅̅̅ (𝑧) = (𝐼�̅�(𝑧) − 𝑂𝑥𝑧̅̅̅̅ (𝑧)) ∙ (
𝑧−1

1−𝑧−1
)

2

 

              + (𝐼�̅�(𝑧) − 𝑂𝑥𝑧̅̅̅̅ (𝑧)) ∙ 2 ∙
𝑧−1

1−𝑧−1 + 𝐼�̅�(𝑧) + 𝑒𝑄(𝑧) + 𝑒𝑀(𝑧).  (3) 

Then the STF and ETF of DSM-U2 are found from the 

following equation: 

        𝑂𝑥𝑧̅̅̅̅ (𝑧) = 𝐼�̅� + (1 − 𝑧−1)2 ∙ 𝑒𝑄(𝑧) + (1 − 𝑧−1)2 ∙ 𝑒𝑀(𝑧) .     (4) 

We obtain the unaltered input from (4), with a squared 

differentiated quantization error and multiplication error. This 

implies that the second-order DSM divider can withstand more 

errors and suppress errors further. Thus, the ETF indicates that 

the DSM-U2 can be implemented with a smaller WinLen (this 

causes more errors, but they can be suppressed by the enhanced 

 

(a) 

 

(b) 

Figure 7. Other schemes for second-order DSM divider implementation (blocks 

that are different from DSM-U1 shown in Fig. 3 are marked in red): (a) Single 

loop second-order; (b) Error feedback second-order.  
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proposed second-order based process) while maintaining a high 

computation accuracy.  

 As per (4), the second-order design results in two poles due 

to the additional order in the loop; thus, it may be less stable 

than the first-order design. Such an issue may degrade the 

divider’s performance when the inputs are close to the 

maximum values (i.e., the value of 1 for a stochastic sequence), 

and then result in a low computational accuracy, or even make 

the divider fail. This potentially may occur because the 

maximum value of the second stage accumulator keeps 

increasing to an unduly large value and is unable to recover. 

However, due to the reduced WinLen and lower number of 

clock cycles required, and the mechanism of the accumulator 

(automatically resetting to 0 when there is an overflow), the 

proposed DSM-U2 remains stable over the entire input ranges. 

This stability is also verified by the simulation results presented 

in Section IV-A (which show a very high computational 

accuracy for all value ranges). 

D. Considerations between Different Topologies 

The second-order DSM divider can be implemented in 

several different ways; for example, as shown in Fig. 7, two 

additional schemes are designed with the same STF and ETF of 

(4). The scheme in Fig. 7 (a) does not have a feed-forward path, 

and all the sum nodes have only two inputs, which leads to 

slightly less hardware. The scheme in Fig. 7 (b) eliminates the 

ACCUM blocks, thus, it may relax timing constraint 

requirements and perform the calculation at a higher speed. 

Considering that both the STF and ETF are the same for all 

second-order DSM dividers, and their performances are similar, 

we choose the proposed feed-forward scheme based on its 

performance (evaluated by simulations in section V). 

Higher-order DSM dividers are supposed to theoretically 

provide more error suppression; however, such type of scheme 

also induces stability issues, input range limitation, and more 

hardware due to the additional stage of ACCUM. Thus, the 

advantages caused by the higher order may be overwhelmed by 

more disadvantages. In this paper, the investigation of DSM 

dividers beyond second order is not further pursued.  

IV. EVALUATION 

 In this section, the performance of the proposed DSM-based 

stochastic dividers is evaluated and compared with existing 

designs discussed previously, including conventional [5], BS-

TMR [11], DS-TMR [12], and DSM-PRE [15] dividers. 

A. Convergence and Accuracy 

 The proposed dividers generate the quotient sequence 

starting from the WinLenth clock cycle. The convergence point 

(ConvP) is defined as the finish point of the division 

computation, i.e., at the clock cycle of 2N+WinLen. Compared 

with the LFSR-based sequence (that is susceptible to seed 

choices and pseudorandom number distribution), the Sobol 

sequence is usually used to evaluate the close-to-theoretical 

performance, which is also applied in this paper to investigate 

ConvP. Fig. 8 shows the ConvPs for the proposed dividers at 

different sequence lengths (i.e., N = 7 to 11), with the same 

number of WinLen = 27 as that in the DSM-PRE for comparison 

purposes. Compared with DSM-PRE, the proposed dividers can 

achieve a higher accuracy as shown in Fig. 8.  

The impact of WinLen on computation accuracy is also 

investigated using four datasets that follow a Gaussian 

distribution; this evaluates the statistical performance of the 

proposed dividers in different divisor and dividend ranges. The 

datasets include random number pairs for the input dividend 

and divisor that follow Gaussian distribution. They have 

different standard deviations (µ = 0, σ = 0.05, 0.1, 0.25, 0.5), as 

shown in Fig. 9. The results for both DSM-PRE and the 

proposed dividers with N = 10 and different WinLen values are 

plotted in Fig. 10. From the results, we can observe that all 

dividers perform better for a more uniformly distributed dataset. 

The trends of computation accuracy with WinLen values can be 

seen for DSM-PRE; with larger WinLen, the accuracy is better. 

DSM-U1 and DSM-U2 follow the same trend with WinLen 

until it reaches 26 to 27. For larger WinLen (WinLen > 27), both 

DSM-U1 and DSM-U2 show a slight accuracy deterioration as 

WinLen increases. Moreover, the accuracy curve tendency of 

DSM-U2 does not have significant variations over the entire 

WinLen range. It indicates that for divisor and dividend with 

small absolute values, the length of the segment sequence used 

for the value estimate does not significantly affect the 

performance of DSM-U2. Due to its further error suppression 

capability, DSM-U2 can operate with a small WinLen. Thus, the 

proposed DSM-U2 can be fully compatible (WinLen = 20) with 

stochastic adders and multipliers, i.e., no additional clock 

cycles are needed. 

Based on the WinLen simulation results, we set the WinLen 

values to 24 and 20 for DSM-U1 and DSM-U2, respectively; this 

value is 27 for DSM-PRE from [15]. The simulation results of 

 

Figure 8. Convergence points of the proposed DSM dividers with different N 

and fixed WinLen of 27 for 10000 random input pairs (the points for DSM-U1 

and DSM-U2 overlap). 

 

Figure 9. Datasets of random numbers in Gaussian distribution with different 

standard deviations as used for simulation. 
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all DSM-based dividers using such WinLen settings with Sobol-

based sequences are shown in Table I; it reports the total 

averaged MSE and that for both dividend and divisor within the 

range of [µ-σ, µ+σ] for the four Gaussian distributed datasets. 

Both proposed dividers achieve better accuracy than DSM-PRE 

and the conventional divider, especially for the dataset with σ = 

0.05, in which most dividend and divisor values are around 0. 

This is reasonable because DSM-PRE is susceptible to sign 

estimate errors when the Sign_est block works with divisors 

that have smaller absolute values. The conventional divider 

suffers from an ineffective error adjustment and in particular, 

errors introduced by the multipliers within the feedback loop.  

 A representative example of small absolute value division 

computation (0.1/0.11) is shown in Fig. 11, which depicts the 

convergence and accuracy of different dividers with N = 10. In 

this case, BS-TMR and DS-TMR require more clock cycles in 

each iterative searching step to achieve an acceptable accuracy. 

The conventional stochastic divider also works in this case, but 

due to its ineffective error adjustment, it needs more clock 

cycles to converge. DSM-PRE achieves similar accuracy 

compared with the conventional divider and requires 

2N+WinLen to 2N+2∙WinLen clock cycles (WinLen = 27 [15], 

i.e., a 128-bit shift register is needed) to complete the 

computation. To compare with the proposed DSM-U2 (that will 

be discussed in the following), the result of DSM-PRE with a 

reduced WinLen that is equal to 20 is also plotted in Fig. 11; a 

significant decrease in accuracy is observed as per the results. 

Due to the elimination of the Sign_est block and the 

corresponding induced error in the proposed DSM-U1 design, 

WinLen of DSM-U1 can be reduced to 24 to achieve a similar 

error level compared with DSM-PRE with WinLen = 27. 

Moreover, due to the error suppression capability of introducing 

an additional stage, DSM-U2 achieves a better accuracy even 

with WinLen = 20. Overall, the proposed DSM-U2 is more 

accurate and faster than other dividers. Similar accuracy results 

are achieved for DSM-U1 with WinLen = 24, DSM-PRE with 

WinLen = 27, and the conventional divider with close to 215.5 

clock cycles.   

As a further evaluation, the accuracy comparison of different 

stochastic dividers and the required number of clock cycles for 

inputs with a uniform distribution are considered and 

TABLE II 

SUMMARIZED AVERAGED MSE OF DIFFERENT DIVIDERS WITH UNIFORMLY DISTRIBUTED DATA FOR DIFFERENT SC SEQUENCE LENGTH 

Divider Sequence type # of clock cycles 
Log10(MSE) for different N 

7 8 9 10 11 

Conventional [5] LFSR 2N+5.5 - -2.9 -3.1 -3.4 -3.8 

BS-TMR [11] LFSR 2N + N•round(2N+3/10) - -2.9 -3.1 -3.4 -3.8 

DS-TMR [12] LFSR 2N + 2•round(2N+4/10) - -2.9 -3.1 -3.4 -3.8 

DSM-PRE [15] 
Sobol 2N + 27 to 2N + 28 -3.3 -3.9 -4.5 -5.0 -5.5 

LFSR 2N + 27 to 2N + 28 -2.8 -3.2 -3.5 -3.9 -4.2 

Proposed DSM-U1 
Sobol 2N + 16 -3.8 -4.2 -4.5 -5.0 -5.5 

LFSR 2N + 16 -2.9 -3.4 -3.6 -4.0 -4.3 

Proposed DSM-U2 
Sobol 2N -4.5 -4.9 -5.4 -5.6 -5.9 

LFSR 2N -3.1 -3.8 -4.6 -4.7 -4.9 

 

TABLE I 

SUMMARIZED AVERAGED MSE OF DIFFERENT DIVIDERS WITH GAUSSIAN 

DISTRIBUTED DATA WITH DIFFERENT STD FOR DIVIDEND AND DIVISOR 

Divider 

Averaged log10(MSE)  

σ = 0.05 σ = 0.1 σ = 0.25 σ = 0.5 

µ ± σ Total µ ± σ Total µ ± σ Total µ ± σ Total 

Conventional [5] -1.1 -1.5 -1.6 -1.9 -2.0 -2.3 -2.3 -2.5 

DSM-PRE [15] -1.6 -1.9 -2.0 -2.3 -2.4 -2.8 -2.3 -2.6 

Proposed DSM-U1 -2.8 -3.1 -3.3 -3.6 -3.6 -3.9 -4.2 -4.4 

Proposed DSM-U2 -3.2 -3.5 -3.5 -3.7 -3.7 -4.0 -4.5 -4.8 

 

 

Figure 11. Quotient for 0.1/0.11 obtained by different stochastic dividers with 

N = 10. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 10. MSE of all DSM-based dividers with N = 10 and different WinLen 

values for 10000 random input pairs: (a) DSM-PRE, (b) the proposed DSM-

U1, (c) the proposed DSM-U2. 
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summarized in Table II. As per the considered application that 

is studied in Section-V, both LFSR and Sobol-based sequences 

are utilized. Compared to all existing dividers, the proposed 

DSM-U2 achieves the best computational accuracy, requiring 

no additional clock cycles; this feature makes this divider 

completely (timing-wise) compatible with stochastic adders 

and multipliers. The elimination of the sign estimate in both 

proposed dividers further reduces potential errors. Thus, 

compared to the existing DSM-PRE, the proposed dividers 

achieve a higher accuracy while still having a stable 

convergence process (i.e., a fixed number of clock cycles for 

convergence). Therefore, the proposed dividers operate with 

shorter stochastic sequences, that abide by SC trends and can 

potentially be implemented in large-scale systems.  

B. Hardware overhead  

  The hardware overhead required by the proposed stochastic 

dividers is evaluated next. To achieve a high accuracy, the 

proposed DSM-U1 divider is designed with WinLen = 24 as per 

the analysis presented in Section IV-A, while WinLen = 20 is 

taken for the proposed DSM-U2 divider due to its excellent 

accuracy. The circuits are implemented using Verilog and 

synthesized using Synopsys Design Compiler by mapping the 

design to an ASAP 7 nm technology library [27]. The 

operational frequency of the designs is set to 200 MHz, and the 

synthesis constraints are set accordingly for different hardware 

figures of merit to evaluate the best performance in terms of the 

corresponding metric. The hardware metrics including the 

circuit area, latency for completing a division, power 

dissipation, required number of clock cycles are evaluated.  

 For comparison purposes, the existing stochastic dividers 

evaluated in the previous section and a widely used Newton-

Raphson-based FP divider (i.e., a binary/non-SC unit) [28] 

found in the technical literature are also implemented. For the 

existing DSM-PRE, WinLen = 27 is employed for achieving a 

high accuracy as per the previous discussion in Section IV-A 

and from [15]. A 16-bit accumulator is used in all DSM-based 

dividers for a fair comparison. Moreover, a parallel scheme to 

implement the Sobol-based conventional divider is also 

considered; it provides the same accuracy as the conventional 

divider, but it requires half the number of clock cycles (with 2x 

parallelization) [13]. N = 10 (i.e., a sequence length of 1024-

bit) is taken as an example in all stochastic divider 

implementations; both LFSR and Sobol based sequences are 

utilized for all designs (when applicable). The synthesis results 

of different designs are reported in Table III.  

 Consider the comparison among all stochastic dividers first. 

 The proposed DSM-U1 divider is superior to all other 

designs exclusive of the LFSR-based conventional 

divider in terms of area overhead and power dissipation. 

This is expected due to the low complexity of its circuit. 

Specifically, the DSM-U1 divider only uses 16 flip-flops 

to implement Winlen = 24 (i.e., significantly less than the 

existing DSM-PRE with Winlen = 27). Moreover, it 

achieves a small latency due to the removal of the block 

for sign estimate (which is required in the DSM-PRE 

divider, the fastest circuit among all existing designs), as 

well as the fast convergence process (i.e., requiring a 

small number of clock cycles).  

 The proposed DSM-U2 requires a larger area and power 

dissipation compared to DSM-U1 and the conventional 

stochastic divider due to its second-order configuration. 

However, since DSM-U2 reduces the implementation 

cost for WinLen, its area and power are still lower than 

DSM-PRE and all other dividers. Importantly, WinLen 

= 20 also permits that DSM-U2 achieves exactly 2N clock 

cycles (i.e., the same as a stochastic adder/multiplier), 

and thus the smallest latency compared to all existing 

designs. This feature makes the proposed DSM-U2 

extremely attractive for implementing an SC-based 

system, because it does not introduce any additional 

clocks to the system (and thus to the entire latency and 

energy) compared to the other types of SC units. 

 The advantages of the proposed dividers apply to both 

LFSR and Sobol based sequences; moreover, their 

hardware overhead is independent of the sequence type 

for a given value of N, because the designs do not use an 

SNG. Instead, for existing dividers that require an SNG 

(e.g., the conventional design), the version using Sobol-

based sequences tends to require a larger area and power, 

but at a smaller latency/number of clocks compared to 

the LFSR version; this occurs because the Sobol-based 

SNG has a larger circuit size and its generated sequences 

offer a better computation performance [13]. 

Next, consider the comparison between stochastic dividers 

and the FP divider. Table III shows that the FP divider requires 

a significantly larger area and power dissipation compared to 

all stochastic dividers exclusive of the DS-TMR design2 but the 

smallest latency and number of clock cycles. This is expected 

because SC is known to have a low-hardware complexity by 

incurring in an additional computation latency for the 

sequences.  However, note that the latency and clock cycles of 

SC designs given in Table III are for an example of N = 10, 

while these results are approximately proportional to the 

sequence length 2N. This means that some stochastic dividers 

can potentially have a smaller latency than the FP design (due 

to their better delay per cycle), when their accuracy is 

acceptable. For example, when N = 7, the proposed DSM-U1 

TABLE III 
SYNTHESIS RESULTS OF DIFFERENT DIVIDERS 

Divider*1 
Area 

(𝜇m2) 

Latency 

(ns) 

Power 

(𝜇W) 

# clock 

cycles 

Floating-point divider [28] 8248.8 100.0 10.0 50 

LFSR-

based 
SC 

(N=10) 

Conventional [5] 653.6 10380.3 1.2 46341 

BS-TMR [11] 2770.6 1233.7 4.0 9214 

DS-TMR [12] 13900.5 463.4 19.7 4300 

DSM-PRE [15] 1150.7 377.6 1.8 1428 

Proposed DSM-U1 780.9 270.4 1.3 1040 

Proposed DSM-U2 1081.6 256.0 1.7 1024 

Sobol-

based 
SC 

(N=10) 

Conventional [5] 1210.6 7286.1 2.7 23171 

Parallel divider*2 [13] 1566.3 4194.1 3.5 11586 

DSM-PRE [15] 1150.7 304.4 1.8 1159 

Proposed DSM-U1 780.9 270.4 1.3 1040 

Proposed DSM-U2 1081.6 256.0 1.7 1024 
*1For existing dividers, only available results from the corresponding references 

are reported; *2The parallel divider has been proposed only for Sobol-based 
sequences [13]. 

2 The DS-TMR stochastic divider of [12] has been proposed as a trade-off 

solution between the latency/clocks and area/power for an SC-based system; 

so, it is less meaningful to compare its overhead with a floating point divider. 
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(DSM-U2) divider that also offers a very low MSE of 10-2.9 or 

10-3.8 (10-3.1 or 10-4.5) only requires a latency of approximately 

36.0 ns (32.0 ns) to complete a division, i.e., they are superior 

to an FP divider also in latency in addition to the area and power. 

C. Discussion on Alternative Implementations 

The proposed DSM-based stochastic divider designs can also 

be implemented using a bipolar representation (i.e., without the 

sign bit). This is applicable when we can manipulate the 

representation of the inputs and place the negative sign of an 

input pair (if it exists) in the dividend, such as for the ESL 

sequences. In this alternative implementation, the DSM-U1 and 

DSM-U2 designs do not require the XOR gate to calculate the 

sign bit of the quotient sequence (as shown in Figs. 3 and 4), 

and the input “0” of MUX needs to be changed to ~Counter; the 

remaining parts of the circuits are kept unaltered. 

In the DSM-based divider design, the computation is based 

on making x•z to track y, which focuses on the probability of “1” 

bits in a segment of the input sequences (instead of the 

corresponding real numbers and the way that they are 

represented); hence, such transformation from signed unipolar 

to bipolar has no impact on the computational accuracy of the 

proposed dividers. Moreover, this alternative implementation 

has nearly the same hardware overhead compared to the designs 

in Figs. 3 and 4, because only an XOR gate is replaced by at 

most log2WinLen (the width of the counter) inverters. 

V. APPLICATION: SC-BASED NEURAL NETWORKS 

A. Network Implementation 

 SC has been extensively investigated to achieve power-

efficient implementation for different types of neural networks, 

such as multi-layer perceptron (MLP) [11], convolutional 

neural networks (CNN) [29], deep belief networks (DBN) [30], 

and recurrent neural networks (RNN) [31]. In this section, MLP 

is taken as an example to study the use of the proposed 

stochastic dividers in an SC-based neural network as an 

application and demonstrate their effectiveness.  

MLPs are one of the most widely used neural networks for 

performing classification tasks, because they have a very high 

flexibility for learning the mapping between inputs and outputs 

and are capable of processing nearly all types of datasets [32]. 

Fig. 12 (a) shows the structure of an MLP; it consists of an input 

layer, one or multiple hidden layers, and an output layer, among 

which each two neighbor layers are fully connected. In the 

inference process of an MLP, the valid features of a sample 

being classified are fed into the network (i.e., as the neurons in 

the input layer shown in Fig. 12 (a)). Then, neuron 

computations start by performing (5). Specifically, to obtain the 

nth neuron in the i + 1th layer, each of m neurons in the ith layer 

is initially multiplied by a weight w; then, the multiply-

accumulation result for all m neurons is combined with a bias 

value b of the ith layer and activated by a function Φ.  

  𝑁𝑒𝑢𝑟𝑜𝑛𝑛,𝑖+1 = Φ(∑ 𝑤𝑗,𝑛
𝑖 ∙ 𝑁𝑒𝑢𝑟𝑜𝑛𝑗,𝑖

𝑚
𝑗=1 + 𝑏𝑖)  (5) 

In a typical SC-based neural network implementation, all 

arithmetic computations of the network are processed using 

stochastic sequences (i.e., a full-SC design). Fig. 12 (b) shows 

the hardware diagram of a full-SC MLP implementation for 

performing high performance inference (as recently proposed 

in [11] and further improved in [12], [15] by using more 

efficient dividers). Since the inputs of an MLP and the multiply-

accumulation results of neurons can exceed the traditional SC 

computation range of [-1, +1], stochastic multipliers and adders 

of the ESL version are utilized to extend the value range and 

pursue an accurate computation. Moreover, ESL units are only 

employed for the mapping between the input layer and the first 

hidden layer for a trade-off between accuracy and hardware 

overhead [11]. Note that each pair of ESL sequences requires 

two SNGs; this is also considered in the hardware evaluation 

conducted in this section. The SC-based activation function 

(e.g., clamped ReLU or tanh) is typically implemented using an 

FSM with a single input sequence. Therefore, a stochastic 

divider is required to convert each multiply-accumulation result 

(represented using two sequences in ESLs) to a single stochastic 

sequence as input to the FSM. Since the divider generates 1 or 

-1 when the dividend is larger than the divisor, it can bound the 

computational range for ESLs to the one for the standard SC. 

For neurons in the other layers, standard SC multipliers and 

APCs are employed for performing multiply-accumulation 

computation.  

In a full-SC implementation, LFSR-based sequences are always 

utilized, because the other types of sequences (e.g., Sobol) are 

not capable of providing accurate computation for the FSM-

based activation functions [13]. However, the use of the LFSR 

poses a challenge in terms of clock cycles for the 

implementation, because sequences of large length are often 

required for the entire network to achieve high accuracy. 

Moreover, an accuracy loss may occur or increase due to the 

accumulated correlation issue among stochastic sequences after 

they perform a large number of continuous computations; this 

also limits the use of a full-SC design for implementing large-

size networks. 

 An alternative solution to implement neural networks using 

SC circuits is to utilize a hybrid configuration as shown in Fig. 

12 (c). In this case, the multiply-accumulation of neurons is 

computed using stochastic sequences. Then, the results are 

converted to conventional binary numbers for the activation 

computation using for example floating-point hardware. Once 

computation for one layer is completed, the activation results 

are converted back to stochastic sequences for conducting the 

subsequent layer computation. Therefore, in a hybrid-SC design, 

SNGs and PEs are required for data conversion between 

adjacent layers; even though they can be shared by different 

layers without increasing the circuit area compared to a full-SC 

implementation, additional latency and an increased number of 

clock cycles are incurred for data conversion. 

 

(a)                                                         (b)                             (c)                                          

Figure 12. SC implementation of an MLP: (a) the MLP network; (b) the full-SC 

implementation; (c) the hybrid-SC implementation. 
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However, data conversion during network computation 

mitigates the issue of error accumulation/accuracy loss caused 

by using stochastic sequences for continuous computation in a 

full-SC design (especially when the network has a large size). 

Moreover, since the activation functions are implemented using 

conventional non-SC circuits, sequences that offer a higher 

computation accuracy such as Sobol-based, can be utilized for 

the multiply-accumulation computations. These two features 

permit a hybrid-SC design to use shorter sequence lengths than 

in a full-SC design for achieving a satisfactory accuracy; this 

can offset the impact of data conversion on the computation 

latency/clock cycles. 

B. Evaluation  

The MLPs for two widely-used datasets, including MNIST 

[33] and SVHN [34], are implemented using both full-SC 

design and hybrid-SC design to evaluate the advantages of the 

proposed dividers. Specifically, the full-SC implementation 

utilizes LFSR-based stochastic sequences with N = 10 (i.e., 

length of 1024 bits) and the hybrid-SC implementation utilizes 

Sobol-based sequences with N = 7 (i.e., length of 128 bits); 

these types and lengths of sequences are set for achieving high 

classification accuracy with low hardware overhead. In all SC 

MLP implementations, ESLs are employed for the first hidden 

layer (the other layers); the proposed dividers and the DSM-

PRE of [15] (that is the most efficient design among all existing 

dividers as corroborated in Table III) are used for converting 

ESL sequences to single stochastic sequences. 

A conventional MLP implementation using the widely used 

32-bit single-precision floating-point data and 16-bit fixed-

point data is also considered and compared. Table IV describes 

the network models being implemented (trained and obtained 

using floating-point data in Matlab); the network structure (i.e., 

the number of layers and neurons per layer, and the activation 

functions) for each dataset is determined during training for 

achieving a high classification accuracy. Table V reports the 

classification accuracy and synthesized hardware results of 

different MLP implementations with an operational frequency 

of 200 MHz (obtained by using the same synthesis method and 

constraints presented in Section IV-B) for different datasets. In 

addition to the hardware metrics of area, power, latency and 

number of clock cycles for completing an inference, a 

combined metric defined as the product of area, latency, power 

and clocks (PALPC) is also considered for a comprehensive 

evaluation.  

Table V shows the advantages of employing SC for MLP 

implementation, as well as the advantages of the proposed 

stochastic dividers in such application. The results are 

summarized as follows. Consider the comparison between SC 

and conventional floating-point implementations. Even though 

a small accuracy loss is incurred3, the use of SC for MLP 

implementation provides a reduction in all hardware metrics 

evaluated in this paper, exclusive of the number of clock cycles4. 

This is expected because SC hardware has a lower complexity, 

but computation using sequences requires a considerable 

number of clock cycles and reduces data resolution. As a 

comprehensive evaluation for the hardware overhead, SC 

MLPs achieve a significant PALPC reduction compared to the 

floating-point version, that is 28.8% to 63.8% (61.7% to 81.8%) 

for the MNIST (SVHN) dataset.  

Next, consider fixed-point implementations (which also have 

a considerable lower complexity than floating-point units). 

Their classification accuracy is slightly lower than the floating-

point MLPs due to the lower data precision and similar to the 

SC version. In terms of hardware metrics, the SC MLPs are 

shown to have larger PALPC values5 due to the larger number 

of clock cycles, but they offer a significantly better accuracy. 

Moreover, a significant reduction in power is achieved for the 

SC MLPs when the network size is large. These comparison 

results show that the SC implementation is better suitable for 

power-constraint applications that require high accuracy.  

  Consider a comparison between a full-SC design using 

LFSR-based sequences and a hybrid-SC design using Sobol-

TABLE IV 

MLP MODELS OF DIFFERENT ML DATASETS 

Dataset # layers 
# neurons 

per layer 

Activation 

function Classification 

accuracy Hidden 

layer 
Output 

Layer 

MNIST 4 
784, 256, 

128, 10 
Clamped 

Relu 
Tanh 98.3% 

SVHN 5 
704, 512, 

512, 512, 10 
Clamped 

Relu 
Tanh 85.5% 

 

TABLE V 
CLASSIFICATION ACCURACY AND SYNTHESIZED HARDWARE RESULTS OF DIFFERENT MLP IMPLEMENTATIONS FOR DIFFERENT DATASETS 

Implementation Scheme 
Classification 

accuracy 

Area Latency Power # Clock 
Cycles 

PALPC 
(%) mm2 % ns % mW % 

MNIST 

Floating-point MLP 98.3% 21.7 100 1475.0 100 1011.4 100 295 100 

Fixed-point MLP 93.3% 16.6 76.5 350.0 23.7 700.9 69.3 70 3.0 

LFSR-based SC 

MLP with different 

dividers (N = 10) 

DSM-PRE [15] 97.8% 15.8 72.8 1452.1 98.4 207.6 20.5 1428 71.2 

Proposed DSM-U1 97.8% 15.7 72.4 1104.3 74.9 207.4 20.5 1040 39.2 

Proposed DSM-U2 98.0% 15.8 72.8 1079.9 73.2 207.5 20.5 1024 38.0 

Sobol-based SC 

MLP with different 
dividers (N = 7) 

DSM-PRE [15] 97.5% 21.2 97.7 839.7 56.3 679.9 67.2 512 64.9 

Proposed DSM-U1 97.5% 21.1 97.2 654.4 44.4 679.7 67.2 400 39.3 

Proposed DSM-U2 97.6% 21.2 97.7 624.4 42.3 679.8 67.2 384 36.2 

SVHN 

Floating-point MLP 85.5% 76.0 100 2050.0 100 3536.1 100 410 100 

Fixed-point MLP 82.8% 69.0 90.8 470.0 22.9 2913.1 82.4 94 3.9 

LFSR-based SC 
MLP with different 

dividers (N = 10) 

DSM-PRE [15] 85.0% 54.5 71.7 1605.0 78.3 693.0 19.6 1428 38.3 

Proposed DSM-U1 85.0% 54.3 71.4 1281.6 62.5 692.8 19.6 1040 22.2 

Proposed DSM-U2 85.1% 54.5 71.7 1258.2 61.4 692.9 19.6 1024 21.5 

Sobol-based SC 

MLP with different 
dividers (N = 7) 

DSM-PRE [15] 84.5% 59.4 78.2 1339.5 65.3 1258.7 35.6 640 28.4 

Proposed DSM-U1 84.5% 59.2 77.9 1109.1 54.1 1258.5 35.6 528 19.3 

Proposed DSM-U2 84.7% 59.4 78.2 1071.6 52.3 1258.6 35.6 512 18.2 
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based sequences. For each MLP, the hybrid-SC version incurs 

in an additional area overhead due to the floating-point 

activation function circuits; it also dissipates significantly more 

power due to the conversion between SC and floating-point data 

for each layer. The number of clock cycles of hybrid-SC MLPs 

is smaller than for the full-SC implementations, even though an 

additional data conversion is required; this occurs because 

when providing a similar classification accuracy, Sobol-based 

sequences with a significantly shorter length can be utilized in 

the hybrid-SC MLPs (this can compensate the impact of data 

conversion, as discussed previously). Therefore, the use of 

Sobol-based sequences leads to an improvement in the entire 

computational latency for performing an inference process. 

 Consider a comparison between the proposed stochastic 

dividers and the existing DSM-PRE divider (which is the most 

efficient design of all existing stochastic dividers as evaluated 

in Section IV). The evaluation results show that the SC MLPs 

with these dividers require nearly the same area and power, 

even though the difference in these metrics for a single divider 

is not small (as per Table III). This occurs because the dividers 

are only used for the first hidden layer of an MLP, i.e., its 

impact on area/power is very low. However, since the divider 

is on the critical computational path of the network computation, 

it has a significant impact on the entire latency and number of 

clock cycles for performing inference, and thus on the 

comprehensive performance in terms of PALPC. Therefore, the 

SC MLPs with the proposed DSM-U2 achieve the best PALPC; 

followed by the MLPs with the proposed DSM-U1. Specifically, 

compared to the SC MLPs with the existing DSM-PRE divider, 

the SC MLPs using the proposed DSM-U2 divider offer a 

PALPC reduction of 46.6% and 44.2% (43.9% and 35.9%) for 

the MNIST (SVHN) dataset when using LFSR-based and 

Sobol-based sequences, respectively; this reduction for the 

DSM-U1 version is 44.9% and 39.4% (42.0% and 32.0%) for 

the MNIST (SVHN) dataset and when using LFSR-based and 

Sobol-based sequences, respectively. Moreover, the proposed 

DSM-U2 divider that permits a very accurate computation, also 

helps improving the classification accuracy of the SC MLPs. 

Overall, Table V shows that SC is more attractive for 

implementing neural networks in hardware/power constrained 

platforms compared to conventional floating-point circuits in 

terms of complexity and to fixed-point circuits in terms of 

power dissipation. Moreover, the full-SC design is more 

efficient in terms of area and power, while the hybrid-SC design 

is more efficient in terms of latency and number of clock cycles. 

The proposed dividers further improve the performance of an 

SC implementation in terms of both computational accuracy 

and hardware overhead (with a significant reduction in latency 

and PALPC). Therefore, they are very promising for SC 

applications; for systems with a tight requirement on latency, 

the proposed dividers may even permit the use of SC 

implementation that would otherwise be not applicable. 

VI. CONCLUSION 

In this paper, two DSM-based stochastic dividers have been 

proposed; operationally, these dividers are more compatible to 

other SC units and achieve a higher division accuracy compared 

with existing stochastic dividers. By employing an additional 

sign bit and a sequence that eliminates the sign estimation 

process of existing DSM-based dividers, the proposed DSM-

U1 significantly reduces the required additional clock cycles 

and improves the accuracy. In addition, a second-order DSM 

based divider, DSM-U2, has been proposed for implementing a 

fully compatible SC system. The proposed DSM-U2 realizes 

division with the same number of clock cycles as other SC units 

require (e.g., adders, multipliers). In addition, DSM-U2 also 

achieves the highest accuracy. Moreover, the mechanism of 

error suppression in DSM based dividers is investigated; this 

provides a theoretical analysis for the performance of DSM-U2 

to achieve a high accuracy in a shortened stochastic sequence. 

SC-based neural networks (MLPs specifically) have been 

implemented as a case study to evaluate the advantages of the 

proposed dividers. Compared to existing stochastic dividers, the 

use of the proposed dividers offers a significant hardware 

overhead reduction for the entire network implementation and 

also helps improving the classification accuracy. 
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