
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Stochastic computing (SC) has received considerable

research interest in the past decade. Significant efforts have been

devoted to reducing computation latency for the stochastic divider,

which is the most complex unit in SC. However, current SC

systems still lack dividers that can timely operate with other SC

units by aligned processing periods. Moreover, all existing

stochastic dividers cannot perform accurate division for input

values near the center of the SC computation range. This paper

proposes two Delta Sigma Modulator (DSM) based stochastic

dividers. The proposed first-order DSM-based divider

significantly reduces the additional clock cycles needed for

division, and also slightly increases the accuracy (e.g., compared

with the fastest existing divider of 10-bit resolution, a reduction of

87.5% in the number of additional clock cycles is accomplished,

with an average mean square error (MSE) that is decreased from

10-3.9 to 10-4.0). Moreover, a fully compatible second-order DSM-

based divider is proposed. It achieves a higher division accuracy

(e.g., MSE of 10-4.7 for 10-bit resolution) and does not require

additional clock cycles, at the cost of a slightly increased hardware

overhead. As an emerging application, SC-based neural networks

are implemented as a case study to evaluate the advantages of the

proposed designs. The synthesis results show that compared to the

network implementation with the most efficient existing stochastic

divider, the use of the proposed dividers reduces the total

hardware overhead of the network by 32.0% to 46.6%, and

slightly improves the classification accuracy. Overall, the

proposed divider designs enable an SC system to operate with

aligned timing, so resulting in a better implementation.

Index Terms—Stochastic computing, divider, Delta Sigma Mod-

ulator, neural network, compatible SC units.

I. INTRODUCTION

As a large volume of data is collected, technologies such as

Machine Learning (ML) and Artificial Intelligence (AI), utilize

more complicated algorithms than ever. Thus, computation

complexity of hardware plays a crucial role in current

computing systems. Chip area and power dissipation are

becoming critical for ML/AI-based designs. Especially for

some applications that perform data processing on the edge of

the network, such as Internet-of-Things (IoT) devices, a low

complexity hardware design is preferred. In such devices, the

hardware and power are limited, and conventional arithmetic

logic units may prevent the use of large-scale algorithms.

As a promising solution to address these concerns, stochastic

computing (SC) has aroused research interest for its low

hardware complexity implementation and inherent error

tolerance [1]. For example, an SC scheme has been adopted for

implementing neural network accelerators [2], [3]. In an SC

system, real numbers are represented by stochastic sequences

that are binary coded (i.e., composed of “1” and “0”), and their

values are converted to the occurrence probability of “1” within

the sequences. Since computations are performed based on

sequences, SC arithmetic logic is rather simple [4], [5]; for

example, a stochastic multiplier is implemented using an AND

gate for the unipolar representation or an XNOR gate for the

bipolar representation. Therefore, the use of SC enables high

hardware efficiency for implementing systems that consist of a

large amount of arithmetic computations, such as neural

networks [2], [3], digital filters [6], [7], image processing [8],

and decoders for error control codes [9], [10].

Among the different SC arithmetic blocks, the stochastic

divider is regarded as challenging and crucial because of the

significant latency it introduces. For an N-bit resolution SC

system (i.e., the occurrence probability of “1” in sequences is

represented using a N-bit number), the computing period of

most SC elements such as the adders and multipliers is equal to

the length of the stochastic sequence, so given by 2N clock

cycles. However, a stochastic divider usually requires more

cycles to generate the corresponding quotient sequence, or a

large deviation from the correct quotient may appear [5]. This

process significantly increases the entire computational latency

of an SC system; it may also introduce in the design a rather

complicated timing due to the different numbers of clock cycles

required by the divider and other SC units. Even though

improved schemes for reducing computational latency have

been designed by calculating the quotient region by region [11],

[12] or utilizing a parallel scheme [13], the required number of

clock cycles is still considerably larger than for the remaining

blocks of an SC system.

In addition to latency, computational accuracy is another

important issue of existing stochastic dividers. The mechanism

of performing division in these designs is based on the

multiplication of the divisor and the quotient-tracking dividend

sequences. Hence, the limited accuracy is originated from the

process of inefficiently adjusting unmatched errors between the

two sequences. Moreover, the inaccurate computation of

Xiaochen Tang, Shanshan Liu, Farzad Niknia, Ziheng Wang, Siting Liu, Pedro Reviriego, and

Fabrizio Lombardi

Delta Sigma Modulator-based Dividers for Accurate

and Low Latency Stochastic Computing Systems

Manuscript received October 14, 2022, revised December 19, 2022 and

January 16, 2023. The work was supported by NSF under Grant 1953961, and
by the Spanish Agencia Estatal de Investigation under Grant PID2019-

104207RB-I00 and Grant TSI-063000-2021-127. Corresponding author:

Shanshan Liu (email: ssliu@nmsu.edu).
Xiaochen Tang and Shanshan Liu are with the Klipsch School of Electrical

and Computer Engineering, New Mexico State University, Las Cruces, NM

88001, USA.

Farzad Niknia， Ziheng Wang and Fabrizio Lombardi are with the

Department of Electrical and Computer Engineering, Northeastern University,
Boston, MA 02215, USA.

Siting Liu is with School of Information Science and Technology, Shanghai

Tech University, Shanghai, 201210, China.
Pedro Reviriego is with the Departamento de Ingeniería de Sistemas

Telemáticos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

stochastic multipliers for inputs near the center of the SC

computation range [14] also leads to an accuracy loss in the

divider, when the divisor and dividend are in such value region.

Recently, a fast-converging divider based on a Delta sigma

modulator (DSM) has been proposed [15]; this circuit operates

on an efficient error adjustment process that is different from

the traditional process. It provides significant improvement in

both number of clock cycles and average computational

accuracy compared to other stochastic dividers. However, the

accuracy issue when dividend and divisor values are near the

center of computation range, as well as the incompatibility issue

in timing for the divider with other SC elements due to the

additional clock cycles, are still not fully resolved.

The above challenges of existing dividers motivate this paper

to investigate stochastic divider designs with less processing

time and compatibility with other elements for implementing an

SC system. Moreover, when utilizing such short sequences, the

proposed dividers still achieve a very high division accuracy.

The main contributions of this paper are as follows:

• An improved first-order DSM-based stochastic divider

(named as DSM-U1) is proposed to perform an accurate

division and generate shorter sequences compared to the

existing DSM divider (named as DSM-PRE), which is

the most efficient design among all existing dividers. For

example, when N = 10 the proposed design reduces the

required number of clock cycles from 1428 to 1040 (i.e.,

a reduction of 87.5% in the number of additional clock

cycles compared to 2N as sequence length); it also

improves the average mean square error (MSE) of

computation from 10-3.9 to 10-4.0.

• A second-order DSM-based divider (named as DSM-

U2) is then proposed. It achieves a fully timing

compatible stochastic unit with a very competitive

computing accuracy, especially for divisor and dividend

values centered around the SC range. For example, it

requires precisely 1024 clock cycles for N = 10 and

achieves an MSE of 10-4.7.

• The mechanism of error suppression of a DSM-based

divider is analytically investigated; this proves that the

proposed DSM-U2 provides high accuracy using shorter

sequences.

• Extensive simulations using both evenly and Gaussian

distributed datasets (with different standard deviation

values) are conducted to evaluate the computational

performance of the proposed dividers under different

conditions.

• SC-based neural networks are implemented as an

application to assess the advantages of the proposed

dividers. Evaluation results show that when employing

the proposed dividers, the SC network with DSM-U2

(DSM-U1) achieves a reduction of more than 35.9%

(32.0%) in the number of clock cycles compared to a

network with DSM-PRE.

The rest of the paper is organized as follows. In Section II,

the SC representation and essential SC elements are briefly

reviewed. Section III presents the proposed DSM-based

dividers and analyzes their error suppression mechanisms.

Then, the performance of the proposed designs is evaluated and

compared with existing dividers in Section IV. In Section V, to

assess the advantages and evaluate the performance of the

proposed designs, SC-based neural networks with the proposed

dividers are implemented as examples. Finally, the paper ends

in Section VI with the conclusion.

II. PRELIMINARIES

A. Stochastic Sequence Representation

 In an SC system, a real number X can be encoded in the

unipolar or bipolar stochastic sequence representations within

the value range of [0, 1] or [-1, 1], respectively. Define the

number of bits “1” as q and the length of a stochastic sequence

x as 2N; the real number X can be represented by X = p(x) = q/2N

for the unipolar representation and X = 2∙p(x)-1 = (2∙q-2N)/2N

for the bipolar representation, where p(x) is the occurrence

probability of “1” in sequence x. Moreover, an additional sign

bit associated with a unipolar stochastic sequence can also be

used to represent a real number in [-1, 1], which is proposed for

obtaining more accurate calculation results [16]. In general, SC

utilizes sequences with no or low correlation to achieve a high

computational accuracy [5]. Even though the correlation

between multiple sequences has also been studied for

computation [17], there is likely a significant difficulty when

employing correlated sequences and implementing a large-size

SC system. Therefore, an uncorrelated-based SC is targeted in

this paper, and the correlated-based dividers (such as found in

[18]-[21]) are not considered for comparison.

The limited computational range of SC may result in an

inaccurate result for some applications. To address this issue,

the extended stochastic logic (ESL) has been proposed [22];

ESL utilizes the quotient of two stochastic sequences to

represent a real number. Although both the numerator (xh) and

the denominator sequences (xl) still represent numbers within

the range of [0, 1] or [-1, 1], the range of the quotient xh/xl can

be extended to [0, 2N) or (-2N-1, 2N-1) for the unipolar and bipolar

representations, respectively; this is correct because X can be

considered as
±1

1/𝑋
 when it is smaller than -1 or larger than 1, so

essentially extending the value range of SC. However, the use

of two sequences also doubles the circuit size of the SC units.

Therefore, a trade-off is often pursued between computational

accuracy and hardware. For example, ESL units are only used

to perform partial computations in an SC system and the

remaining parts are calculated using standard SC units; this is

explained in more detail in the case study presented in Section

V.

B. Basic Stochastic Logic Elements

Prior to performing stochastic computation, real numbers are

converted to stochastic sequences by using the stochastic

number generator (SNG, shown in Fig. 1). For a probability p(x)

(N-bit binary number), pseudorandom numbers from 0 to 2N-1

are generated by a random number generator (RNG) and

compared with p(x); if the pseudorandom number is smaller, a

“1” is generated, and vice versa. After the entire conversion

period of 2N clock cycles, the stochastic sequence representing

p(x) is generated. The RNG is usually implemented by a linear

feedback shift register (LFSR) or low-discrepancy (LD)

sequences (e.g., Halton or Sobol sequences) [13], and the

location of bits “1” and “0” is usually observed as evenly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

distributed [5]. Compared with an LFSR-based stochastic

sequence, an LD-based sequence performs better in terms of

accuracy for combinational and integrator-based SC units (e.g.,

an adder, multiplier, or divider). Therefore, when achieving the

same computational accuracy for these units, a Sobol-based

sequence tends to require a shorter length, i.e., a smaller number

of clock cycles to complete the computation. However, Sobol-

based sequences are not ready suitable to some SC units based

on Finite State Machines (FSM) [13] that are usually used to

implement the activation functions of an SC neural network.

Additionally, deterministic sequences with arranged positions

of “1” bits can be used for computation with a very high

accuracy, but they usually require a significantly longer

sequence length [23], [24].

 Once the stochastic computation is completed, the so-called

probability estimator (PE) estimates the binary numbers from

the sequences, which can be seen as the opposite process of the

SNG. As shown in Fig. 1, a PE can be implemented by a

counter. A stochastic multiplier is implemented by an AND

(XNOR) gate for the unipolar (bipolar) representation; the ESL

version of multiplier uses two AND or XNOR gates in each

case. A typical unipolar/bipolar stochastic adder is

implemented by a multiplexer; however, such an adder

generates an output that scales the addition result by half. To

address this issue, the ESL version of the adder can be used,

because the scaling issue does not occur when appearing on

both the numerator and denominator. An alternative solution is

the use of an accumulation parallel counter (APC). APC

calculates the sum of bits on the same position of paralleled

input sequences and generates a result sequence that consists of

binary values [25]. The stochastic divider and improved designs

are reviewed in the next subsection.

C. Stochastic Dividers

 A conventional stochastic divider in a binary representation

is also shown in Fig. 1. It is formed by a feedback loop that

computes x2∙z to keep track of x∙y, where z is the quotient

sequence of y/x; therefore, the quotient is obtained once the loop

converges and the result sequence consists of the last 2N bits.

However, generating an accurate result requires a very long

period to converge; for example, for an N = 10 LFSR-based

sequence, the simulated convergence requires 46341 clock

cycles [12]. This number is significantly larger than for other

units (such as an adder and multiplier) that require only 2N clock

cycles. This will cause a very large computational latency for

the entire SC system when different elements are involved.

Several techniques have been proposed to shorten the division

period, as introduced next.1

1) Triple Modular Redundancy Based Divider

The triple modular redundancy (TMR) technique is applied

to reduce the latency introduced by the divider convergence

process [11]. The binary searching TMR (BS-TMR) technique

has been proposed to reduce latency by estimating the quotient

probability of the up/down counter in binary ranges. In such

case, the entire calculation process includes N steps of iterations

of probability estimate for an N-bit quotient probability. Within

each iteration step, three up/down counters with three SNGs

(i.e., TMR blocks) are employed in parallel. After each iteration

period, a voter decides the corresponding bit of the quotient.

Thus, the N-step iteration process can estimate the quotient

from the most significant to the least significant bits. After the

estimate process, a stabilization phase is required by utilizing

additional clock cycles for the final fine-tuning of the quotient;

this is performed using a conventional divider by disabling two

of the three TMR blocks.

Similarly, a decimal searching TMR (DS-TMR) divider is

proposed to reduce the latency further [12]. Compared to the

BS-TMR, the iteration step of DS-TMR is decided by the

system’s required resolution. For example, if N = 10, the

resolution of the quotient is 10-3; thus, the iteration is set to 3

steps, within each step ten sections of quotient probability are

calculated in parallel to decide the corresponding decimal bit.

The DS-TMR also contains voters for deciding in each iteration

step as well as the stabilization phase for final fine-tuning.

Although BS-TMR and DS-TMR have significantly reduced

the required division time, for example, only requiring 9214 and

4300 clock cycles when N = 10, the latency is still significantly

higher than for other basic stochastic logic units (adders and

multipliers). Moreover, due to the TMR blocks, the hardware

overhead is higher than for the conventional divider.

Figure 1. Stochastic computing elements (x, y, z, u, v, xh, xl, yh, yl, zh, zl are stochastic sequences).

1 Due to page limitation, the existing dividers are briefly reviewed in this

paper. For detailed information, please refer to the corresponding references

[11], [12], [15].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

2) DSM-Based Divider

A fast-converging divider (i.e., the DSM-based divider,

referred to as DSM-PRE in this paper), has been proposed to

reduce the latency further [15]. As shown in Fig. 2, a negative

feedback loop also exists in the DSM-PRE design, but the

feedback data origins from the x∙z estimate within a WinLen-bit

window. Since the “1” bits in a stochastic sequence are

uniformly distributed, checking the number of “1”s in a small

segment (i.e., the so-called window) can approximately

estimate the real number represented by this sequence. The

integer-based accumulator stores the accumulated unmatched

error between the estimated y and x∙z; it then adjusts the output

bit of z to reduce the error. The DSM-PRE is designed for a

bipolar stochastic sequence; thus, a sign estimate block

(Sign_est) is applied. This block is implemented by a counter;

this circuit counts the number of “1”s in the first or second

WinLen-bit window to estimate the sign of the sequence x.

The divider converges fast due to its highly efficient scheme

of controlling the unmatched errors between y and x ∙ z.

Compared to the abovementioned dividers that adjust the

quotient probability based mostly on the current values of y and

x∙z bits and the pseudorandom output bit of the SNG, the DSM-

PRE adjustment introduces fewer errors. However, the

Dividend Estimate block still requires WinLen clock cycles, and

the Sign_est block also incurs in an additional number of cycles.

Moreover, the Sign_est block may erroneously estimate the

sign of the sequences for small dividend and divisor values that

are nearly 0. Therefore, a divider design without such a

Sign_est block could potentially achieve a better computational

latency and accuracy; this is discussed and evaluated in the

following sections of this paper.

D. Challenges and Motivation

 The challenges of stochastic divider circuit design focus on

improving accuracy and increasing the computation speed

while maintaining a low hardware overhead.

• Accuracy. The existing stochastic dividers are inaccurate

when the inputs are near the center of the entire possible

range (e.g., [-0.2, 0.2] for a bipolar sequence). This is

expected, because the fundamental operation of a divider is

based on multiplication, so with a lower computational

accuracy for inputs centered in the possible range [14].

This issue is mitigated in DSM-PRE by the continuous

calibration of the accumulated error. However, it is still

confronted with errors brought by the sign estimate.

• Computation clock cycles. The other challenge of a

stochastic divider design is the required convergence time

of the computation, which results in significant latency and

power dissipation for the entire system. For example, the

conventional, BS-TMR, and DS-TMR dividers require

46341, 9214, and 4300 clock cycles to complete the

division respectively for N = 10 [11], [12]. The DSM-PRE

divider (with a WinLen of 27) requires fewer clock cycles,

but it still needs 1438 cycles (which is larger than 2N =

1024) to complete the computation [15]. Major concerns

are found on the sign estimate algorithm, which needs one

or two times the number of WinLen cycles, and the

dividend estimate process requiring an additional WinLen

cycles.

To mitigate the abovementioned issues and improve the

performance of stochastic dividers, in this paper, we propose

two types of DSM-based dividers: the improved first-order

DSM divider (DSM-U1) to address the accuracy issue in a

hardware-efficient way and the feed-forward second-order

DSM divider (DSM-U2) to address the computation clock

cycles issue.

Compared to all existing stochastic dividers, the proposed

dividers improve computation accuracy, especially with inputs

near the center of the entire range. Additionally, the proposed

DSM-U2 reduces the number of clocks to 2N by considering a

trade-off between WinLen and accuracy. This design either does

not require additional clock cycles compared to addition and

multiplication with an acceptable accuracy, or offers higher

accuracy with a smaller number of clock cycles than existing

stochastic dividers.

 The existing DSM-PRE divider uses a block to estimate the

sign of the inputs, which decides the feedback calculation. This

scheme may face difficulties if the input values are near 0 (for

Figure 3. The proposed DSM-U1 stochastic divider with independent sign

representation.

Figure 4. The proposed DSM-U2 stochastic divider (blocks that are different

from DSM-U1 shown in Fig. 3 are marked in red; the Divisor Estimate block is

the same as that in DSM-U1).

Figure 2. The existing DSM-based divider, DSM-PRE [15].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

the bipolar representation). Due to this limitation, the DSM-

PRE has similar performance with input values in this range

compared to other stochastic dividers. A high-order DSM can

mitigate this issue, while achieving a higher resolution; in a way

like the definition of order in DSM analog to digital converters

[26], the order in this design is defined as the number of stages

of accumulator in the feedback loop. Thus, in this paper, a

second-order DSM divider with feed-forward scheme is also

proposed and discussed.

III. PROPOSED DSM-BASED STOCHASTIC DIVIDERS

 In this section, we propose an improved first-order DSM-

based divider DSM-U1 and a second-order DSM divider DSM-

U2 for accurate and low latency SC systems. The DSM-U1 and

DSM-U2 use an additional sign bit and unipolar representation

to achieve bipolar computation, which can solve potential errors

introduced by sign estimate in the existing DSM-PRE design

and reduce the hardware overhead. The DSM-U2 further

reduces the size of WinLen, which leads to a shorter stochastic

sequence length. Both proposed dividers achieve a better

division computing accuracy.

A. Proposed Circuit Design of DSM-U1

 The proposed DSM-U1 is shown in Fig. 3. Compared to

DSM-PRE, an additional bit of sign representation is added; the

input values are converted to absolute values, and the operands

during the bipolar computation are then converted to the

unipolar representation. As shown in Fig. 3, the input value pair

X and Y are now represented by xun with sign_x, and yun with

sign_y, respectively; xun and yun denote the unipolar represented

stochastic sequence of the absolute values of X and Y, and

sign_x and sign_y denote the signs of X and Y, respectively.

Similarly, the Dividend/Divisor Estimate block estimates the

value of the input sequence by using a counter to check the

number of “1” bits in a WinLen-bit segment. For a low

complexity design, only the adding bit and the dumped bit of

each segment are provided as input to the counter, so that the

counter acts as a timing window moving along with the input

sequence. Due to the unipolar operation, the multiplication of

the stochastic sequence changes from XNOR to AND, thus, the

feedback generation is simplified by eliminating the two XNOR

gates and adding a multiplexer (MUX) that has two

log2WinLen-bit channels and is controlled by the output

bitstream of the divider zun. The MUX generates the feedback

value by selecting one channel data either from the Divisor

Estimate block or “0”, thus forming the product of xun and zun.

Note that the MUX can also be implemented by an AND array

as an alternative solution.

Then, the difference between the estimated yun and xun∙zun is

sent to the integer-based accumulator (ACCUM) and added to

the previously accumulated difference (Dacc). The bit width of

the accumulator can be designed based on either a targeted level

of computational accuracy, or the value range of a given

application (e.g., checking the possible range of difference

accumulation by simulation); in this paper, it is designed with

16 bits as an example for all DSM-based dividers as sufficient

to achieve a high accuracy. Since the goal of the divider design

is to obtain a convergent feedback loop (i.e., making yun =

xun∙zun), the quotient sequence z is adjusted by comparing the

accumulated difference with 0. Specifically, if Dacc > 0, which

means yun > xun∙zun, then the comparator generates a bit “1” to

increase the value of z and make xun∙zun closer to yun. Here, the

convergence mechanism of the loop can also be considered as

pushing the accumulated difference to 0 (i.e., by eliminating

these differences). In this case, when Dacc > 0, the “1” bit

Algorithm 1 Feedback generation process of DSM-U1

1: Counter = Counter + ABit - DBit;

2: if zun = 1

3: feedback = Counter;

4: else
5: feedback = 0;

6: end

7: Dacc = Dacc+ Input - feedback;
8: if Dacc >= 0

9: zun = 1;

10: else

11: zun = 0;

12: end

Algorithm 2 Feedback generation process of DSM-U2

1: Counter = Counter + ABit - DBit;

2: if zun = 1

3: feedback = Counter;

4: else

5: feedback = 0;

6: end

7: ACCUMstage1 = ACCUMstage1 + Input – feedback; ACCUMstage2 = AC-

CUMstage2 + ACCUMstage1;

8: Dacc = Input + 2×ACCUMstage1 + ACCUMstage2;

9: if Dacc >= 0
10: zun = 1;

11: else

12: zun = 0;
13: end

Figure 5. Simplified block diagram and corresponding z-transform error

analysis model of the proposed DSM-U1 divider.

Figure 6. Simplified block diagram and corresponding z-transform error

analysis model of the proposed DSM-U2 divider (blocks that are different from

DSM-U1 shown in Fig. 5 are marked in red).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

generated by the Comp unit is used (as an enable signal in the

MUX unit) to choose a smaller value between the two possible

results of the adder, that is added to Dacc in the next clock cycle.

Specifically, the adder result is either equal to the counter value

for yun subtracted by that for xun∙zun, or equal to the counter value

for yun itself; since the first result is always smaller, it is selected

by the enable signal in the MUX unit to be added to Dacc.

Similarly, a “0” bit is generated by the comparator when Dacc <

0 to either decrease the value of zun or choose a larger value

between the possible outputs of the adder to be added in the

accumulator. Finally, the loop converges based on the

adjustment in each clock and the accurate quotient sequence zun

is obtained. This process is given in Algorithm 1.

Note that as the same as all existing dividers, the proposed

designs also work when the dividend is larger than the divisor.

In this case, the quotient sequence is the one reporesenting a

real number of 1 or -1, which are the boundaries of the

computaitonal range for standard bipolar SC.

B. Proposed Circuit Design of DSM-U2

 In oversampling ADC design, higher-order DSMs provide a

higher signal-to-noise ratio (SNR), leading to a higher

resolution [26]. This feature is exploited in the proposed

second-order DSM divider with feed-forward paths to attain a

higher accuracy with input values near 0. Moreover, due to its

higher accuracy, the proposed DSM-U2 can be designed with a

smaller WinLen. Thus, it makes DSM-U2 suitable to low

latency SC applications.

 Fig. 4 shows the proposed DSM-U2 stochastic divider. It is

implemented by applying another stage of the accumulator

(ACCUM). The proposed scheme has one negative feedback

loop with two additional feed-forward paths, from the estimated

input yun and the output of the first stage of ACCUM, to the

adding node prior to the comparator. Unlike DSM-U1, Dacc in

DSM-U2 is calculated by adding yun, 2×ACCUMstage1, and

ACCUMstage2. This process is given in Algorithm 2; note that

2×ACCUMstage1 is implemented by a simple one-bit shift to the

left.

C. Analysis of Expected Advantages

 Like DSM, a higher order design (so with an additional stage

of ACCUM in the loop) suppresses the accumulated error and

adjusts the output bit with more flexibility, rather than utilizing

rigid adjustments of the first order DSM-based dividers. To

analyze error suppression, simplified models of the proposed

DSM-U1 and DSM-U2 are investigated to obtain the signal

transfer (STF) and error transfer (ETF) functions.

 As shown in Fig. 5, the DSM-U1 circuit can be simplified

with three major blocks, ACCUM, Comp as a quantizer that

quantizes the accumulated error, and the multiply operation of

xun and zun. Then, based on the simplified circuit, the

corresponding z-transform model is established to obtain the

ETF. From the z model, the error originates from two sources,

the quantizer and multiplier. The quantization error (eQ) is the

difference between the accumulated error and the output zun.

While the multiplication error is from the computation of xun •

zun and the estimate of the stochastic sequence segments of xun

and zun through the WinLen-bit window. The analysis of ETF is

required to investigate the relationship between one of the

inputs (𝐼�̅�), and the output of the multiplier (𝑂𝑥𝑧̅̅̅̅). Thus, we can

obtain the relationship as shown in the following equation:

 𝑂𝑥𝑧̅̅̅̅ (𝑧) = (𝐼�̅�(𝑧) − 𝑂𝑥𝑧̅̅̅̅ (𝑧)) ∙
𝑧−1

1−𝑧−1 + 𝑒𝑄(𝑧) + 𝑒𝑀(𝑧), (1)

where eQ and eM are the quantization error and multiplication

error, respectively. Then we can obtain the STF and ETF from

 𝑂𝑥𝑧̅̅̅̅ (𝑧) = 𝑧−1 ∙ 𝐼�̅� + (1 − 𝑧−1) ∙ 𝑒𝑄(𝑧) + (1 − 𝑧−1) ∙ 𝑒𝑀(𝑧). (2)

Finally, from (2), we observe that yun is unaltered but delayed,

while eQ and eM are differentiated and suppressed. Thus, we

obtain the unaltered input with a differentiated quantization

error and multiplication error.

 Compared to the proposed DSM-U1, DSM-U2 has an

additional stage of ACCUM, which suppresses the quantization

and multiplication error further. From the simplified circuit

block diagram and the corresponding z-transform model

(shown in Fig. 6), we obtain the relationship between 𝑂𝑥𝑧̅̅̅̅ and

𝐼�̅� as per

 𝑂𝑥𝑧̅̅̅̅ (𝑧) = (𝐼�̅�(𝑧) − 𝑂𝑥𝑧̅̅̅̅ (𝑧)) ∙ (
𝑧−1

1−𝑧−1
)

2

 + (𝐼�̅�(𝑧) − 𝑂𝑥𝑧̅̅̅̅ (𝑧)) ∙ 2 ∙
𝑧−1

1−𝑧−1 + 𝐼�̅�(𝑧) + 𝑒𝑄(𝑧) + 𝑒𝑀(𝑧). (3)

Then the STF and ETF of DSM-U2 are found from the

following equation:

 𝑂𝑥𝑧̅̅̅̅ (𝑧) = 𝐼�̅� + (1 − 𝑧−1)2 ∙ 𝑒𝑄(𝑧) + (1 − 𝑧−1)2 ∙ 𝑒𝑀(𝑧) . (4)

We obtain the unaltered input from (4), with a squared

differentiated quantization error and multiplication error. This

implies that the second-order DSM divider can withstand more

errors and suppress errors further. Thus, the ETF indicates that

the DSM-U2 can be implemented with a smaller WinLen (this

causes more errors, but they can be suppressed by the enhanced

(a)

(b)

Figure 7. Other schemes for second-order DSM divider implementation (blocks

that are different from DSM-U1 shown in Fig. 3 are marked in red): (a) Single

loop second-order; (b) Error feedback second-order.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

proposed second-order based process) while maintaining a high

computation accuracy.

 As per (4), the second-order design results in two poles due

to the additional order in the loop; thus, it may be less stable

than the first-order design. Such an issue may degrade the

divider’s performance when the inputs are close to the

maximum values (i.e., the value of 1 for a stochastic sequence),

and then result in a low computational accuracy, or even make

the divider fail. This potentially may occur because the

maximum value of the second stage accumulator keeps

increasing to an unduly large value and is unable to recover.

However, due to the reduced WinLen and lower number of

clock cycles required, and the mechanism of the accumulator

(automatically resetting to 0 when there is an overflow), the

proposed DSM-U2 remains stable over the entire input ranges.

This stability is also verified by the simulation results presented

in Section IV-A (which show a very high computational

accuracy for all value ranges).

D. Considerations between Different Topologies

The second-order DSM divider can be implemented in

several different ways; for example, as shown in Fig. 7, two

additional schemes are designed with the same STF and ETF of

(4). The scheme in Fig. 7 (a) does not have a feed-forward path,

and all the sum nodes have only two inputs, which leads to

slightly less hardware. The scheme in Fig. 7 (b) eliminates the

ACCUM blocks, thus, it may relax timing constraint

requirements and perform the calculation at a higher speed.

Considering that both the STF and ETF are the same for all

second-order DSM dividers, and their performances are similar,

we choose the proposed feed-forward scheme based on its

performance (evaluated by simulations in section V).

Higher-order DSM dividers are supposed to theoretically

provide more error suppression; however, such type of scheme

also induces stability issues, input range limitation, and more

hardware due to the additional stage of ACCUM. Thus, the

advantages caused by the higher order may be overwhelmed by

more disadvantages. In this paper, the investigation of DSM

dividers beyond second order is not further pursued.

IV. EVALUATION

 In this section, the performance of the proposed DSM-based

stochastic dividers is evaluated and compared with existing

designs discussed previously, including conventional [5], BS-

TMR [11], DS-TMR [12], and DSM-PRE [15] dividers.

A. Convergence and Accuracy

 The proposed dividers generate the quotient sequence

starting from the WinLenth clock cycle. The convergence point

(ConvP) is defined as the finish point of the division

computation, i.e., at the clock cycle of 2N+WinLen. Compared

with the LFSR-based sequence (that is susceptible to seed

choices and pseudorandom number distribution), the Sobol

sequence is usually used to evaluate the close-to-theoretical

performance, which is also applied in this paper to investigate

ConvP. Fig. 8 shows the ConvPs for the proposed dividers at

different sequence lengths (i.e., N = 7 to 11), with the same

number of WinLen = 27 as that in the DSM-PRE for comparison

purposes. Compared with DSM-PRE, the proposed dividers can

achieve a higher accuracy as shown in Fig. 8.

The impact of WinLen on computation accuracy is also

investigated using four datasets that follow a Gaussian

distribution; this evaluates the statistical performance of the

proposed dividers in different divisor and dividend ranges. The

datasets include random number pairs for the input dividend

and divisor that follow Gaussian distribution. They have

different standard deviations (µ = 0, σ = 0.05, 0.1, 0.25, 0.5), as

shown in Fig. 9. The results for both DSM-PRE and the

proposed dividers with N = 10 and different WinLen values are

plotted in Fig. 10. From the results, we can observe that all

dividers perform better for a more uniformly distributed dataset.

The trends of computation accuracy with WinLen values can be

seen for DSM-PRE; with larger WinLen, the accuracy is better.

DSM-U1 and DSM-U2 follow the same trend with WinLen

until it reaches 26 to 27. For larger WinLen (WinLen > 27), both

DSM-U1 and DSM-U2 show a slight accuracy deterioration as

WinLen increases. Moreover, the accuracy curve tendency of

DSM-U2 does not have significant variations over the entire

WinLen range. It indicates that for divisor and dividend with

small absolute values, the length of the segment sequence used

for the value estimate does not significantly affect the

performance of DSM-U2. Due to its further error suppression

capability, DSM-U2 can operate with a small WinLen. Thus, the

proposed DSM-U2 can be fully compatible (WinLen = 20) with

stochastic adders and multipliers, i.e., no additional clock

cycles are needed.

Based on the WinLen simulation results, we set the WinLen

values to 24 and 20 for DSM-U1 and DSM-U2, respectively; this

value is 27 for DSM-PRE from [15]. The simulation results of

Figure 8. Convergence points of the proposed DSM dividers with different N

and fixed WinLen of 27 for 10000 random input pairs (the points for DSM-U1

and DSM-U2 overlap).

Figure 9. Datasets of random numbers in Gaussian distribution with different

standard deviations as used for simulation.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

all DSM-based dividers using such WinLen settings with Sobol-

based sequences are shown in Table I; it reports the total

averaged MSE and that for both dividend and divisor within the

range of [µ-σ, µ+σ] for the four Gaussian distributed datasets.

Both proposed dividers achieve better accuracy than DSM-PRE

and the conventional divider, especially for the dataset with σ =

0.05, in which most dividend and divisor values are around 0.

This is reasonable because DSM-PRE is susceptible to sign

estimate errors when the Sign_est block works with divisors

that have smaller absolute values. The conventional divider

suffers from an ineffective error adjustment and in particular,

errors introduced by the multipliers within the feedback loop.

 A representative example of small absolute value division

computation (0.1/0.11) is shown in Fig. 11, which depicts the

convergence and accuracy of different dividers with N = 10. In

this case, BS-TMR and DS-TMR require more clock cycles in

each iterative searching step to achieve an acceptable accuracy.

The conventional stochastic divider also works in this case, but

due to its ineffective error adjustment, it needs more clock

cycles to converge. DSM-PRE achieves similar accuracy

compared with the conventional divider and requires

2N+WinLen to 2N+2∙WinLen clock cycles (WinLen = 27 [15],

i.e., a 128-bit shift register is needed) to complete the

computation. To compare with the proposed DSM-U2 (that will

be discussed in the following), the result of DSM-PRE with a

reduced WinLen that is equal to 20 is also plotted in Fig. 11; a

significant decrease in accuracy is observed as per the results.

Due to the elimination of the Sign_est block and the

corresponding induced error in the proposed DSM-U1 design,

WinLen of DSM-U1 can be reduced to 24 to achieve a similar

error level compared with DSM-PRE with WinLen = 27.

Moreover, due to the error suppression capability of introducing

an additional stage, DSM-U2 achieves a better accuracy even

with WinLen = 20. Overall, the proposed DSM-U2 is more

accurate and faster than other dividers. Similar accuracy results

are achieved for DSM-U1 with WinLen = 24, DSM-PRE with

WinLen = 27, and the conventional divider with close to 215.5

clock cycles.

As a further evaluation, the accuracy comparison of different

stochastic dividers and the required number of clock cycles for

inputs with a uniform distribution are considered and

TABLE II

SUMMARIZED AVERAGED MSE OF DIFFERENT DIVIDERS WITH UNIFORMLY DISTRIBUTED DATA FOR DIFFERENT SC SEQUENCE LENGTH

Divider Sequence type # of clock cycles
Log10(MSE) for different N

7 8 9 10 11

Conventional [5] LFSR 2N+5.5 - -2.9 -3.1 -3.4 -3.8

BS-TMR [11] LFSR 2N + N•round(2N+3/10) - -2.9 -3.1 -3.4 -3.8

DS-TMR [12] LFSR 2N + 2•round(2N+4/10) - -2.9 -3.1 -3.4 -3.8

DSM-PRE [15]
Sobol 2N + 27 to 2N + 28 -3.3 -3.9 -4.5 -5.0 -5.5

LFSR 2N + 27 to 2N + 28 -2.8 -3.2 -3.5 -3.9 -4.2

Proposed DSM-U1
Sobol 2N + 16 -3.8 -4.2 -4.5 -5.0 -5.5

LFSR 2N + 16 -2.9 -3.4 -3.6 -4.0 -4.3

Proposed DSM-U2
Sobol 2N -4.5 -4.9 -5.4 -5.6 -5.9

LFSR 2N -3.1 -3.8 -4.6 -4.7 -4.9

TABLE I

SUMMARIZED AVERAGED MSE OF DIFFERENT DIVIDERS WITH GAUSSIAN

DISTRIBUTED DATA WITH DIFFERENT STD FOR DIVIDEND AND DIVISOR

Divider

Averaged log10(MSE)

σ = 0.05 σ = 0.1 σ = 0.25 σ = 0.5

µ ± σ Total µ ± σ Total µ ± σ Total µ ± σ Total

Conventional [5] -1.1 -1.5 -1.6 -1.9 -2.0 -2.3 -2.3 -2.5

DSM-PRE [15] -1.6 -1.9 -2.0 -2.3 -2.4 -2.8 -2.3 -2.6

Proposed DSM-U1 -2.8 -3.1 -3.3 -3.6 -3.6 -3.9 -4.2 -4.4

Proposed DSM-U2 -3.2 -3.5 -3.5 -3.7 -3.7 -4.0 -4.5 -4.8

Figure 11. Quotient for 0.1/0.11 obtained by different stochastic dividers with

N = 10.

(a)

(b)

(c)

Figure 10. MSE of all DSM-based dividers with N = 10 and different WinLen

values for 10000 random input pairs: (a) DSM-PRE, (b) the proposed DSM-

U1, (c) the proposed DSM-U2.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

summarized in Table II. As per the considered application that

is studied in Section-V, both LFSR and Sobol-based sequences

are utilized. Compared to all existing dividers, the proposed

DSM-U2 achieves the best computational accuracy, requiring

no additional clock cycles; this feature makes this divider

completely (timing-wise) compatible with stochastic adders

and multipliers. The elimination of the sign estimate in both

proposed dividers further reduces potential errors. Thus,

compared to the existing DSM-PRE, the proposed dividers

achieve a higher accuracy while still having a stable

convergence process (i.e., a fixed number of clock cycles for

convergence). Therefore, the proposed dividers operate with

shorter stochastic sequences, that abide by SC trends and can

potentially be implemented in large-scale systems.

B. Hardware overhead

 The hardware overhead required by the proposed stochastic

dividers is evaluated next. To achieve a high accuracy, the

proposed DSM-U1 divider is designed with WinLen = 24 as per

the analysis presented in Section IV-A, while WinLen = 20 is

taken for the proposed DSM-U2 divider due to its excellent

accuracy. The circuits are implemented using Verilog and

synthesized using Synopsys Design Compiler by mapping the

design to an ASAP 7 nm technology library [27]. The

operational frequency of the designs is set to 200 MHz, and the

synthesis constraints are set accordingly for different hardware

figures of merit to evaluate the best performance in terms of the

corresponding metric. The hardware metrics including the

circuit area, latency for completing a division, power

dissipation, required number of clock cycles are evaluated.

 For comparison purposes, the existing stochastic dividers

evaluated in the previous section and a widely used Newton-

Raphson-based FP divider (i.e., a binary/non-SC unit) [28]

found in the technical literature are also implemented. For the

existing DSM-PRE, WinLen = 27 is employed for achieving a

high accuracy as per the previous discussion in Section IV-A

and from [15]. A 16-bit accumulator is used in all DSM-based

dividers for a fair comparison. Moreover, a parallel scheme to

implement the Sobol-based conventional divider is also

considered; it provides the same accuracy as the conventional

divider, but it requires half the number of clock cycles (with 2x

parallelization) [13]. N = 10 (i.e., a sequence length of 1024-

bit) is taken as an example in all stochastic divider

implementations; both LFSR and Sobol based sequences are

utilized for all designs (when applicable). The synthesis results

of different designs are reported in Table III.

 Consider the comparison among all stochastic dividers first.

 The proposed DSM-U1 divider is superior to all other

designs exclusive of the LFSR-based conventional

divider in terms of area overhead and power dissipation.

This is expected due to the low complexity of its circuit.

Specifically, the DSM-U1 divider only uses 16 flip-flops

to implement Winlen = 24 (i.e., significantly less than the

existing DSM-PRE with Winlen = 27). Moreover, it

achieves a small latency due to the removal of the block

for sign estimate (which is required in the DSM-PRE

divider, the fastest circuit among all existing designs), as

well as the fast convergence process (i.e., requiring a

small number of clock cycles).

 The proposed DSM-U2 requires a larger area and power

dissipation compared to DSM-U1 and the conventional

stochastic divider due to its second-order configuration.

However, since DSM-U2 reduces the implementation

cost for WinLen, its area and power are still lower than

DSM-PRE and all other dividers. Importantly, WinLen

= 20 also permits that DSM-U2 achieves exactly 2N clock

cycles (i.e., the same as a stochastic adder/multiplier),

and thus the smallest latency compared to all existing

designs. This feature makes the proposed DSM-U2

extremely attractive for implementing an SC-based

system, because it does not introduce any additional

clocks to the system (and thus to the entire latency and

energy) compared to the other types of SC units.

 The advantages of the proposed dividers apply to both

LFSR and Sobol based sequences; moreover, their

hardware overhead is independent of the sequence type

for a given value of N, because the designs do not use an

SNG. Instead, for existing dividers that require an SNG

(e.g., the conventional design), the version using Sobol-

based sequences tends to require a larger area and power,

but at a smaller latency/number of clocks compared to

the LFSR version; this occurs because the Sobol-based

SNG has a larger circuit size and its generated sequences

offer a better computation performance [13].

Next, consider the comparison between stochastic dividers

and the FP divider. Table III shows that the FP divider requires

a significantly larger area and power dissipation compared to

all stochastic dividers exclusive of the DS-TMR design2 but the

smallest latency and number of clock cycles. This is expected

because SC is known to have a low-hardware complexity by

incurring in an additional computation latency for the

sequences. However, note that the latency and clock cycles of

SC designs given in Table III are for an example of N = 10,

while these results are approximately proportional to the

sequence length 2N. This means that some stochastic dividers

can potentially have a smaller latency than the FP design (due

to their better delay per cycle), when their accuracy is

acceptable. For example, when N = 7, the proposed DSM-U1

TABLE III
SYNTHESIS RESULTS OF DIFFERENT DIVIDERS

Divider*1
Area

(𝜇m2)

Latency

(ns)

Power

(𝜇W)

clock

cycles

Floating-point divider [28] 8248.8 100.0 10.0 50

LFSR-

based
SC

(N=10)

Conventional [5] 653.6 10380.3 1.2 46341

BS-TMR [11] 2770.6 1233.7 4.0 9214

DS-TMR [12] 13900.5 463.4 19.7 4300

DSM-PRE [15] 1150.7 377.6 1.8 1428

Proposed DSM-U1 780.9 270.4 1.3 1040

Proposed DSM-U2 1081.6 256.0 1.7 1024

Sobol-

based
SC

(N=10)

Conventional [5] 1210.6 7286.1 2.7 23171

Parallel divider*2 [13] 1566.3 4194.1 3.5 11586

DSM-PRE [15] 1150.7 304.4 1.8 1159

Proposed DSM-U1 780.9 270.4 1.3 1040

Proposed DSM-U2 1081.6 256.0 1.7 1024
*1For existing dividers, only available results from the corresponding references

are reported; *2The parallel divider has been proposed only for Sobol-based
sequences [13].

2 The DS-TMR stochastic divider of [12] has been proposed as a trade-off

solution between the latency/clocks and area/power for an SC-based system;

so, it is less meaningful to compare its overhead with a floating point divider.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

(DSM-U2) divider that also offers a very low MSE of 10-2.9 or

10-3.8 (10-3.1 or 10-4.5) only requires a latency of approximately

36.0 ns (32.0 ns) to complete a division, i.e., they are superior

to an FP divider also in latency in addition to the area and power.

C. Discussion on Alternative Implementations

The proposed DSM-based stochastic divider designs can also

be implemented using a bipolar representation (i.e., without the

sign bit). This is applicable when we can manipulate the

representation of the inputs and place the negative sign of an

input pair (if it exists) in the dividend, such as for the ESL

sequences. In this alternative implementation, the DSM-U1 and

DSM-U2 designs do not require the XOR gate to calculate the

sign bit of the quotient sequence (as shown in Figs. 3 and 4),

and the input “0” of MUX needs to be changed to ~Counter; the

remaining parts of the circuits are kept unaltered.

In the DSM-based divider design, the computation is based

on making x•z to track y, which focuses on the probability of “1”

bits in a segment of the input sequences (instead of the

corresponding real numbers and the way that they are

represented); hence, such transformation from signed unipolar

to bipolar has no impact on the computational accuracy of the

proposed dividers. Moreover, this alternative implementation

has nearly the same hardware overhead compared to the designs

in Figs. 3 and 4, because only an XOR gate is replaced by at

most log2WinLen (the width of the counter) inverters.

V. APPLICATION: SC-BASED NEURAL NETWORKS

A. Network Implementation

 SC has been extensively investigated to achieve power-

efficient implementation for different types of neural networks,

such as multi-layer perceptron (MLP) [11], convolutional

neural networks (CNN) [29], deep belief networks (DBN) [30],

and recurrent neural networks (RNN) [31]. In this section, MLP

is taken as an example to study the use of the proposed

stochastic dividers in an SC-based neural network as an

application and demonstrate their effectiveness.

MLPs are one of the most widely used neural networks for

performing classification tasks, because they have a very high

flexibility for learning the mapping between inputs and outputs

and are capable of processing nearly all types of datasets [32].

Fig. 12 (a) shows the structure of an MLP; it consists of an input

layer, one or multiple hidden layers, and an output layer, among

which each two neighbor layers are fully connected. In the

inference process of an MLP, the valid features of a sample

being classified are fed into the network (i.e., as the neurons in

the input layer shown in Fig. 12 (a)). Then, neuron

computations start by performing (5). Specifically, to obtain the

nth neuron in the i + 1th layer, each of m neurons in the ith layer

is initially multiplied by a weight w; then, the multiply-

accumulation result for all m neurons is combined with a bias

value b of the ith layer and activated by a function Φ.

 𝑁𝑒𝑢𝑟𝑜𝑛𝑛,𝑖+1 = Φ(∑ 𝑤𝑗,𝑛
𝑖 ∙ 𝑁𝑒𝑢𝑟𝑜𝑛𝑗,𝑖

𝑚
𝑗=1 + 𝑏𝑖) (5)

In a typical SC-based neural network implementation, all

arithmetic computations of the network are processed using

stochastic sequences (i.e., a full-SC design). Fig. 12 (b) shows

the hardware diagram of a full-SC MLP implementation for

performing high performance inference (as recently proposed

in [11] and further improved in [12], [15] by using more

efficient dividers). Since the inputs of an MLP and the multiply-

accumulation results of neurons can exceed the traditional SC

computation range of [-1, +1], stochastic multipliers and adders

of the ESL version are utilized to extend the value range and

pursue an accurate computation. Moreover, ESL units are only

employed for the mapping between the input layer and the first

hidden layer for a trade-off between accuracy and hardware

overhead [11]. Note that each pair of ESL sequences requires

two SNGs; this is also considered in the hardware evaluation

conducted in this section. The SC-based activation function

(e.g., clamped ReLU or tanh) is typically implemented using an

FSM with a single input sequence. Therefore, a stochastic

divider is required to convert each multiply-accumulation result

(represented using two sequences in ESLs) to a single stochastic

sequence as input to the FSM. Since the divider generates 1 or

-1 when the dividend is larger than the divisor, it can bound the

computational range for ESLs to the one for the standard SC.

For neurons in the other layers, standard SC multipliers and

APCs are employed for performing multiply-accumulation

computation.

In a full-SC implementation, LFSR-based sequences are always

utilized, because the other types of sequences (e.g., Sobol) are

not capable of providing accurate computation for the FSM-

based activation functions [13]. However, the use of the LFSR

poses a challenge in terms of clock cycles for the

implementation, because sequences of large length are often

required for the entire network to achieve high accuracy.

Moreover, an accuracy loss may occur or increase due to the

accumulated correlation issue among stochastic sequences after

they perform a large number of continuous computations; this

also limits the use of a full-SC design for implementing large-

size networks.

 An alternative solution to implement neural networks using

SC circuits is to utilize a hybrid configuration as shown in Fig.

12 (c). In this case, the multiply-accumulation of neurons is

computed using stochastic sequences. Then, the results are

converted to conventional binary numbers for the activation

computation using for example floating-point hardware. Once

computation for one layer is completed, the activation results

are converted back to stochastic sequences for conducting the

subsequent layer computation. Therefore, in a hybrid-SC design,

SNGs and PEs are required for data conversion between

adjacent layers; even though they can be shared by different

layers without increasing the circuit area compared to a full-SC

implementation, additional latency and an increased number of

clock cycles are incurred for data conversion.

(a) (b) (c)

Figure 12. SC implementation of an MLP: (a) the MLP network; (b) the full-SC

implementation; (c) the hybrid-SC implementation.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

However, data conversion during network computation

mitigates the issue of error accumulation/accuracy loss caused

by using stochastic sequences for continuous computation in a

full-SC design (especially when the network has a large size).

Moreover, since the activation functions are implemented using

conventional non-SC circuits, sequences that offer a higher

computation accuracy such as Sobol-based, can be utilized for

the multiply-accumulation computations. These two features

permit a hybrid-SC design to use shorter sequence lengths than

in a full-SC design for achieving a satisfactory accuracy; this

can offset the impact of data conversion on the computation

latency/clock cycles.

B. Evaluation

The MLPs for two widely-used datasets, including MNIST

[33] and SVHN [34], are implemented using both full-SC

design and hybrid-SC design to evaluate the advantages of the

proposed dividers. Specifically, the full-SC implementation

utilizes LFSR-based stochastic sequences with N = 10 (i.e.,

length of 1024 bits) and the hybrid-SC implementation utilizes

Sobol-based sequences with N = 7 (i.e., length of 128 bits);

these types and lengths of sequences are set for achieving high

classification accuracy with low hardware overhead. In all SC

MLP implementations, ESLs are employed for the first hidden

layer (the other layers); the proposed dividers and the DSM-

PRE of [15] (that is the most efficient design among all existing

dividers as corroborated in Table III) are used for converting

ESL sequences to single stochastic sequences.

A conventional MLP implementation using the widely used

32-bit single-precision floating-point data and 16-bit fixed-

point data is also considered and compared. Table IV describes

the network models being implemented (trained and obtained

using floating-point data in Matlab); the network structure (i.e.,

the number of layers and neurons per layer, and the activation

functions) for each dataset is determined during training for

achieving a high classification accuracy. Table V reports the

classification accuracy and synthesized hardware results of

different MLP implementations with an operational frequency

of 200 MHz (obtained by using the same synthesis method and

constraints presented in Section IV-B) for different datasets. In

addition to the hardware metrics of area, power, latency and

number of clock cycles for completing an inference, a

combined metric defined as the product of area, latency, power

and clocks (PALPC) is also considered for a comprehensive

evaluation.

Table V shows the advantages of employing SC for MLP

implementation, as well as the advantages of the proposed

stochastic dividers in such application. The results are

summarized as follows. Consider the comparison between SC

and conventional floating-point implementations. Even though

a small accuracy loss is incurred3, the use of SC for MLP

implementation provides a reduction in all hardware metrics

evaluated in this paper, exclusive of the number of clock cycles4.

This is expected because SC hardware has a lower complexity,

but computation using sequences requires a considerable

number of clock cycles and reduces data resolution. As a

comprehensive evaluation for the hardware overhead, SC

MLPs achieve a significant PALPC reduction compared to the

floating-point version, that is 28.8% to 63.8% (61.7% to 81.8%)

for the MNIST (SVHN) dataset.

Next, consider fixed-point implementations (which also have

a considerable lower complexity than floating-point units).

Their classification accuracy is slightly lower than the floating-

point MLPs due to the lower data precision and similar to the

SC version. In terms of hardware metrics, the SC MLPs are

shown to have larger PALPC values5 due to the larger number

of clock cycles, but they offer a significantly better accuracy.

Moreover, a significant reduction in power is achieved for the

SC MLPs when the network size is large. These comparison

results show that the SC implementation is better suitable for

power-constraint applications that require high accuracy.

 Consider a comparison between a full-SC design using

LFSR-based sequences and a hybrid-SC design using Sobol-

TABLE IV

MLP MODELS OF DIFFERENT ML DATASETS

Dataset # layers
neurons

per layer

Activation

function Classification

accuracy Hidden

layer
Output

Layer

MNIST 4
784, 256,

128, 10
Clamped

Relu
Tanh 98.3%

SVHN 5
704, 512,

512, 512, 10
Clamped

Relu
Tanh 85.5%

TABLE V
CLASSIFICATION ACCURACY AND SYNTHESIZED HARDWARE RESULTS OF DIFFERENT MLP IMPLEMENTATIONS FOR DIFFERENT DATASETS

Implementation Scheme
Classification

accuracy

Area Latency Power # Clock
Cycles

PALPC
(%) mm2 % ns % mW %

MNIST

Floating-point MLP 98.3% 21.7 100 1475.0 100 1011.4 100 295 100

Fixed-point MLP 93.3% 16.6 76.5 350.0 23.7 700.9 69.3 70 3.0

LFSR-based SC

MLP with different

dividers (N = 10)

DSM-PRE [15] 97.8% 15.8 72.8 1452.1 98.4 207.6 20.5 1428 71.2

Proposed DSM-U1 97.8% 15.7 72.4 1104.3 74.9 207.4 20.5 1040 39.2

Proposed DSM-U2 98.0% 15.8 72.8 1079.9 73.2 207.5 20.5 1024 38.0

Sobol-based SC

MLP with different
dividers (N = 7)

DSM-PRE [15] 97.5% 21.2 97.7 839.7 56.3 679.9 67.2 512 64.9

Proposed DSM-U1 97.5% 21.1 97.2 654.4 44.4 679.7 67.2 400 39.3

Proposed DSM-U2 97.6% 21.2 97.7 624.4 42.3 679.8 67.2 384 36.2

SVHN

Floating-point MLP 85.5% 76.0 100 2050.0 100 3536.1 100 410 100

Fixed-point MLP 82.8% 69.0 90.8 470.0 22.9 2913.1 82.4 94 3.9

LFSR-based SC
MLP with different

dividers (N = 10)

DSM-PRE [15] 85.0% 54.5 71.7 1605.0 78.3 693.0 19.6 1428 38.3

Proposed DSM-U1 85.0% 54.3 71.4 1281.6 62.5 692.8 19.6 1040 22.2

Proposed DSM-U2 85.1% 54.5 71.7 1258.2 61.4 692.9 19.6 1024 21.5

Sobol-based SC

MLP with different
dividers (N = 7)

DSM-PRE [15] 84.5% 59.4 78.2 1339.5 65.3 1258.7 35.6 640 28.4

Proposed DSM-U1 84.5% 59.2 77.9 1109.1 54.1 1258.5 35.6 528 19.3

Proposed DSM-U2 84.7% 59.4 78.2 1071.6 52.3 1258.6 35.6 512 18.2

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

based sequences. For each MLP, the hybrid-SC version incurs

in an additional area overhead due to the floating-point

activation function circuits; it also dissipates significantly more

power due to the conversion between SC and floating-point data

for each layer. The number of clock cycles of hybrid-SC MLPs

is smaller than for the full-SC implementations, even though an

additional data conversion is required; this occurs because

when providing a similar classification accuracy, Sobol-based

sequences with a significantly shorter length can be utilized in

the hybrid-SC MLPs (this can compensate the impact of data

conversion, as discussed previously). Therefore, the use of

Sobol-based sequences leads to an improvement in the entire

computational latency for performing an inference process.

 Consider a comparison between the proposed stochastic

dividers and the existing DSM-PRE divider (which is the most

efficient design of all existing stochastic dividers as evaluated

in Section IV). The evaluation results show that the SC MLPs

with these dividers require nearly the same area and power,

even though the difference in these metrics for a single divider

is not small (as per Table III). This occurs because the dividers

are only used for the first hidden layer of an MLP, i.e., its

impact on area/power is very low. However, since the divider

is on the critical computational path of the network computation,

it has a significant impact on the entire latency and number of

clock cycles for performing inference, and thus on the

comprehensive performance in terms of PALPC. Therefore, the

SC MLPs with the proposed DSM-U2 achieve the best PALPC;

followed by the MLPs with the proposed DSM-U1. Specifically,

compared to the SC MLPs with the existing DSM-PRE divider,

the SC MLPs using the proposed DSM-U2 divider offer a

PALPC reduction of 46.6% and 44.2% (43.9% and 35.9%) for

the MNIST (SVHN) dataset when using LFSR-based and

Sobol-based sequences, respectively; this reduction for the

DSM-U1 version is 44.9% and 39.4% (42.0% and 32.0%) for

the MNIST (SVHN) dataset and when using LFSR-based and

Sobol-based sequences, respectively. Moreover, the proposed

DSM-U2 divider that permits a very accurate computation, also

helps improving the classification accuracy of the SC MLPs.

Overall, Table V shows that SC is more attractive for

implementing neural networks in hardware/power constrained

platforms compared to conventional floating-point circuits in

terms of complexity and to fixed-point circuits in terms of

power dissipation. Moreover, the full-SC design is more

efficient in terms of area and power, while the hybrid-SC design

is more efficient in terms of latency and number of clock cycles.

The proposed dividers further improve the performance of an

SC implementation in terms of both computational accuracy

and hardware overhead (with a significant reduction in latency

and PALPC). Therefore, they are very promising for SC

applications; for systems with a tight requirement on latency,

the proposed dividers may even permit the use of SC

implementation that would otherwise be not applicable.

VI. CONCLUSION

In this paper, two DSM-based stochastic dividers have been

proposed; operationally, these dividers are more compatible to

other SC units and achieve a higher division accuracy compared

with existing stochastic dividers. By employing an additional

sign bit and a sequence that eliminates the sign estimation

process of existing DSM-based dividers, the proposed DSM-

U1 significantly reduces the required additional clock cycles

and improves the accuracy. In addition, a second-order DSM

based divider, DSM-U2, has been proposed for implementing a

fully compatible SC system. The proposed DSM-U2 realizes

division with the same number of clock cycles as other SC units

require (e.g., adders, multipliers). In addition, DSM-U2 also

achieves the highest accuracy. Moreover, the mechanism of

error suppression in DSM based dividers is investigated; this

provides a theoretical analysis for the performance of DSM-U2

to achieve a high accuracy in a shortened stochastic sequence.

SC-based neural networks (MLPs specifically) have been

implemented as a case study to evaluate the advantages of the

proposed dividers. Compared to existing stochastic dividers, the

use of the proposed dividers offers a significant hardware

overhead reduction for the entire network implementation and

also helps improving the classification accuracy.

REFERENCES

[1] B. Moons, and M. Verhelst, “Energy-efficiency and accuracy of
stochastic computing circuits in emerging technologies,” IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, vol. 4, no. 4,

pp. 475-486, Dec. 2014.
[2] Y, Liu, S. T. Liu, Y. Wang, F. Lombardi, and J. Han, “A survey of

stochastic computing neural networks for machine learning applications,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 32,
no. 7, pp. 2809-2924, Aug. 2020.

[3] Y. Y. Lee and Z. A. Halim, “Stochastic computing in conventional neural

network implementation: a review,” PeerJ Computer Science, vol. 6, pp.
e309, Nov. 2020.

[4] B. R. Gaines, Stochastic Computing Systems. Boston, MA, USA:

Springer, 1969, pp. 37–172.
[5] B. D. Brown and H. C. Card, “Stochastic neural computation I:

Computational elements,” IEEE Transactions on Computers, vol. 50, no.

9, pp. 891–905, Sep. 2001.
[6] N. Onizawa, D. Katagiri, K. Matsumiya, W. J. Gross, and T. Hanyu, “An

accuracy/energy-flexible configurable Gabor-flter chip based on

stochastic computation with dynamic voltage-frequency-length scaling,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

vol. 8, no. 3, pp. 444-453, Jun. 2018.
[7] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, “Compact and

accurate digital filters based on stochastic computing,” IEEE

Transactions on Emerging Topics Computing, vol. 7, no. 1, pp. 31–43,
Jan. 2019.

3A potential solution to address the issue of accuracy loss is to use SC units

to train the MLP models. This investigation, interesting in its own, goes beyond

the scope of this paper that focuses on the stochastic dividers and only takes SC
MLPs as an application; therefore, it is left for future work.

4Since the operation of an SC unit is performed bit by bit (and it is

independent to each other), a later unit does not wait to receive the complete

sequence from its previous unit; instead, it starts to compute after receiving the

first bit of the sequence. Therefore, the number of clock cycles required to

complete the network computation depends on the divider, because the divider
requires the largest number of clock cycles compared to the other arithmetic

units and it is in the critical computational path. Moreover, when data

conversion between SC and non-SC is performed during computation (such as
in a hybrid-SC MLP design), it introduces an additional number of clock cycles

to the path.
5There are some potential improvement schemes to design SC MLPs with

smaller PALPC values. For example, sequences with a shorter length can be

utilized when the accuracy is acceptable. Moreover, in a hybrid-SC scheme, the

arithmetic units (both SC and non-SC) can be implemented only for the layer
with the largest number of neurons and then reused for other layers; this is

feasible because data conversion is performed between different layers and

computations using stochastic sequences are independent in each layer.
Moreover, the use of correlated sequences can also be investigated to reduce

the hardware overhead of SNGs. These investigations are also not the focus of

this paper, so they are left for future work.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

[8] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no.

3, pp. 449-462, Mar. 2014.
[9] B. Yuan and K. K. Parhi, “Belief propagation decoding of polar codes

using stochastic computing,” in Proceedings of IEEE International

Symposium on Circuits and Systems (ISCAS), May 2016, pp. 157–160.
[10] G. Sarkis, S. Hemati, S. Mannor, and W. J. Gross, “Stochastic decoding

of LDPC codes over GF(q),” IEEE Transactions on Communications, vol.

61, no. 3, pp. 939–950, Mar. 2013.
[11] Y. Liu, S. T. Liu, Y. Wang, F. Lombardi, and J. Han, “A stochastic

computational multi-layer perceptron with backward propagation,” IEEE

Transactions on Computers, vol. 67, no. 9, pp. 1273–1286, Sep. 2018.
[12] S. Liu, X. Tang, F. Niknia, P. Reviriego, W. Liu, A. Louri, and F.

Lombardi, “Stochastic dividers for low latency neural networks,” IEEE

Trans. Circuits Systems I: Regular Papers, vol. 68, no. 10, pp. 4102–
4115, Oct. 2021.

[13] S. T. Liu and J. Han, “Toward energy-efficient stochastic circuits using

parallel Sobol sequences,” IEEE Transactions on Very Large Scale
Integration (VLSI) System, vol. 26, no. 7, pp. 1226–1339, Mar. 2018.

[14] T. J. Baker and J. P. Hayes, “The hypergeometric distribution as a more

accurate model for stochastic computing,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), Mar. 2020, pp. 592–597.

[15] X. Tang, S. Liu, F. Niknia, P. Reviriego, Z. Wang, A. Louri, and F.

Lombardi, “A Delta sigma modulator-based stochastic divider,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 8,

pp. 3272-3283, Apr. 2022.
[16] S. T. Liu, H. Jiang, L. Liu, and J. Han, “Gradient descent using stochastic

circuits for efficient training of learning machines,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2530-2541, Nov. 2018.

[17] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit

design,” in IEEE 31st International Conference on Computer Design
(ICCD), Oct. 2013, pp. 39-46.

[18] S. Wang, G. Xie, J. Han, and Y. Zhang, “Highly accurate division and

square root circuits by exploiting signal correlation in stochastic
computing,” International Journal of Circuit Theory and Applications,

vol. 50, no. 4, pp. 1375-1385, Apr. 2022.

[19] S. I. Chu, “New divider design for stochastic computing,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 1,

pp. 147–151, Jan. 2020.

[20] T. H. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), Jul. 2016, pp. 116-121.

[21] D. Wu and J. S. Miguel, “In-stream stochastic division and square root via
correlation,” in Proceedings of the 56th Annual Design Automation

Conference, Jun. 2019, pp. 1-6.

[22] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rosselló, “A new
stochastic computing methodology for efficient neural network

implementation,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 27, no. 3, pp. 551–564, Mar. 2016.
[23] D. Jenson and M. Riedel, “A deterministic approach to stochastic

computation,” in IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), Nov. 2016, pp. 1–8.
[24] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing

stochastic computation deterministically,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 27, no. 12, pp. 2925–2938,

Dec. 2019.

[25] P. S. Ting and J. P. Hayes, “Stochastic logic realization of matrix

operations,” in 17th Euromicro Conference on Digital System Design,
Aug. 2014, pp. 356-364.

[26] P. Shanthi, R. Schreier, and G. Temes, Understanding delta-sigma data

converters. Hoboken, NJ, USA: Wiley, 2017.
[27] ASAP (2021): Arizona State Predictive PDK. [Online]. Available:

http://asap.asu.edu/asap/.

[28] Y. Li, Computer principles and design in Verilog HDL: Floating-point
algorithms and FPU design in Verilog HDL. Hoboken, NJ, USA: Wiley,

2015.

[29] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, “Dscnn: hardware-
oriented optimization for stochastic computing based deep convolutional

neural networks,” in IEEE 34th International Conference on Computer

Design (ICCD), Oct. 2016, pp. 678–681.
[30] Y. Liu, Y. Wang, F. Lombardi, and J. Han, “An energy-efficient online-

learning stochastic computational deep belief network,” IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 3, pp.
454–465, Jul. 2018.

[31] A. Zhakatayev, S. Lee, H. Sim, and J. Lee, “Sign-magnitude SC: Getting

10X accuracy for free in stochastic computing for deep neural networks,”
in 55th ACM/ESDA/IEEE Design Automation Conference (DAC), Jun.

2018, pp. 1–6.

[32] J. Brownlee, When to Use MLP, CNN, and RNN Neural Networks.
Montpelier, VT, Australia: Machine Learning Mastery, 2018. [Online].

Available: https://machinelearningmastery.com/when-to-use-mlp-cnn-

and-rnn-neural-networks/.
[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no.

11, pp. 2278–2324, Nov. 1998
[34] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,

“Reading digits in natural images with unsupervised feature learning,” in

Proceedings of NIPS Workshop Deep Learning, 2011, pp. 1-9.

