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   Dear Editor,
This letter presents a normalization mechanism to effectively fuse

infrared  and  visible  images  in  an  encoder-decoder  network.  Source
images  are  decomposed  into  source-invariant  structure  and  source-
specific  detail  features.  Then,  the  information  of  detail  features  is
sufficiently incorporated into the structure features using this normal-
ization  mechanism  in  the  decoder,  which  generates  high-contrast
fused images with highlighted targets and abundant texture informa-
tion.  Qualitative  and  quantitative  experiments  on  two  challenging
datasets demonstrate the superiority of our method over current state-
of-the-art methods.

Infrared and visible image fusion (IVIF) is a representative exam-
ple  of  image  fusion  and  has  wide  applications  in  computer  vision,
target recognition, and military tasks. Traditional IVIF methods, such
as  multiscale  transform-based  methods  [1],  [2],  usually  design  fea-
ture extraction and fusion strategies in a manual way and thus cannot
fully  capture  and  understand  all  source  information.  Deep  learning
(DL)  based  methods  [3]–[8]  have  been  trying  to  overcome  these
shortcomings  of  traditional  methods.  The  core  of  DL methods  is  to
design deep neural networks and introduce loss functions to train the
networks,  guiding them to  extract  deep features  and then fuse  them
automatically. For example, in disentangled representation-based DL
methods: DIDFuse [5] and DRF [6], source images are decomposed
into source-invariant structure features and source-specific detail fea-
tures  via  an  encoder.  Then,  the  decomposed  features  are  concate-
nated and fed into a decoder to generate fused images.

However,  these  DL  methods  simply  adopt  concatenation  fusion
strategy  at  the  reconstruction  step.  Not  leveraging  the  relationship
between  different  types  of  extracted  features,  the  networks  have  to
learn  to  synthesize  them  only  under  the  guidance  of  the  loss  func-
tions,  often  resulting  in  unsatisfied  effectiveness,  such  as  decreased
saliency  of  highlighted  targets  and  bad  resolution  of  detail  textures.
To address these issues, we propose a novel fusion network under a
normalization mechanism to fuse disentangled source-invariant struc-
ture and source-specific detail features, which is termed NormFuse in
this  letter.  The  main  contributions  of  this  letter  are  summarized  as
follows: 1) To the best of our knowledge, this is the first time to treat
IVIF  as  a  normalization  process  in  which  the  structure  features  are
modulated by modulation parameters converted from detail features.
2)  Different  from existing normalization mechanisms,  we propose a
pixel-adaptive  normalization  module,  thus  each  activation  of  the
structure feature maps can be modulated by different modulation val-
ues adaptively. 3) The proposed method can help efficiently fuse the
disentangled  structure  and  detail  information,  generating  superior
fused images over existing comparable state-of-the-art methods.

Problem analysis: A paired infrared and visible images must share

the same source-invariant structure part of the scene and meanwhile
each of them possesses a source-specific detail part of the scene. The
process of disentangling the structure from the detail is invertible and
the source image can be fully reconstructed with disentangled struc-
ture  and  detail  parts.  Conditional  normalization,  such  as  adaptive
instance  normalization  (AdaIN)  [9]  in  style  transfer  and  spatially-
adaptive normalization (SPADE) [10] in semantic image synthesis, is
an effective kind of mechanism to synthesize disentangled represen-
tations. In conditional normalization, activations of input features are
firstly  normalized  to  zero  mean  and  unit  deviation  and  then  denor-
malized by modulating the feature activations via affine transforma-
tion. Because the modulation parameters are converted from external
condition information, the condition information is reasonably incor-
porated  into  the  input  features.  Normalization  mechanism  exhibits
superior  performance  than  concatenation  strategy  in  both  tasks  [9],
[10].

Inspired  by  the  above  analysis,  we  treat  IVIF  as  a  normalization
process  in  which  the  information  of  detail  features  is  incorporated
into  structure  features  as  external  condition  information.  However,
AdaIN only  uses  global  statistics  as  the  modulation  parameters  and
thus cannot preserve complete conditional information, which is just
the  requirement  in  IVIF  tasks.  While  in  SPADE,  the  modulation
parameters mainly depend on semantic classes, not varying spatially
in  a  pixel-wise  manner.  To  completely  incorporate  the  disentangled
detail information into structure features and accomplish fully spatial
adaptiveness,  in  this  letter  we  propose  pixel-adaptive  normalization
(PEAN) mechanism, as illustrated in Fig. 1.
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Fig. 1. Illustration diagrams of (left) pixel-adaptive normalization (PEAN)
layer and (right) the structure of PEAN residual block (PEANResBlk).
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We use convolution layers to compute the modulation parameters γ
and β ,  which have the same size as the structure S  and detail D  fea-
ture  maps.  Therefore,  each  activation  of  structure  features  can  be
modulated  pixel-wise.  Let  denote  the  activations  of  input  (struc-
ture) features with the height  and width  of  the i-th layer of a
deep convolutional network for a batch of N  samples. Let  be the
number of channels in the layer. The normalized activation values are
directly  rescaled  and  biased  with γ  and  β  in  a  channel-wise  manner
respectively ( , , , )
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where  is  the  activation  before  batch  normalization  (BN)  and
 and  are the mean and deviation of the activations in channel c:

 and .
Network  architecture: Fig. 2  illustrates  our  IVIF  network  archi-

tecture based on PEAN. There are three convolution layers and two
residual blocks (ResBlk) in the encoder. The decoder consists of two
PEANResBlk and one convolution layer. The structure of PEANRes-
Blk is  shown in the right  of Fig. 1 .  The outputs  of  the two ResBlks
are  concatenated  with  the  outputs  of  the  two  PEANResBlks  along
channels, respectively. The size of all feature maps is kept the same
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as the input images.

S F = S I +S V DF = DI +DV
S F

DF

In the training phase, an infrared I or a visible V image is fed to the
encoder and decomposed into structure features and modal detail fea-
tures. Then, the structure feature maps are directly fed to the decoder,
whereas  the  detail  feature  maps  are  converted  into  parameters  to
modulate  the structure feature maps through PEANResBlks.  Conse-
quently, the decoder generates the reconstructed image. While in the
testing phase, we firstly sum the structure (detail) feature maps from
different sources channel-wise:  ( ). Then,
a fused image is generated through the decoder with the input of 
and .

Ltotal = Lde +Lrec

Our  loss  function  consists  of  decomposition  loss  and  reconstruc-
tion loss: . To minimize the difference between the
infrared and visible structure feature maps and maximize the differ-
ence between their detail feature maps, the decomposition loss is
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Î V̂
Φ  is  tanh  function.  The  decoder  aims  to  reconstruct  the  infrared

and visible images ,  as close to I, V as possible in pixel intensity,
structural  similarity  index  (SSIM).  The  abundant  gradient  informa-
tion  from visible  images  is  expected  to  retain.  Thus  the  reconstruc-
tion loss is
 

Lrec = α2 f (I, Î)+α3 f (V, V̂)+α4∥∇V −∇V̂∥1. (3)
∇ f (X, X̂) = ∥X− X̂∥22+

λLSSIM(X, X̂) X = I LSSIM(X, X̂) = [1−SSIM(X,
X̂)]/2

Here  denotes  the  gradient  operator,  and 
,  where  or  V  and  

.
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α3 α4
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Experiments: The  hyperparameters  are  set  as:  =  0.5,  =  2,
 =  3,  =  20  and λ  =  5.  In  training  phase,  the  network  is  opti-

mized by Adam over 120 epochs with a batch size of 24. The learn-
ing rate is set to  and decreased by 10 times every 40 epochs.

_

We  conduct  experiments  on  TNO  [11]  and  RoadScene  [12]
datasets.  The training set  contains  180 RoadScene image pairs.  The
test  set  contains  38  TNO  and  37  RoadScene  image  pairs.  Before
training, all images are transformed into grayscale and center-cropped
with  128×128  pixels.  We  compare  our  method  with  HMSD  [1],
HMSD GF [2],  FusionGAN [4]  and  DIDFuse  [5]  qualitatively  and
quantitatively  according  to  entropy  (EN),  standard  deviation  (SD),
spatial  frequency  (SF),  visual  information  fidelity  (VIF),  mutual
information (MI) and mean gradient (MG) metrics.

S V S I

DV DI
DV

DI

To examine the decomposition effect, we visualize one channel of
the structure and detail feature maps in Fig. 3.  and  are overall
similar, reflecting the fundamental structure information of the same
scene.  Obtain  exactly  similar  structures  from distinct  source  images
is very difficult due to their vastly distinct image representations. In
contrast,  and  are remarkably different and mainly reflect their
complementary  modal  information.  For  the  top  row  results, 
mainly contains information of the path and the ground uncovered by
grass,  while  mainly contains  information of  the truck and bright
spots. The obvious benefit of such complementarity is that their sim-
ple  addition makes  all  source-specific  valuable  information retained
and highlighted in subsequent fusion process.

BN(h) BN(h)

DV

BN(h) BN(h)
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To  understand  how  the  PEAN  module  works,  we  visualize  one
channel  of , γ,  β ,  and  the  multiplication  of γ  with   in
the  second  PEANResBlk  in  the  reconstruction  process  of  visible
images. As shown in Fig. 4, although γ and β are converted from the
same ,  they  are  very  different.  For  example,  in  the  top  row,  the
roof, road and lamp are prominent in γ while dark in β. Meanwhile, γ
and β modulate  in different ways. By rescaling  with γ,
the information of the roof, salient in both γ and , is enhanced,

γBN(h)
γBN(h)

while  the  information of  the  road and lamp,  only  prominent  in γ ,  is
suppressed. β  contains  the  information  of  the  pedestrian,  the
umbrella, and the trees, which are missing in .  The informa-
tion contained in β is a needful complement to .
 

γ βBN (h) γBN (h)

 
BN(h) γBN(h)Fig. 4. Visualization of one channel of , γ, , and β in the recons-

truction of visible images.
 

Fusion  results: Figs. 5  and  6  show  the  six  metrics  for  TNO  and
RoadScene  test  datasets,  respectively.  Overall,  NormFuse  achieves
the  best  results  on  SD,  VIF,  MI,  and  EN.  Particularly,  it  performs
much better than all other methods on SD and VIF. For MG and SF,
NormFuse obtains comparable results on TNO datasets. These results
demonstrate  that  our  method provides  the  highest  contrast,  the  least
distortion, and the most information. We attribute this superiority of
NormFuse  to  the  effective  fusion  of  the  structure  and  all  the  modal
information under normalization mechanism.

We  further  exhibit  five  representative  fused  images  generated  by
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Fig. 2. The encoder-decoder network of NormFuse.
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Fig. 3. Visualization  of  one  channel  of  the  disentangled  structure  and  the
detail  feature  maps.  Top:  TNO  test  dataset  and  bottom:  RoadScene  test
dataset.
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Fig. 5. Quantitative comparison of different methods on six metrics for TNO
test dataset.
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different  methods  in Fig. 7 .  Compared to  other  methods,  NormFuse
is  superior  in  three  aspects.  First,  NormFuse  generates  more  high-
lighted targets,  such as the bright light spot,  the head of the car and
the street lamp in the first, third and fifth columns respectively. Sec-
ond,  NormFuse achieves higher  contrast.  As shown in the left  three
columns, the contrast of the wall, the bunker and the body of the sol-
dier in NormFuse are stronger than those in other methods, which are
more  likely  to  attract  human  attention  and  provide  better  visual
effect.  Third,  our  results  have  better  information  fidelity.  In  the
fourth column,  the sky contains  a  gradual  transition from the bright
to  the  dark  regions  in  NormFuse,  reflecting  more  real  information

from both sources. While the transition is very sharp in DIDFuse or
even does not occur in other methods.

To directly verify the effectiveness of PEAN module,  we conduct
ablation study where the PEAN modules are replaced by BN and the
detail and structure features are concatenated as input to the decoder.
We refer to this method as ResCat. As shown in Table 1, NormFuse
exceeds  ResCat  on  EN,  SD,  VIF  and  MI,  and  obtains  very  close
results on SF and MG, verifying the effectiveness of PEAN mecha-
nism over concatenation strategy.
 

Table 1.  Quantitative Comparison Between ResCat and NormFuse. Better
Values are Shown in Bold

TNO dataset RoadScene dataset
Metrics ResCat NormFuse ResCat NormFuse

EN 7.1512 7.1903 7.4020 7.4150
SD 47.5677 53.6478 51.1525 54.3218
SF 6.2642 6.1389 6.7738 6.6906
VIF 0.6376 0.6993 0.8248 0.8595
MI 2.2054 2.3458 2.7438 2.9468
MG 4.4193 4.4057 5.5790 5.4818

 
 

Conclusion: In this letter, we leverage the relationship between the
disentangled  structure  and  detail  features  transformed  from infrared
and  visible  source  images  and  employ  normalization  mechanism  to
fuse  the  disentangled  features.  To  guarantee  effective  information
fusion, we propose pixel-adaptive normalization as the fusion mecha-
nism. An encoder-decoder network based on this mechanism gener-
ates high-quality fusion images, providing a new benchmark for IVIF
tasks.
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Fig. 6. Quantitative comparison of different methods on six metrics for Road-
Scene test dataset.
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Fig. 7. Qualitative results for different methods. The left three columns: TNO
test dataset and the right two columns: RoadScene test dataset.
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