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   Dear Editor,

This  letter  focuses  on  combining  the  respective  advantages  of
cross-modality  images  which  can  compensate  for  the  lack  of  infor-
mation  in  the  single  modality.  Meanwhile,  due  to  the  great  appea-
rance differences between cross-modality image pairs, it often fails to
make the feature representations of correspondences as close as pos-
sible.  In  this  letter,  we  design  a  cross-modality  feature  represen-
tation learning network, S2-Net, which is based on the recently suc-
cessful  detect-and-describe  pipeline,  originally  proposed  for  visible
images but adapted to work with cross-modality image pairs. Exten-
sive  experiments  show  that  our  elegant  formulation  of  combined
optimization of  supervised and self-supervised learning outperforms
state-of-the-arts on three cross-modal datasets.

Establishing  the  local  correspondences  between  two  images,  as  a
primary task, is the premise of various visual applications, including
target  recognition,  visual  navigation,  image  stitching,  3D reconstru-
ction  and  visual  localization  [1]. The  conventional  matching  meth-
ods are based on the handcrafted local feature descriptors [2]–[4] to
make the representation of two matched features as similar as possi-
ble  and  as  discriminant  as  possible  from  that  of  unmatched  ones.
Over  the  recent  years,  the  deep  learning-based  methods  have
achieved  significant  progress  in  general  visual  tasks,  and  have  also
been  introduced  into  the  field  of  image  matching.  The  current
approaches are mostly based on a  two-stage pipeline that  first  com-
pletes the extraction of keypoints and then encodes the patches cen-
tered on the keypoints into descriptors, thus referred to as the detect-
then-describe methods.  In  the  field  of  cross-modality  image  match-
ing,  the detect-then-describe methods have been widely used with a
manual  detector  to  detect  and  an  adapted  deep  learning  network  to
perform description [5]. For example, a cross-spectral local descrip-
tor, Q-Net [6], uses a quadruplet network to map input image patches
from two different spectral bands to a common Euclidean space. SFc-
Net [7] adopts the Harris corner detector for candidate feature point
detection and then gets correspondences by a Siamese CNN.

Despite  this  apparent  success,  it  is  an  inevitable  disadvantage  of
this paradigm that the global spatial  information is discarded during
the  description  process,  which  happens  to  be  essential  for  cross-
modality images. In contrast to it, the detect-and-describe framework
for visible images uses a network to simultaneously perform feature
point  extraction  and  descriptor  construction  [8],  [9].  This  approach
postpones  the  detection  process  without  missing  high-level  infor-
mation of images. Additionally, the detection stage is tightly coupled
with the description so as to detect pixels with locally unique descri-
ptors  that  are  better  for  matching.  Undoubtedly,  it  is  promising  to
introduce the  framework  into  cross-modality  image  matching,  how-
ever, challenges come up due to the huge heterogeneity.  To be spe-
cific,  it  is  difficult  to  optimize the model  for  cross-modality  images

with extreme geometric and radiometric variances.
Self-supervised learning (SSL), which helps the model obtain easy

invariance with  augmented  data,  is  one  of  the  most  popular  tech-
niques  in  natural  language  processing  and  computer  vision.  As  for
local feature representation learning, the well-known Superpoint [10]
proposed  a  novel  Homographic  Adaptation  procedure,  which  is  a
form of self-supervision, to tackle the ill-posed problem of keypoint
extraction. Nevertheless,  the SSL technics have not been introduced
into  cross-modality  scenario,  while  current  methods  are  devoted  to
obtaining  supervised  signals  from  labeled  data  instead.  Since  the
learning becomes  harder  for  cross-modality  images  due  to  the  seri-
ous  radiometric  variances,  it  is  desirable  to  introduce  SSL  into  this
task. In fact, among the challenges faced by cross-modality descrip-
tors, excluding inter-modal invariance, other necessities including geo-
metric invariance as well as robustness to noise and grayscale varia-
tions can be well-addressed by SSL.

In this work, we explore the possibility of using SSL, based on the
recent  success  of  the  detect-and-describe  methods,  but  adapted  to
work  with  cross-modality  image  pairs.  Although  the  cross-modality
images are heterogeneous and quite different in appearance, they still
have some similar semantic information, such as the shape, structure,
and topological relationship. The detect-and-describe methods retains
the global spatial information which is rather crucial for our task. As
for the optimization problem, we provide an effective solution for the
application of the detect-and-describe methods to the cross-modality
domain.  More  precisely,  we  propose  our  novel  architecture  of  joint
training with supervised and self-supervised learning, termed S2-Net,
which takes full advantage of SSL to improve matching performance
without  extra  labeled  data,  as  illustrated  in Fig. 1.  Self-supervision
simulates  the  feature  representation  learning  of  images  in  the  same
modalities.  Since  the  task  of  training  image  representations  of  the
same  modality  is  relatively  easier  compared  to  different  modalities,
self-supervision plays a guiding role in the training process. Also, we
design a loss function that combines both supervised and self-super-
vised learning and optimally  balances  the  guidance of  the  two opti-
mization methods. To the best of our knowledge, S2-Net is the first
algorithm that introduces the SSL technique into cross-modality fea-
ture representation, and sufficient experiments have demonstrated the
great effectiveness of our work.

Method: In  this  section,  our  proposed  technique  of  self-super-
vision-guided optimization will be explained in detail.

1)  Framework  of  self-supervision  guided  optimization:  We  pro-
pose  S2-Net,  a  general  framework  aims  to  make  the  detect-and-
describe  methods  suitable  for  cross-modality  image  matching.  To
train  the  basic  framework,  relevant  constraints  for  single  modality
images  are  proposed.  However,  the  lack  of  strong  supervision  in
these  constraints,  e.g.,  which  point  should  be  the  key  point,  always
troubles the training. Moreover, it is common knowledge that the dif-
ference  between  pairs  in  the  same  modality  is  much  smaller  than
cross modalities. To this end, it is promising to introduce the mono-
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Fig. 1. Our proposed S2-Net for cross-modality images.
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modality  self-supervised  learning  to  guide  the  cross-modality  trai-
ning. As illustrated in Fig. 1, based on the basic framework, the other
two branches  with  augmented cross-modality  images  for  self-super-
vised  learning  are  introduced  for  joint  training.  It  should  be  noted
that our approach only changes the training process that the original
pair  of  images  inside  a  batch  becomes  three  pairs,  which  is  equi-
valent  to  tripling  the  batch  size,  so  the  training  time  also  becomes
three times the original, but the testing time remains the same.

I′ T (·)

[−10◦,10◦] [1,1.2]
[0,0.2] Ts(·), Tr(·) Tq(·)

Tn(·)

Tb(·)
[3,3] [0.01,1]

Ti(·)

Suppose  we  take  the  image  pair I as an  example,  and  it  is  ran-
domly tranformed to image  with the tranform . Speficically, we
focus on two major transforms, geometric transform and gray trans-
form, which are the most natural discrepancies across modalities. As
for  geometric  transforms,  we  mainly  consider  the  random  rotating

, random scaling  and quadrangular random projec-
tion  of  a  ratio ,  which  are  denoted  as  and ,
respectively. Moreover, to encourage the model to obtain better gen-
eralization on the gray variation,  we also add a random noise ,
where  the  noise  follows  the  normal  distribution  with  the  mean  of  0
and  the  variance  of  0.01,  and  a  Gaussian  blur  with  the  kernel
size of  and the standard deviation of  as well as a ran-
dom gray inverting  that inverts the gray scale larger than a ran-
dom threshold 0.5. Therefore, the total transform can be described in
the cascading sub-transforms as
 

T (·) = Ts ×Tr ×Tq ×Tn ×Tb ×Ti(·). (1)
Tvis TothIndependent  random transform  and  would  be  conducted

on raw visible and the other modal images for two parallel self-super-
vised learning.

2) Overall loss function: The input is processed by the network to
generate the feature map, and then the descriptors and score maps are
calculated. The overall loss function is expressed as follows:
 

L = LS L +λ(LVIS
S S L +LOT H

S S L ) (2)

LS L LVIS
S S L

LOT H
S S L

where  is the supervised learning (SL) loss,  is the SSL loss
for visible images, and  is the SSL loss for the other modality
images. λ is  the  weighting  coefficient  of  the  loss  functions,  whose
influence  on  the  matching  results  is  experimentally  shown  in  the
analysis of the weighting coefficients.

Ivis Ioth
p = (xi,yi) Ivis U(xi,yi)

Ioth

Supervised  learning  is  used  in  the  original  detect-and-describe
methods,  and  also  retained  in  our  solution.  Given  a  corresponding
image pair  and , and U denotes their mapping function. That
is, for a pixel  in ,  is the corresponding pixel of p
in . Then SL loss can be expressed as follows:
 

LS L = L f (Ivis, Ioth,U) (3)
L f f (·)where  denotes  the  original  loss  function  of  a  network  in

detect-and-describe  methods  for  visible  images.  It  is  different  from
each  method,  but  the  inputs  are  fixed  as  a  pair  of  corresponding
images  and  the  ground-truth  correspondences  between  them.  As  a
part of  the  overall  loss,  SL  loss  utilizes  the  labeled  dataset  to  opti-
mize the network.

Obtaining a large number of images with known correspondences
requires a significant cost. In this case, SSL is a reliable and efficient
solution, and we proposed the SSL loss as
 

LVIS
S S L = L f (Ivis, I′vis,Tvis)

LOT H
S S L = L f (Ioth, I′oth,Toth). (4)

I′vis Ivis Tvis
Ivis

f (·)

For visible images,  is obtained from  by transformation ,
so  as  to  form a  corresponding pair  with  as the  input  to  the  net-
work . Also, the same operation is performed on the other modal
images.

Experiments: In order to demonstrate the effectiveness of our pro-
posed  approach,  we  selected  D2-Net  [8]  and  R2D2 [9],  two  classic
detect-and-describe methods for visible images, and two handcrafted
descriptors of scale-invariant feature transform (SIFT) [3] and radia-
tion-variation insensitive feature transform (RIFT) [4] to compare the
performance  of  our  self-supervision  on  these  methods.  To  better
evaluate the  performance  on  cross-modality  images,  we  also  com-
pared  CMM-Net  [11],  which  designed  a  novel  network  for  feature
representations of thermal infrared and visible images.

10−4

10−5 256×
256

192×192

(90◦,180◦,270◦)

[−10◦,10◦]
[1,1.2] [0,0.2]

1)  Implementation details:  All  the  experiments  were  implemented
on  a  computer  with  NVIDIA  RTX 3090 GPU.  As  for  D2-Net,  we
fine-tuned the overall network for 100 epochs instead of fine-tuning
the last  layer of  the dense feature extractor  (conv4_3).  The network
was  optimized  using  Adam  with  a  fixed  learning  rate  of  and
weight  decay  of .  For  each  pair,  we  selected  a  random 

 crop centered around one correspondence with a batch size of 1.
In R2D2, the learning rate is 0.0001, the weight decay is 0.0005 and
the baze size is 2 with the input pairs cropped to . The data
augmentation  is  performed  through  the  random  flipping,  random
rotating  and  random  noise  blurring.  Moreover,  the
image pairs of the two datasets are co-registered with pixels aligned
without  offsets,  so  we  carried  out  random rotating , ran-
dom scaling  and random projection of a ratio .

2)  Experimental  datasets:  The matching of  thermal  infrared (TIR)
and  visible  images  is  a  typical  cross-modality  problem,  so  we  per-
form  our  experiments  on  RoadScene  dataset  [12], which  is  com-
prised  of  221  aligned  thermal  infrared  and  visible  images.  This
dataset was split in a testing dataset with 43 image pairs from differ-
ent  scenes  and  a  training  dataset  from the  remaining  178  pairs.  We
also perform our experiments on a public registered RGB-NIR scene
dataset [13], which consists of 477 pairs in 9 scenes captured in RGB
and near-infrared (NIR). We randomly select 171 pairs for testing (19
per scene) and train on the rest. In addition, we conduct experiments
on  OS  dataset,  which  is  a  high-resolution  dataset  of  co-registered
optical  and  SAR  patch-pairs  [14].  And  we  select  training  set  from
512×512 pairs for training (2011 pairs) and testing set from 512×512
pairs for testing (424 pairs).

3)  Evaluation  metrics  and  comparison  results:  Three  evaluation
metrics,  number  of  correspondences  in  the  extracted  points  (NC),
number  of  correct  matches  (NCM)  and  the  correctly  matched  ratio
(CMR) are used to evaluate the different methods quantitatively. NC
indicates  the  repeatability  of  extracted  interest  points  and  NCM  is
crucial for the image registration. CMR is computed as
 

CMR =
NCM
NC

×100%. (5)

K = 1024 K = 2048
K = 4096

In the testing process, we vary the number of points extracted from
both images, which is denoted as K, and record the evaluation results
on  each  method.  Specifically,  we  set ,  and

. The results obtained are listed in Tables 1−4.
 

Table 1.  Number of Correspondences in the Extracted
Points on the Two Datasets

Method
RoadScene dataset RGB-NIR dataset

K = 1024 K = 2048 K = 4096 K =
1024

K =
2048 K = 4096

SIFT 294 788 1537 322 743 1681

RIFT 443 1046 1295 351 845 1575

CMM-Net 176 195 195 155 438 1146

D2-Net 183 265 265 170 475 1283

R2D2 184 511 1669 448 953 2015

D2-Net+
SSL (ours)

449
(↑145.4%)

1033
(↑289.8%)

1538
(↑480.4%)

223
(↑31.2%)

557
(↑17.3%)

1424
(↑11.0%)

R2D2+SSL
(ours)

243
(↑32.1%)

668
(↑30.7%)

2015
(↑20.7%)

474
(↑5.8%)

1013
(↑6.3%)

2165
(↑7.4%)

 
 

Combining  the  three  evaluation  metrics,  it  can  be  seen  that  on
RoadScene dataset, D2-Net with SSL achieves the best performance,
and R2D2 with SSL ranks second. The SIFT algorithm, performs the
worst of all since it requires texture details that differ across modali-
ties.  It  should  be  specially  noted  that  the  original  R2D2  achieves
fairly  good  results  among  the  compared  methods,  nevertheless,  we
improve it  quite a bit.  This is due to the fact that the original R2D2
algorithm  takes  repeatability  and  reliability  into  account  in  its  loss,
which is not available in D2-Net.  So, with SSL, the performance of
D2-Net  has  been  extremely  boosted.  The  relevant  visualization
results  are  shown  in  the  first  column  of Fig. 2.  As  for  optical  and
SAR images, the R2D2 and D2-Net algorithms are not able to obtain
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correctly matched pairs, and therefore the results of them are not pre-
sented in Table 4.  The multi-modal  descriptor,  RIFT,  performs well
among  the  comparison  algorithms.  Nevertheless,  our  method
achieves  the  best  results  as  shown  in  the  third  column  of Fig. 2
and in Table 4.
 

(a) RoadScene dataset (b) RGB-NIR dataset (c) OS dataset

SIFT

RIFT

CMM-Net

D2-Net

R2D2

D2-Net
+SSL

R2D2
+SSL

 
Fig. 2. Experimental results of S2-Net and the state-of-the-art image match-
ing methods for the three datasets.
 

And on RGB-NIR dataset, since the difference between visible and
thermal infrared images is much more significant than that with near-
infrared images, SSL does not improve the performance of the origi-
nal method as  much as  on the RoadScene dataset.  And it  is  reason-
able that SIFT achieves a good accuracy. However, the performance
of R2D2 with SSL ranks best  above all  methods,  as  depicted in the
middle column of Fig. 2. The guiding effect of self-supervision in the
training  process  is  rather  beneficial  when  learning  modality-invari-
ant feature representations.

Conclusion: In  this  article,  we  propose  S2-Net,  which  introduces
the self-supervised learning in the training learn the modality-invari-
ant  feature  representation.  After  performing  experiments  on  three
datasets,  it  can  be  demonstrated  that  our  strategy  significantly
improves the networks’ capability of feature representation for cross-
modality images, including the detection and description.
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Table 3.  Ratio of Correct Matches on the Two Datasets

Method
RoadScene dataset RGB-NIR dataset

K = 1024 K = 2048 K = 4096 K = 1024 K = 2048 K = 4096

SIFT 3 6 6 141 286 541

RIFT 36 57 66 111 200 298

CMM-Net 29 31 31 36 95 233

D2-Net 12 14 14 90 214 508

R2D2 30 60 157 234 458 825
D2-Net+

SSL (ours)
92

(↑666.7%)
177

(↑1157.1%)
233

(↑1564.3%)
127

(↑41.1%)
272

(↑27.1%)
590

(↑16.1%)
R2D2+

SSL (ours)
50

(↑66.7%)
93

(↑55.0%)
228

(↑45.2%)
248

(↑6.0%)
486

(↑6.1%)
903

(↑9.5%)
 

 

Table 4.  Three Evaluation Metrics on OS Dataset

Method NC NCM CMR (%)
K = 1024 K = 2048 K = 4096 K = 1024 K = 2048 K = 4096 K = 1024 K = 2048 K = 4096

SIFT 150 493 1475 0 0 0 \ \ \
RIFT 220 707 1232 8 13 17 3.52 1.82 1.33

CMM-Net 143 329 374 3 3 3 2.02 1.10 1.05
D2-Net+SSL (ours) 208 634 1728 10 22 37 4.54 3.37 2.12
R2D2+SSL (ours) 81 308 1070 2 6 17 2.86 1.88 1.34
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