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   Dear Editor,

3×3

Infrared imaging, generally, of low quality, plays an important role
in  security  surveillance  and  target  detection.  In  this  letter,  we
improve the quality of infrared images by combining both hardware
and  software.  To  this  end,  an  infrared  light  field  imaging
enhancement  system  is  built  for  the  first  time,  including  a 
infrared  light  field  imaging  device,  a  large-scale  infrared  light  field
dataset  (IRLF-WHU), and a progressive fusion network for infrared
image  enhancement  (IR-PFNet).  The  proposed  algorithm  leverages
rich  angular  views  among  the  infrared  light  field  image  to  explore
and  fuse  auxiliary  information  for  infrared  image  enhancement.
Given an infrared light  field  image,  multiple  views are  first  divided
into  four  groups  according  to  the  angle  and  each  group  contains
parallax  shifts  along  the  same  direction.  As  strong  spatial-angular
correlations  are  existing  in  each  group,  we  customize  a  progressive
pyramid  deformable  fusion  (PPDF)  module  for  intra-group  fusion
without explicit alignment. In the PPDF module, the deformation and
parallax are modeled in a progressive pyramid way. To integrate the
supplementary information from all directions, we further propose a
recurrent  attention fusion (RAF) module,  which constructs  attention
fusion  block  to  learn  the  residual  recurrently  and  provides  several
intermediate  results  for  multi-supervision.  Experiments  on  our
proposed IRLF-WHU dataset demonstrate that IR-PFNet can achieve
state-of-the-art  performance  on  different  degradations,  yielding
satisfying  results.  The  dataset  is  available  at: https://github.com/
wxywhu/IRLF-WHU, and the code is available at: https://github.com/
wxywhu/IR-PFNet.

Infrared  imaging,  which  could  capture  the  thermal  radiation
information  emitted  from the  objects,  is  an  important  technology in
many  fields,  such  as  surveillance  systems,  security  monitoring,  and
military  target  detection  [1]−[3].  In  order  to  improve  the  quality  of
infrared imaging, various methods have been developed for imaging
systems or infrared images. Few methods are dedicated to improving
the  infrared  detectors  [4]−[6],  which  are  usually  expensive  and  not
suitable for wide applications. Other algorithms designed to improve
the  infrared image quality  are  served as  post-processing techniques.
Based on the convolutional neural network (CNN), some approaches
were  proposed  for  single  thermal  image  enhancement  [7],  [8].
Several  methods  also  registered  and  fused  multiple  infrared  images
for quality enhancement [9], [10]. However, the former only relies on
a  single  input,  and  thus,  has  limited  performance.  The  latter
performance depends heavily on image registration, which is itself a
difficult problem. Therefore, it  is desirable to combine software and
hardware techniques to design an efficient system for infrared image

enhancement. To address this issue, we design an infrared light field
imaging equipment and a progressive fusion algorithm to enhance the
quality of infrared image.
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Light  field  imaging  that  records  different  angular  views  in  sub-
aperture images has been developed well in RGB images. The strong
correlations  among  sub-aperture  images  could  provide  abundant
supplementary  information,  which  has  proven  to  be  beneficial  for
super-resolution  (SR)  techniques  [11]−[13].  Due  to  this  advantage,
we design infrared light  field  imaging equipment  composed of  nine
infrared  cameras  arranged  in  a  regular  grid  of .  As  shown  in
Fig. 1, in a one-shot, the sub-aperture images captured by the device
exhibit  sub-pixel  shifts  in  fixed  directions  corresponding  to  the
central image. Thereby, we expect to use rich angular information to
improve the quality of the central view. Based on this equipment, we
construct  an  infrared  light  field  dataset,  including  four  scenes:
building,  people,  car,  and  others.  The  whole  dataset  contains 1132
infrared light field images in a size of  pixels.

Considering the rich angular information existing in infrared light
field  images,  we  custom  a  novel  progressive  fusion  network  for
central infrared image enhancement, termed as IR-PFNet. As shown
in Fig. 2,  we  divide  the  infrared  sub-images  into  four  groups
according to the direction. Each group is fed into the PPDF module
for  intra-group  fusion,  which  avoids  explicit  alignment.  Subsequ-
ently,  the intermediate features from different directions are utilized
to provide auxiliary information for the central infrared image in the
RAF  module.  In  this  way,  our  proposed  IR-PFNet  could  make  full
use of rich angular information to improve the center image quality.
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Fig. 2. The whole network of our proposed IR-PFNet.
 

The main contributions of this letter can be summarized as follows.
1) For the first time, an infrared light field imaging equipment is built
and the infrared light field dataset is constructed, named IRLF-WHU.
2) Without image registration, a novel progressive fusion network is
designed  for  infrared  image  enhancement,  termed  as  IR-PFNet,
which achieves state-of-the-art performance.

LLQ ∈ RU×V×H×W U, V
H,W

Methodology: Given  the  input  low-quality  (LQ)  infrared  light
field  image, ,  where  denote  the  angular
resolution  and  denote  the  width  and  height  of  each  infrared
view,  the  goal  of  our  method  is  to  restore  the  high-quality  (HQ)
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Fig. 1. Infrared  light  field  imaging  equipment.  (a)  The  designed  equipment.
This  device is  composed of  9 infrared cameras arranged in a  regular  grid of
3×3. (b)  The infrared sub-images.  To show differences between sub-images,
we extracted lines horizontally (bottom of sub-images) and vertically (left of
sub-images) along the red lines for visualization.
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ÎHQ
c ILQ

c
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central infrared view  from reference LQ viewpoint  with the
help  of  the  whole  infrared  light  field  image.  Hence,  the  estimated

 is expected to be as close to the ground-truth HQ infrared image
 as possible.  Due  to  the  strictly  equidistant  arrangement  of  the

infrared  cameras  in  the  infrared  light-field  device,  the  sub-infrared
images  exhibit  parallax  in  a  narrow  baseline  along  a  different
direction.  Therefore,  as  illustrated  in Fig. 2,  the  infrared  light  field
image  is  divided  into  four  groups  according  to
relative  angular  position  and each  group contains  three  sub-infrared
images. Therefore, our IR-PFNet adopts four LQ stacks as auxiliary
information to predict the central HQ view
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where θ represents  the  parameters  of  our  method.  Note  that  in  this
letter we focus on improving the quality of the central infrared view
whereas  our  proposed  IR-PFNet  could  deal  with  each  sub-infrared
view because of the flexible network design.

Network  design: As  illustrated  in Fig. 2,  according  to  the
direction,  our  IR-PFNet  groups  the  input  LQ  infrared  light  field
image into four stacks.  Taking one stack containing sub-pixel  shifts
from a  specific  direction  as  input,  the  PPDF module  is  supposed  to
fully  extract  spatial  information and fuse the angular  information to
capture intra-group spatial-parallax correlations. Hence, we employ a
progressive  fusion  structure,  where  the  deep  features  are  gradually
extracted  and  fused.  For  the  angular  information  fusion,  since  the
traditional  regular  convolution  cannot  well  capture  spatial  deforma-
tion and angular dynamics in multiple views, we use spatial-angular
deformable  convolution  to  learn  the  kernel  offset,  avoiding  explicit
alignment  in  angular  information  fusion.  In  specific,  the  spatial-
angular deformable convolution is deployed in a pyramid structure to
model  the  deformation  at  multiple  levels  for  obtaining  the  most
angular-correlated information to the center view. After acquiring the
supplementary  information  from  different  directions,  the  RAF
module  with  attention  fusion  block  is  designed  to  integrate  all
auxiliary information for the central image in a recurrent way, which
benefits  our  task  by  enabling  the  model  to  pay  different  attention
across angles.

1) Progressive pyramid deformable fusion: As shown in Fig. 3(a),
a series of progressive fusion residual  blocks (PFRBs) are deployed
in  the  PPDF  module,  which  is  supposed  to  make  full  extraction  of
intra-group  spatial-parallax  correlations.  After  that,  the  learned
features  from  each  direction  are  merged  by  a  pyramid  deformable
fusion block (PDFB).

3×3

3×N

We  show  the  detailed  structure  of  PFRB  in  the  bottom  left  of
Fig. 3(a). It takes sub-views as input in three paths. Sharing the same
insight  as  [14],  we  first  conduct  two  convolutional  layers  to
extract  self-independent  features  with N maps  from  each  infrared
view. Later, these feature maps are concatenated and merged into one
part,  the  depth  of  which  is .  Then,  we  feed  the  concatenated

1×1

features  into  the  PDFB,  intending  to  fuse  features  that  are  most
angular-correlated to the center view. After that, the fused feature is
further  concatenated  to  all  the  previous  maps  and  we  further  adopt
one  convolutional  layer  followed  by  a  dense  residual  block  to
extract  both  spatial  and  angular  information  for  residual  learning,
respectively.  In  the  PFRB,  we  share  weights  across  paths  for  both
convolutional layers and residual blocks.

Fa 3×N
Ma

In  order  to  fully  fuse  intra-group  views  to  obtain  spatial-angular
correlations, we introduce the PDFB, the detailed structure of which
is  shown  in  the  bottom  right  of Fig. 3(a).  In  this  block,  to  avoid
explicit  alignment,  spatial-angular  deformable  convolution  is
deployed  in  pyramidal  processing  and  cascading  refinement  for
extracting the most angular-correlated information to the center view.
We first introduce deformable convolution [15] tailored in this letter.
Supposing the concatenated features  with the depth of  is the
input, for arbitrary spatial position p,  the merged feature  with N
maps by the deformable operation can be expressed as
 

Ma(p) =
3∑

n=1

K×K∑
k=1

wn,k ·Fa(p+pk +△p(n,p),k), a ∈ {0◦,45◦,90◦,135◦}

(2)
wn,k

pk
K = 3 pk ∈ {(−1,−1), (−1,0), . . . , (0,1), (1,1)}

△pk ∈ R2K2

pn,p
(n,p)

where K is  the  size  of  convolution  kernel,  represents  the
convolutional  filter  and  represents  the  regular  sampling  offsets.
When , .  Specifically, the
learnable  offsets  are  position-specific.  That  is,  the
individual offset  will  be assigned for each convolution window
centered at angular-spatial position . Thus, spatial deformations
as  well  as  angular  dynamics  within  the  concatenated  features  could
be simultaneously modeled.

Ml
a l = 1,2
2 l+1

△Pl
a = {△p} Ml

a

l+1

To cope with complex scenes and occlusion problems, we employ
the spatial-angular deformable convolution in a pyramid way and the
fusing  features  are  cascading  refined  pyramidally.  Specifically,  as
displayed  with  red  dash  lines  in Fig. 3(a),  to  generate  the  merged
feature  at the l-th level, , we use a strided convolution with
the  factor  to  downsample  the  features  into  the  ( )-th  pyramid
level, obtaining three-level pyramids of feature representation. At the
l-th  level,  the  offsets  and  merged  features  are  also
estimated  with  the  upsampled  offsets  and  merged  features  from the
upper ( )-th level, respectively (red dash lines in Fig. 3(a))
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Ml
a = f (Dconv(Fl

a,△Pl
a), (Fl+1

a ) ↑2) (4)
(·) ↑2 2

Dconv
H

in which  represents upsampling at the factor , implemented by
bilinear  interpolation  as  in  [16],  refers  to  the  deformable
convolution  described  in  (2),  denotes  convolutional  layers  and
residual  blocks,  and f is  one  convolutional  layer.  To  reduce
parameters,  we  share  weights  across  three  levels  for  both  convolu-
tional layers and residual blocks.

2)  Recurrent  attention  fusion:  After  obtaining  the  most  spatial-
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Fig. 3. The detailed architecture in our IR-PFNet. (a) PPDF module. This module consists of a series of PFRBs followed by a PDFB; (b) RAF module.
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angular  correlated  features  from  different  directions  by  the  PPDF
module,  we  design  the  RAF  module  to  integrate  all  auxiliary
information  for  the  central  image.  As  depicted  in Fig. 3(b),  in  the
light  of  the  complementarity  of  input  features  from  different
directions, a recurrent structure is adopted in the RAF module to fuse
features  step  by  step.  For  each  step,  the  merged  feature  is  first
processed  by  one  convolutional  layer.  Later,  we  design  the
attention  fusion  block  for  fusing  two  features  from  different
directions.  Then,  the  output  of  attention  fusion  block  is  fed  back  to
itself  in  the  next  step  and  simultaneously  sent  into  one 
convolutional  layer  to  learn  the  residual  information  for  the  HQ
infrared image.

3×3

3×3

Concretely, in the attention fusion block displayed at the bottom of
Fig. 3(b), we expect this attention fusion block could benefit our task
by  enabling  the  model  to  pay  different  attention  across  angles.
Taking  two  angular  features  as  input,  we  adopt  the  convolu-
tional  layer  to  generate  the  2D  feature  map  respectively.  For
producing the attention mask, the Softmax function is utilized on two
maps  along  the  angular  dimension.  Since  angular  attention  is
supposed to work as a guide to efficiently integrate angular features,
we  apply  the  attention  mask  on  the  input  feature  through  element-
wise  multiplication.  Then,  the  weighted  features  are  concatenated
and  sent  into  deep  feature  extracting  blocks  which  consist  of  four
dense residual blocks with two  convolutional layers at the head
and the tail positions.

Loss  function: Since  our  method integrates  auxiliary  information
in a recurrent way during the RAF module demonstrated in Fig. 3(b),
we  adopt  a  multi-supervised  approach  to  train  the  whole  network,
which can be formulated as
 

L = 1
B

B∑
b=1

∑
a
||(ÎHQ

c )a − IHQ
c ||1, a ∈ {0◦,45◦,90◦,135◦} (5)

(ÎHQ
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in which B is the batch size,  is the enhanced central image for
angular  group a and  is  the  ground truth  HQ image.  With  mul-
tiple supervision,  the training difficulty of the network is  alleviated.
We take the final output as the result of quality improvement.

β1 = 0.9 β2 = 0.999
ϵ = 10−8

3×3×32×32
3×10−4

10−5 240K

Experimental  setup: We  train  our  network  through  adaptive
moment  estimation  (ADAM)  optimizer  with , ,
and .  During  training,  we  set  the  batch  size  as  16,  and  the
input  LQ  infrared  light  field  image  is  of  size .  The
learning  rate  is  initialized  as  and  then  further  decreased  to

 gradually.  The  whole  training  process  is  stopped  after 
iterations with an NVIDIA GTX 3090Ti GPU by Pytorch.

Previous  studies  on  image  enhancement  [8],  [13],  [14]  are  rarely
developed for  infrared images.  The lack of  standard and large-scale
infrared  image  datasets  limits  the  development  of  the  field.  In  this
letter,  we  divide  our  proposed  IRLF-WHU  dataset  into  training,
validation  and  testing  sets  according  to Table 1.  For  quantitative
evaluation, the original images are served as ground truth HQ images
and we generate the LQ infrared images array by applying degraded
operations such as reducing details, blurring, and adding noise.

Since  we  pioneer  in  designing  the  infrared  light  field  device,  the
comparative methods only can be either single image enhancement or
light field image enhancement algorithms. Thereby, we compare our
proposed method with five algorithms, including two state-of-the-art
deep single image enhancement methods, i.e., TherISuRNet [8], and
MIRNet  [17],  and  three  current  advanced  deep  light  field  image
enhancement methods, i.e., resLF [13], LF-ATO [12] and DPT [11].
For a fair comparison, these methods are trained from scratch on the
same dataset to achieve their best performance.

7×7

Experiments on different blur degradations: We consider three
kinds  of  blur  widely  existing  in  the  infrared  image,  i.e.,  Gaussian
blur,  disk  blur,  and  motion  blur.  Specifically,  the  Gaussian  blur
kernel is of  size with a width of 0.6 and the radius of the disk
blur is 2.5. For the motion blur, we set the angle to 10 degrees, and
the  motion  displacement  to  10  pixels.  To  produce  LQ  images,  we
first  blur  the  HQ  image  and  use  bicubic  downsampling  and
upsampling  with  a  scale  factor  of  4  to  reduce  details.  Small  white
Gaussian  noise  with  standard  deviation  is  also  added  to  model  real
LQ degradation.

The  quantitative  results  evaluated  on  different  blur  types  are
reported  in Table 2.  As  can  be  observed,  our  proposed  IR-PFNet

achieves  the  best  performance  in  terms  of  average  peak  signal  to
noise ratio (PSNR) and structural similarity (SSIM) for all scenes on
different  blur  degradations.  More  specifically,  our  method  outper-
forms the second-best method by an average of 0.2 dB on the PSNR
value.  We  note  that  our  IR-PFNet  take  angular  information  from
different  directions  into  consideration,  unlike  DPT  [11]  which
utilizes  the  whole  light  field  image  as  input,  thereby  making  full
extraction  of  spatial-angular  correlations.  As  multiple  views  are
grouped  in  resLF  [13]  and  LF-ATO  [12],  the  proposed  IR-PFNet
manages to integrate the angular information in a pyramid way, and
thus further improves the quality of infrared images.
 

Table 2.  Quantitative Results (PSNR/SSIM) on Different Blur Types
Method Building Car People Others

Blur type Gaussian
TherISuRNet 29.89/0.8274 31.75/0.8693 32.54/0.8854 32.06/0.8788

MIRNet 29.95/0.8247 31.90/0.8696 32.49/0.8841 32.06/0.8775
resLF 30.83/0.8503 32.98/0.8882 33.49/0.9000 32.75/0.8887

LF-ATO 31.32/0.8583 33.21/0.8921 33.88/0.9047 33.23/0.8967
DPT 31.40/0.8585 33.36/0.8921 34.00/0.9042 33.33/0.8968

IR-PFNet 31.56/0.8633 33.70/0.8981 34.27/0.9099 33.59/0.9016
Blur type Disk

TherISuRNet 29.73/0.8185 31.43/0.8609 32.11/0.8768 31.63/0.8704
MIRNet 29.89/0.8226 31.85/0.8671 32.37/0.8815 31.86/0.8749
resLF 30.27/0.8349 32.38/0.8755 32.88/0.8880 32.25/0.8774

LF-ATO 30.55/0.8415 32.65/0.8820 32.99/0.8937 32.43/0.8852
DPT 30.67/0.8413 32.83/0.8817 33.28/0.8936 32.74/0.8749

IR-PFNet 30.94/0.8466 33.01/0.8861 33.51/0.8983 32.92/0.8906
Blur type Motion

TherISuRNet 28.37/0.7834 30.68/0.8447 31.05/0.8565 30.69/0.8478
MIRNet 28.78/0.7910 30.98/0.8496 31.29/0.8612 30.92/0.8533
resLF 28.73/0.7922 31.32/0.8558 31.41/0.8643 30.87/0.8506

LF-ATO 29.43/0.8036 31.83/0.8652 32.02/0.8744 31.60/0.8639
DPT 29.68/0.8172 31.99/0.8666 32.21/0.8761 31.79/0.8670

IR-PFNet 29.88/0.8221 32.27/0.8724 32.48/0.8816 32.01/0.8720
 
 

Fig. 4 provides the qualitative results  on three test  images blurred
by different  degradations.  Although image quality  enhancement  can
decently reduce those artifacts,  the resulting images usually become
over-smoothed and lack details.  It  can be seen that  compared to the
single image enhancement methods (TherISuRNet and MIRNet), the
light  field  image enhancement  methods could produce better  results
with the help of auxiliary views. All in all, our IR-PFNet can restore
sharper  structural  details  and  be  more  robust  to  blur  degradations
because of better exploration of spatial-angular information.

5×5

Experiments  on  different  noise  degradations: We  also  conduct
experiments on the degradation of different types of noise including
Salt&Pepper  noise  with  density  0.06,  additive Gaussian white  noise
with zero mean and standard deviation 10, Poisson noise whose level
is  determined  by  the  brightness  of  the  input  image.  After  adding
noise,  we  use  bicubic  downsampling  and  upsampling  with  a  scale
factor of 4 to reduce details, and blur HQ images through a Gaussian
kernel with  size and 0.5 width to produce the LQ images.

Table 3 reports PSNR and SSIM results for different types of noise
on  the  test  set.  As  demonstrated  in Table 3,  our  model  IR-PFNet  is
superior  in  all  scenes  degraded  by  different  types  of  noise.  Due  to
progressive pyramid integration and recurrent attention fusion in our

 

Table 1.  The Dividing Way of The Proposed IRLF-WHU Dataset
Class Training Validation Testing

Building 89 10 10
People 425 50 50

Car 257 32 32
Others 147 15 15

Total number 918 107 107
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proposed  model,  the  IR-PFNet  can  fully  exploit  spatial-temporal
information, thereby leading to better enhancement results.

Fig. 5 shows  the  enhanced  images  of  all  comparing  methods  for
three  different  types  of  noise.  From the  visual  enhancement  results,
we  can  see  that  most  other  methods  generate  blurry  or  misleading
structures.  In  contrast,  our  method  is  able  to  reconstruct  clear  and
right  textures  closer  to  the  ground  truth  ones,  which  demonstrates
higher reconstruction quality.

3×3

Conclusion: In  this  work,  we  improve  the  quality  of  infrared
image  by  our  proposed  infrared  light  field  imaging  enhancement
system. We first build a  infrared light field imaging equipment
and a large-scale infrared light  field dataset,  namely IRLF-WHU, is
collected.  Relying  on  this  dataset,  we  tailor  the  PFNet  to  exploit
spatial-angular  correlations  and  integrate  the  auxiliary  information
for the final result. Specifically, spatial-angular correlations are fully
fused  by  progressive  fusion  residual  block  coupling  with  pyramid
deformable  convolution  to  avoid  registration.  The  attention  fusion
module is deployed in a recurrent manner for feature integration from
all directions. Based on two fusion modules, our proposed PFNet can
achieve better results compared with state-of-the-art approaches.
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Table 3.  Quantitative Results (PSNR/SSIM) on Different Noise Types
Method Building Car People Others

Noise type Gaussian
TherISuRNet 29.71/0.8168 31.45/0.8595 32.16/0.8753 31.72/0.8693

MIRNet 29.98/0.8223 31.86/0.8661 32.40/0.8803 31.97/0.8740
resLF 30.58/0.8410 32.64/0.8822 33.18/0.8945 32.49/0.8831

LF-ATO 30.93/0.8436 32.78/0.8833 33.35/0.8961 32.79/0.8872
DPT 31.05/0.8472 32.90/0.8843 33.48/0.8965 32.91/0.8889

IR-PFNet 31.30/0.8547 33.33/0.8927 33.88/0.9043 33.30/0.8969
Noise type Salt & Pepper

TherISuRNet 30.79/0.8497 32.69/0.8893 33.55/0.9034 32.91/0.8970
MIRNet 30.98/0.8526 33.12/0.8950 33.79/0.9072 33.16/0.9003
resLF 31.79/0.8757 33.99/0.9088 34.60/0.9186 33.75/0.9081

LF-ATO 32.04/0.8773 34.00/0.9086 34.70/0.9193 33.97/0.9110
DPT 32.32/0.8825 34.36/0.9120 35.09/0.9224 34.34/0.9147

IR-PFNet 32.61/0.8890 34.86/0.9195 35.52/0.9283 34.70/0.9202
Noise type Poisson

TherISuRNet 29.65/0.8156 31.38/0.8583 32.08/0.8751 31.66/0.8688
MIRNet 29.97/0.8218 31.79/0.8650 32.37/0.8803 31.96/0.8741
resLF 30.59/0.8408 32.62/0.8823 33.18/0.8951 32.53/0.8841

LF-ATO 30.76/0.8413 32.65/0.8820 33.23/0.8952 32.71/0.8863
DPT 30.93/0.8468 32.82/0.8836 33.41/0.8962 32.90/0.8892

IR-PFNet 31.13/0.8533 33.28/0.8916 33.78/0.9036 33.22/0.8959
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Fig. 4. Qualitative results of three blur types.
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Fig. 5. Results of three noise types generated by competing methods.
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