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An Exploration of the Role of Principal Inertia
Components in Information Theory

Flavio P. Calmon, Mayank Varia, Muriel Médard

Abstract

The principal inertia components of the joint distributioh two random variablesX and Y are inherently
connected to how an observation Bf is statistically related to a hidden variablé. In this paper, we explore
this connection within an information theoretic framewovke show that, under certain symmetry conditions, the
principal inertia components play an important role inrasting one-bit functions o', namely f(X), given an
observation ofY. In particular, the principal inertia components bear aerjpretation as filter coefficients in the
linear transformation o xy x iNto ps(x)y. This interpretation naturally leads to the conjecturd tha mutual
information betweenf(X) andY is maximized when all the principal inertia components hageal value. We
also study the role of the principal inertia components i Bharkov chainB — X — Y — B, where B and B
are binary random variables. We illustrate our results fiar $etting whereX andY are binary strings and’ is
the result of sending through an additive noise binary channel.

. INTRODUCTION

Let X andY be two discrete random variables with finite supptirand ), respectively.X andY are related
through a conditional distribution (channel), denotediyyx. For eachz € X, py x(-|z) will be a vector on
the |Y|-dimensional simplex, and the position of these vectorstendimplex will determine the nature of the
relationship betweeX andY'. If pyy is fixed, what can be learned abalit given an observation of’, or the
degree of accuracy of what can be inferred ab&ut posteriorj will then depend on the marginal distribution
px. The valuepx (z), in turn, ponderates the corresponding vegtpry (/=) akin to a mass. As a simple example,
if |X| = |Y| and the vectorgy,x(-|z) are located on distinct corners of the simplex, théncan be perfectly
learned fromY". As another example, assume that the vectgis (-|z) can be grouped into two clusters located
near opposite corners of the simplex. If the sum of the maissksed bypy for each cluster is approximately
1/2, then one may expect to reliably infer on the order of 1 urdddsit of X from an observation of".

The above discussion naturally leads to considering theofisechniques borrowed from classical mechanics.
For a given inertial frame of reference, the mechanical erigs of a collection of distributed point masses can be
characterized by the moments of inertia of the system. Theembs of inertia measure how the weight of the point
masses is distributed around the center of mass. An anaagetric exists for the distribution of the vectors x
and massegy in the simplex, and it is the subject of study of a branch ofligdpstatistics called¢orrespondence
analysis([1], [2]). In correspondence analysis, the joint disttibn px y is decomposed in terms of thpincipal
inertia componentswhich, in some sense, are analogous to the moments ofaradré collection of point masses.
In mathematical probability, the study of principal inartomponents dates back to Hirschfeld [3], Gebelein [4],
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Sarmanov|[5] and Rényi [6], and similar analysis have atwumently appeared in the information theory and
applied probability literature. We present the formal diéfin of principal inertia components and a short review
of the relevant literature in the next section

The distribution of the vectorpy|x in the simplex or, equivalently, the principal inertia coonents of the
joint distribution of X andY’, is inherently connected to how an observationYofs statically related taX. In
this paper, we explore this connection within an informmatibeoretic framework. We show that, under certain
assumptions, the principal inertia components play an itapb part in estimating a one-bit function &f, namely
f(X) where f : X — {0,1}, given an observation of: they can be understood as the filter coefficients in
the linear transformation of(xy x into pyx)y. Alternatively, the principal inertia components can bear
interpretation as noise, in particular wh&handY are binary strings. We also show that maximizing the priakip
inertia components is equivalent to maximizing the firstesrterm of the Taylor series expansion of certain convex
measures of information betwegiX) andY. We conjecture that, for symmetric distributions ¥fandY and a
given upper bound on the value of the largest principal iaedomponent/(f(X);Y) is maximized when all the
principal inertia components have the same value as thedamincipal inertia component. This is equivalent to
Y being the result of passing through ag-ary symmetric channel. This conjecture, if proven, woulgply that
the conjecture made by Kumar and Courtade_in [7].

Finally, we study the Markov chai® — X — Y — B, where B and B are binary random variables, and
the role of the principal inertia components in charactegzhe relation betwee® and B. We show that that
this relation is linked to solving a non-linear maximizatiproblem, which, in turn, can be solved wheénis an
unbiased estimate @, the joint distribution ofX andY is symmetric andr{B = B = 0} > E [B]%. We illustrate
this result for the setting whet¥ is a binary string and” is the result of sending through a memoryless binary
symmetric channel. We note that this is a similar settinghto dne considered by Anantharanal. in [8].

The rest of the paper is organized as follows. Sediibn |l grssthe notation and definitions used in this paper,
and discusses some of the related literature. Se€fion tibdnces the notion of conforming distributions and
ancillary results. Section_ IV presents results concertireggrole of the principal inertia components in inferring
one-bit functions ofX from an observation ot”, as well as the linear transformation pf into py in certain
symmetric settings. We argue that, in such settings, thecipal inertia components can be viewed as filter
coefficients in a linear transformation. In particular, ués for binary channels with additive noise are derived
using techniques inspired by Fourier analysis of Boolearctions. Furthermore, SectianllV also introduces a
conjecture that encompasses the one made by Kumar and @®untg7]. Finally, Sectio V provides further
evidence for this conjecture by investigating the MarkoaiohB — X — Y — B where B and B are binary
random variables.

II. PRINCIPAL INERTIA COMPONENTS
A. Notation

We denote matrices by bold capitalized letters (Ay.and vectors by bold lower case letters (exd. Thei-th
component of a vectox is denoted byx;. Random variables are denoted by upper-case letters Xeand Y).
We define[n] £ {1,...,n}.

Throughout the text we assume th¥tandY are discrete random variables with finite support sétand ).
Unless otherwise specified, we let, without loss of gentgrak’ = [m] and) = [n]. The joint distribution matrix
of P is anm x n matrix with (4, j)-th entry equal taox y (i, 7). We denote bypx (respectively,py) the vector

we encourage the readers that are unfamiliar with the tapikip ahead and read Sectioh Il and then return to this inttich.



with i-th entry equal topx (i) (resp.py (7)). Dx = diag (px) and Dy = diag (py) are matrices with diagonal
entries equal tpx andpy, respectively, and all other entries equal to 0. The mdjxx € R™*" denotes the
matrix with (7, j)-th entry equal tgy|x (jli). Note thatP = Dx Py x.
For a given joint distribution matriXP, the set of all vectors contained in the unit cubeRA that satisfy
|Px|l; = a is given by
C"(a,P) = {x € R"|0 < x; < 1,||Px||; = a}. (1)

The set of allm x n probability distribution matrices is given g, .

Foraz™ € {—1,1}" andS C [n], xs(z™) £ [[;cs i (We considerys(z) = 1). Fory™ € {—1,1}", a™ = 2" ®y"
is the vector resulting from the entrywise product:éf andy™, i.e. a; = z;y;, i € [n].

Given two probability distributiongx and gx and f(¢) a smooth convex function defined for> 0 with
f(1) =0, the f-divergence is defined as! [9]

Dy(oxllax) 2 Y axtonf (2. @
The f-information is given by
I7(X;Y) £ Dg(px.y|lpxpy)- ©)

When f(z) = zlog(z), thenlf(X;Y) = I(X;Y). A study of information metrics related té-information was
given in [10] in the context of channel coding converses.

B. Principal Inertia Components and Decomposing the Joiistribution Matrix

We briefly define in this section thgrincipal inertia decompositiof the joint distribution matrixP. The term
“principal inertia” is borrowed from the correspondencealgsis literature[[ll]. The study of the principal inertia
components of the joint distribution of two random variabtiates back to Hirshfield![3], Gebelein [4], Sarmanov
[5] and Rényi[[6], having appeared in the work of Witsenhaugl1], Ahlswede and Gacs [12] and, more recently,
Ananthararret al. [13], Polyanskiy[[14] and Calmoat al.[15], among others. For an overview, we refer the reader
to [13], [15].

Definition 1. We call the singular value decompositimh;(mPD;I/2 = UX VT the principal inertia decompo-
sition of X andY, whereX is a diagonal matrix withliag (3) = (1,01,...,04) andd = min(m,n) — 1. The
valueso?, i = 1,...,d, are called theprincipal inertia componentsf X andY. In particularp,,(X;Y) = o1,

wherep,,(X;Y") denotes the maximal correlation coefficientXfandY. The maximal correlation coefficient, in
turn, is given by

pm(X;Y) £ sup {E [f(X)g(V) [E[f(X)] =E[g(Y)] = 0,E [f(X)?] = E[g(X)*] =1}

The valuesry, . .., 0,4 in the previous definition are the spectrum of the conditienpectation operatdfl f)(z)
E[f(Y)|X = z], wheref : Y — R [6]. Indeed, the spectrum @f and the principal inertia components are entirely
equivalent whenX andY have finite support sets. Nevertheless, the reader shotddmett the analysis based on the
conditional expectation operator lends itself to more galnsettings, including random variables with continuous
support. We do not pursue this matter further here, sincefaus is on discrete random variables with finite
support.

The principal inertia components satisfy the data proogssiequality (see, for example, [14], |15], [16]): if
X —Y — Z ando; are the principal inertia components &f andY andg; are the principal inertia components
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of X and Z, thenYF | 5, < S°% | 42 for all k. Furthermore, for a fixed marginal distributigny, S, 07 is

(2

convex inpy|x. Note the joint distribution matri®P as can be written as

P - D/’UsVTD}/%. 4)

I1l. CONFORMING DISTRIBUTIONS

In this paper we shall recurrently use probability disttibn matrices that are symmetric and positive-semidefinite
This motivates the following definition.

Definition 2. A joint distribution px y is said to beconformingif the corresponding matri® satisfiesP = P7
andP is positive-semidefinite.

Remark 1. If X andY have a conforming joint distribution, then they have the samarginal distribution.
ConsequentlyD £ Dy = Dy, andP = DY/2UXUTDY2,

Symmetric channeﬁ%re closely related to conforming probability distributo We shall illustrate this relation
in the next lemma and in SectignlIV.

Lemma 1. If P is conforming, then the corresponding conditional digitibn matrix Py x is positive semi-
definite. Furthermore, for any symmetric chanigl y = P%X, there is an input distributiorp x (namely, the
uniform distribution) such that the principal inertia compents ofP = D xPy | x correspond to the square of the
eigenvalues oPy x. In this case, ifPy|x is also positive-semidefinite, théhis conforming.

Proof: Let P be conforming and¥ = ) = [m]. ThenPy y = D-Y/2USU'DY2 = Q2Q~!, where
Q = D~!/2U. It follows that diag (X) are the eigenvalues d?y|x, and, consequentf?y x is positive semi-
definite.

Now let Py x = P;*S'X = UAUT. The entries ofA here are the eigenvalues by x and not necessarily
positive. SincePy|x is symmetric, it is also doubly stochastic, and foruniformly distributedY” is also uniformly
distributed. Thereforep is symmetric, and® = UAU7” /m. It follows directly that the principal inertia components
of P are exactly the diagonal entries Af, and if Py x is positive-semidefinite theR is conforming. |

Theg-ary symmetric channel, defined below, is of particularrestto some of the results derived in the following

sections.

Definition 3. The g-ary symmetric channel with crossover probabikt 1 — ¢!, also denoted a, ¢)-SC, is
defined as the channel with inpat and output” whereX =) = [¢] and

l—e fz=y
pY|X(y\95) = . )
T if ©#y.
Let X andY have a conforming joint distribution matrix with” = ) = [¢] and principal inertia components
o?,...,0%. The following lemma shows that conformif® can be transformed into the joint distribution of-ary
symmetric channel with input distributiopx by settingo? = 03 = --- = o2, i.e. making all principal inertia

components equal to the largest one.

Lemma 2. Let P be a conforming joint distribution matrix ok and Y, with X and Y uniformly distributed,
X=Y=|[q¢,P=q¢'USU” and X = diag (1,01, ...,04). For & = diag(1,01,...,01), let X and Y have

We say that a channel is symmetricAf = Y = [m] andpy | x (i|j) = pyx (j|i) Vi,j € [m].



joint distribution P = ¢~ 'USU" . Then,Y is the result of passing through a(e, ¢)-SC, with
(¢ — 1)1 — pm(X;Y))

€= : 5)
q
Proof: The first column ofU is p%z and, sinceX is uniformly distributed,pﬁ(/2 = ¢~'/21. Therefore
P—¢lUusu’
:q_1011+q_2(1—0'1)11T. (6)

ConsequentlyP has diagonal entries equal td + (¢ — 1)oy)/q* and all other entries equal td — ;)/¢%. The
result follows by noting that; = p,,,(X;Y). [ |

Remark 2. For X, Y andY given in the previous lemma, a natural question that arsegetherY is a degraded
version of Y, ie. X - Y — Y. Unfortunately, this isnot true in general, since the matrigE-1xUT does
not necessarily contain only positive entries, althougis iloubly-stochastic. However, since the principal ireerti
components ofX andY upper bound the principal inertia componentsXdfandY’, it is natural to expect that, at
least in some sensévf, is more informative abouX thanY . This intuition is indeed correct for certain estimation
problems where a one-bit function &f is to be inferred from a single observatignor Y, and will be investigated
in the next section.

IV. ONE-BIT FUNCTIONS AND CHANNEL TRANSFORMATIONS

Let B - X — Y, where B is a binary random variable. Whek and Y have a conforming probability
distribution, the principal inertia components 8f andY have a particularly interesting interpretation: they can b
understood as the filter coefficients in the linear transédiom of pp| x into pp)y. In order to see why this is the
case, consider the joint distribution & andY’, denoted here b{), given by

Q=I[f 1-f]"P=[f 1-f]"PyyDy =[g 1-g/"Dy, (7)

wheref € R™ andg € R" are column-vectors with; = pp x(0]i) andg; = ppy(0j). In particular, if B is a
deterministic function ofX, f € {0,1}™.

If P is conforming and¥ =) = [m], thenP = D/2UXU”D!/?, whereD = Dy = Dy. AssumingD fixed,
the joint distributionQ is entirely specified by the linear transformationfointo g. DenotingT £ UTD!/2, this
transformation is done in three steps:

1) (Linear transform¥ £ Tf,

2) (Filter) g £ >f, where the diagonal aE? are the principal inertia components &f andY’,

3) (Inverse transformg = T~ 'g.

Note thatf, =g, = 1 — E [B] andg = Tg. Consequently, the principal inertia coefficientsXfandY bear an
interpretation as the filter coefficients in the linear tfan®ation of pp| x (0[-) into ppy-(0]-).

A similar interpretation can be made for symmetric channelerePy |y = P%X = UAUT and Py x acts
as the matrix of the linear transformation pfy into py. Note thatpy = Py xpx, and, consequenthypx is
transformed intgpy in the same three steps as before:

1) (Linear transformpy = UTpy,

2) (Filter) py = Apx, where the diagonal oA? are the principal inertia components &f and Y in the

particular case wheX is uniformly distributed (Lemmall),

3) (Inverse transformpy = Upy.



From this perspective, the vectar= UA1m~'/? can be understood as a proxy for the “noise effect” of the
channel. Note tha} _, z; = 1. However, the entries of are not necessarily positive, amdnight not be ade facto

probability distribution.
We now illustrate these ideas by investigating binary cletswwith additive noise in the next section, whére
will correspond to the well-known Walsh-Hadamard transfanatrix.

A. Example: Binary Additive Noise Channels

In this example, lett™, Y™ C {—1,1}" be the support sets of* andY™, respectively. We define two sets of
channels that transfornX™ into Y. In each set definition, we assume the conditionspipr x~ to be a valid
probability distribution (i.e. non-negativity and unitrajl

Definition 4. The set ofparity-changing channelsf block-lengthn, denoted byA,,, is defined as:

An 2 {pyapxn | Y8 C [n), Fes € [-1,1] SLE [xs(Y™)|X"] = esxs(X™)} . ®)
The set of allbinary additive noise channels given by

Bn & {pynx» | 32" st.Y" = X" ® Z", supgz") C {-1,1}", 2" L X"}.

The definition of parity-changing channels is inspired kgutes from the literature on Fourier analysis of Boolean
functions. For an overview of the topic, we refer the readethie survey[[17]. The set of binary additive noise
channels, in turn, is widely used in the information theatgrature. The following theorem shows that both
characterizations are equivalent.

Theorem 1. A, = B,,.
Proof: Let Y = X™ @ Z™ for someZ" distributed ove{—1,1}" and independent aK”. Thus
Exs(Y")|X"] =E[xs(Z" & X") | X"]
= Exs(X")xs(2") | X"
= xs(X")E [xs(2")],

where the last equality follows from the assumption thdt L Z". By letting cs = E [xs(Z")], it follows that
py~ x~ € An and, consequentlyg,, C A,,.
Now let y,, be fixed andy,~ : {—1,1}" — {0,1} be given by
L a"=y",

Syn (z") = .
0, otherwise.

Since the functiord,» has Boolean inputs, it can be expressed in terms of its Foexigansion([17, Prop. 1.1] as

5@y = 3 dsvs(a®).

SCln]



Now let py . x» € A,. Observe thapy. x-(y"|z") = E[d,» (Y") | X" = 2"] and, forz" € {-1,1}",

Py xn (Y @ 22" @ 2") = E[dyng.n (V") | X" = 2" & 2"]
=E[0(Y"®2") | X" =2" @ 2"]

=E Z CYSXS(Y”EBZ'”) | X" =2" @ 2"

| SC[n]

=E | Y dsxs(Y")xs(z") | X" =a" & 2"
| SCln]
S esdsxs(a” @ Mxs(=")

5Cln]

= Z CSC/[SXS(wn)

SCln]

b -~
Y| dsxs(vmxm ="
5]

=E[5,(Y") | X" = 2"]
= Pyn|x~ (y"[=").

Equalities (a) and (b) follow from the definition of A,. By defining the distribution ofZ" as pz.(:") £
pyn‘Xn(z"|1"), where1™ is the vector with all entries equal to 1, it follows that = X" ¢ Y", Z" I X"
andpyn|x» C Bp.
[ |
The previous theorem suggests that there is a correspomtleneeen the coefficients in (8) and the distribution
of the additive noiseZ™ in the definition of3,,. The next result shows that this is indeed the case and, \ifen
is uniformly distributed, the coefficientg correspond to the principal inertia components betw&énand Y.

Theorem 2. Let pyw x» € By, and X" ~ pxn. ThenP x» y» = D x~Ho»AHj., whereH; is thel x [ normalized
Hadamard matrix (i.eH? = I). Furthermore, forZ" ~ pz., diag (A) = 2"/2H,.pz-, and the diagonal entries
of A are equal tocs in (8). Finally, if X is uniformly distributed, them? are the principal inertia components of
X" andY™.

Proof: Let py» x~» € A, be given. From Theoref 1 and the definition.4f, it follows that xs(Y™) is a
right eigenvector opy-» x» with corresponding eigenvalus. Sincexs(Y™)2~"/2 corresponds to a row dfy»
for eachS (due to the Kronecker product construction of the Hadamaattin) andH2, = I, thenPy. y» =
D x»Hsy.AHs-.. Finally, note thalpg = 27/21TAH,.. From Lemmd1L, it follows tha(tfg are the principal inertia
components ofX™ andY™ if X™ is uniformly distributed. |

Remark 3. Theorem 2 indicates that one possible method for estimdtiegdistribution of the additive binary
noise Z" is to estimate its effect on the parity bits &f* andY™. In this case, we are estimating the coefficients
cs of the Walsh-Hadamard transform pf.. This approach was studied by Raginskyal. in [18].

Theorem 2 illustrates the filtering role of the principal e components, discussed in the beginning of this
section. If X™ is uniform, and using the same notation as[ih (7), then théovexf conditional probabilities is
transformed into the vector @af posterioriprobabilitiesg by: (i) taking the Hadamard transform 6f (ii) filtering



the transformed vector according to the coefficietds whereS € [n], and (iii) taking the inverse Hadamard
transform. The same rationale applies to the transformaifgp y into py in binary additive channels.

B. Quantifying the Information of a Boolean Function of timput of a Noisy Channel

We now investigate the connection between the principatimeomponents ang-information in the context
of one-bit functions ofX. Recall from the discussion in the beginning of this secaon, in particular, equation
(@), that for a binaryB and B — X — Y, the distribution ofB andY is entirely specified by the transformation
of f into g, wheref andg are vectors with entries equal tg; x (0|-) andppy (0-), respectively.

ForE [B] = 1 — a, the f-information betweer3 andY is given b

[;(B;Y)=E [af (g%) (1—a)f (l_gyﬂ .

1—a

For0 < r,s <1, we can expand (%) around 1 as

Denoting

A1 —1)k
cx(@) = g + (1(_ a;k—l’

the f-information can then be expressed as
O (1)eg(a
I(B;Y) =) %E [(gy - a)’“] : 9)
k=2

Similarly to [9, Chapter 4], for a fixe® [B] = 1 — a, maximizing the principal inertia components betwe€n
andY will always maximize the first term in the expansian (9). Te sehy this is the case, observe that

E|(gy — )| = (g )" Dy(g—a)

— g’ Dyg—a’
— "D P US?UTDY%f — o2, (10)

For a fixeda and anyf such thatf”1 = a, (I0) is non-decreasing in the diagonal entriesSI3f which, in turn,
are exactly the principal inertia componentsXfandY . Equivalently, [ID) is non-decreasing in tyé-divergence
betweenpx y andpxpy.

However, we do note that increasing the principal inerti@ponentsloes notincrease the-information between
B andY in general. Indeed, for a fixet, V and marginal distributions oK andY’, increasing the principal
inertia components might not even lead to a valid probgbdistribution matrixP.

Nevertheless, ifP is conforming andX andY are uniformly distributed ovefg|, as shown in Lemmdl2),
by increasing the principal inertia components we can dedimew random variabl&” that results from sending
X through a(e, ¢)-SC, wheree is given in [3). In this case, th¢-information betweenB andY has a simple
expression wherB is a function ofX.

*Note that here we assume tht= [n], so there is no ambiguity in indexingsy (0]Y) by gy



Lemma 3. Let B — X — Y, whereB = h(X) for someh : [¢q] — {0,1}, E[B] = 1 — a whereag is an integer,
X is uniformly distributed injg] and Y is the result of passing( through a(e, ¢)-SC withe < (¢ — 1)/¢. Then

If(B;f/) =a’f (1+o1c)+2a(l —a)f (1 —o1)+ (1 —a)?f (1+ ch_l) (11)

whereo; = p,(X;Y) =1—eq(¢—1)"" andc £ (1 —a)a™". In particular, for f(z) = zlogz, thenl;(X;Y) =
I(X;Y), and foro; =1 — 26

I(B;Y) = hy(a) — aHy (26(1 — a)) — (1 — a)Hy(26a) (12)

<1— Hy(9), (13)

A

where Hy(z) = —zlog(z) — (1 — x)log(1 — x) is the binary entropy function.

Proof: Since B is a deterministic function o andagq is an integerf is a vector withaq entries equal to 1
and(1 — a)q entries equal to 0. It follows froni|6) that

1B:T) =13 as <(1—01)aa+fi01> o <1 —a —al)a—fiai>

13 1—a

:a2f <1 + o1

1—a

>—|—2a(1—a)f(1—0'1)—|—(1—a)2f <1+allfa>.

Letting f(x) = zlog z, (12) follows immediately. Sincé (12) is concavedrand symmetric around = 1/2, it is
maximized ata = 1/2, resulting in [(IB). [ |

C. On the “Most Informative Bit” Conjecture

We now return to channels with additive binary noise, anedyiz Section TV-A. LetX™ be a uniformly distributed
binary string of lengttn (X = {—1,1}), andY™ the result of passing™ through a memoryless binary symmetric
channel with crossover probability < 1/2. Kumar and Courtade conjectured [7] that for all bind#yand B —
X" = Y™ we have

I(B;Y™) <1— Hy(5). (conjecture) (14)

It is sufficient to conside a function of X", denoted byB = h(X"), h: {—1,1}" — {0,1}, and we make this
assumption henceforth.

From the discussion in Section TMA, for the memoryless bireymmetric channet™ = X @ Z", where Z"
is an i.i.d. string withPr{Z;, = 1} =1 — ¢, and anyS € [n],

E[xs(Y")|X"] = xs(X") (Pr{xs(Z") =1} — Pr{xs(Z") = —1})
= xs(X") 2Pr{xs(Z") =1} - 1)
= Xs(X™)(1 —26)51,

It follows directly thatcs = (1 — 26)ISI for all S C [n]. Consequently, from Theoref 2, the principal inertia
components ofX™ and Y are of the form(1 — 26)S| for someS C [n]. Observe that the principal inertia
components act as a low pass filter on the vector of conditiprudabilitiesf given in ().

Can the noise distribution be modified so that the principaltia components act as an all-pass filter? More
specifically, what happens whafl* = X" @& W", whereW" is such that the principal inertia components between
X" andY™ satisfyo; = 1 — 26? Then, from Lemm&l2y™ is the result of sending™ through a(e, 2™)-SC with
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e = 26(1 — 27™). Therefore, from[(13),
I(B;Y™) < 1— Hy().

For any functionh : {—1,1}" — {0,1} such thatB = h(X"), from standard results in Fourier analysis of
Boolean functions [17, Prop. 1.1}(X™) can be expanded as

WX") =" hsxs(X™),
SCln]

The value of B is uniquely determined by the action &f on xs(X™). Consequently, for a fixed functioh,
one could expect that™ should be more informative about than Y™, since the parity bits¢s(X"™) are more
reliably estimated front’” than fromY™. Indeed, the memoryless binary symmetric channel attesyat(X")
exponentially in|S|, acting (as argued previously) as a low-pass filter. In &fditf one could prove that for any
fixed h the inequalityl (B;Y") < I(B;ff") holds, then[(14) would be proven true. This motivates thiofohg
conjecture.

Conjecture 1. For all h: {-1,1}" — {0,1} and B = h(X™)
I(B;Y™) < I(B;Y"™).

We note that Conjectulf€ 1 is not true in generaBifis not a deterministic function ak™. In the next section,
we provide further evidence for this conjecture by invesiigg information metrics betweel and an estimat®
derived fromY™.

V. ONE-BIT ESTIMATORS

Let B— X — Y — B, where B and B are binary random variables witfi[B] = 1 — a andE[B] = 1 — b.
We denote byx € R™ andy € R" the column vectors with entries; = pg|x(0[i) andy; = pg‘y(OU). The joint
distribution matrix of B and B is given by

z a—z
P,s= ; 15
B.B <b—z 1—a—b+z> (15)

wherez = x"Py = Pr{B = B = 0}. For fixed values ofi andb, the joint distribution ofB and B only depends
on z.

Let f : Poxo — R, and, with a slight abuse of notation, we also denptes a function of the entries of tteex 2
matrix asf(a, b, z). If f is convex inz for a fixeda andb, then f is maximized at one of the extreme values:zof
Examples of such functiong include mutual information and expected error probabilityerefore, characterizing
the maximum and minimum values ofis equivalent to characterizing the maximum valuefabver all possible
mappingsX — B andY — B. This leads to the following definition.

Definition 5. For a fixedP, the minimum and maximum values efover all possible mappingX — B and
Y — B whereE [B] =1 — a andE[B] = 1 — b is defined as

z(a,b,P)2 min x'Py and z¥(a,b,P)£ max x!Py,
a ) x€C™ (a,PT) Y ul ) x€C™ (a,P7T) Y
yeC(b,P) yec (b,P)
respectively, and’”(a, P) is defined in[(L).
The next lemma provides a simple upper-bound:ff:, b, P) in terms of the largest principal inertia components
or, equivalently, the maximal correlation betwe&nandY .



11

Lemma 4. 2% (a,b,P) < ab+ pp(X;Y)v/a(l — a)b(1 —b).
Remark 4. An analogous result was derived by Witsenhausen [11, ThnfoR]bounding the probability of
agreement of a common bit derived from two correlated saurce

Proof: Letx € C™(a, PT) andy < C"(b, P). Then, forP decomposed as ifl(4) am&t- = diag (0,071, ...,04),

x"Py = ab+ x"DY’ULV'D}/%y
—ab+x'%7y, (16)

wherex £ UTDY/*x andy £ VTD{/%y. Sincex; = |[%[l2 = a andy; = |[¥|l2 = b, then

d+1
T—¢ — o
X y = 0;—1X;Yi
=2

<o/ (I3 —53) (1513 - 92)
= o014/ (a —a?)(b—b2).
The result follows by noting that; = p,,,(X;Y). n

We will focus in the rest of this section on functions and esponding estimators that are (i) unbiased=(b)
and (ii) satisfyz = Pr{B = B = 0} > a2. The set of all such mappings is given by

H(a,P) & {(x,y) [ x € C"(a,PT),y € C"(a,P),x" Py > a’}.
The next results provide upper and lower bounds:zfdor the mappings ir (a, P).

Lemma 5. Let0 < a < 1/2 and P be fixed. For anyx,y) € H(a,P)
a? <2< a® + p(X;Y)a(l — a), 17)

wherez = x” Py.

Proof: The lower bound for: follows directly from the definition oft{(a, P), and the upper bound follows

from Lemmal4. [
The previous lemma allows us to provide an upper bound owentappings it (a, P) for the f-information
betweenB and B when I} is non-negative.

Theorem 3. For any non-negativd; and fixeda and P,

sup If(B;B) Sa2f(1+alc)+2a(1—a)f(1—01)+(1—a)2f (1—|—ch_1) (18)
(x,y)eH (a,P)
where herer; = p,,(X;Y) andc 2 (1 — a)a~L. In particular, for a = 1/2,
1

sup  Iy(B; B) < 5 (f(1—01) + f(1+01)). (19)
(%,y)EH(1/2,P)

Proof: Using the matrix form of the joint distribution betweéhn and B given in [15), forE [B] = E {E} =

1 — a, the f information is given by

I1(B; B) = af (5) + 201 — a)f (%) (1 —a)f <1(_137“a)+22> (20)

z
a (1-a

Consequently[(20) is convex in For (x,y) € H(a,P), it follows from Lemmaé.b that is restricted to the interval



12

in (17). Sincelf(B;B) is non-negative by assumptioﬁf(B;B) = 0 for z = a? and [20) is convex ir, then
If(B;B) is non-decreasing in for z in (I7). Substituting: = a? + p,,(X;Y)a(1 — a) in (20), inequality [(IB)
follows. |

Remark 5. Note that the right-hand side df (18) matches the right-reidd of [11), and provides further evidence
for Conjecture[fl. This result indicates that, for conforghiprobability distributions, the information between a
binary function and its corresponding unbiased estimatmasimized when all the principal inertia components
have the same value.

Following the same approach from Lemfda 3, we find the next ddanthe mutual information betweeR and
B.

Corollary 1. For a fixed andp,,,(X;Y) =1 — 26
sup  I(B; B) < 1— Hy(9).
(x,y)eH(a,P)

We now provide a few application examples for the resultdvddrin this section.

A. Lower Bounding the Estimation Error Probability

For z given in [15), the average estimation error probability igeg by Pr{B # E} =a+b— 2z, whichis a
convex (linear) function ot. If « andb are fixed, then the error probability is minimized whems maximized.
Therefore

Pr{B # B} > a+b—2z%(a,b).

Using the bound from Lemmd 4, it follows that

Pr{B # B} > a+b— 2ab — 2p,,(X;:Y)/a(l — a)b(1 — b). (21)

The bound [(211) is exactly the bound derived by Witsenhausefll, Thm 2.]. Furthermore, minimizing the
right-hand side of[(21) ovel < b < 1/2, we arrive at

PrB#£B) > o (1- VT dall — a1~ pu(XK V) (22)

which is a particular form of the bound derived by Calmetral. [15, Thm. 3].

B. Memoryless Binary Symmetric Channels with Uniform laput

We now turn our attention back to the setting considered icti®@e[IV-Al Let Y™ be the result of passing
X" through a memoryless binary symmetric channel with cromspvobabilityd, X™ uniformly distributed, and
B — X" = Y" — B. Thenp,,(X™; Y™) = 1 — 2§ and, from [22), whefE [B] = 1/2,

Pr{B # B} > 4.

Consequently, inferring any unbiased one-bit functionhef input of a binary symmetric channel is at least as hard
(in terms of error probability) as inferring a single outgtdm a single input.
Using the result from Corollariyl 1, it follows that whéh[B] = E [E] —a andPr{B = B = 0} > a2, then

I(B; B) < 1— Hy(9). (23)
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Remark 6. Anantharamet al. presented in[[8] a computer aided proof that the upper bodByl lfolds for any
B — X" — Y™ — B. However, we highlight that the methods introduced hemnadd an analytical derivation of
the inequality [(2B), which, in turn, is a particular case loé inore general setting studied by Ananthaetral.
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