
Classifying Children with Reading Difficulties from 

Non-Impaired Readers via Symbolic Dynamics and 

Complexity Analysis of MEG Resting-State Data  

Stavros I. Dimitriadis1, Panagiotis Simos2, Nikolaos A. Laskaris1, Spiros Fotopoulos3, Jack M. Fletcher4, Andrew C. 

Papanicolaou5 

 
1.Artificial Intelligence and Information Analysis Laboratory, Department of Informatics, Aristotle University, Thessaloniki, 

54124, Greece. Neuroinformatics Group, Department of Informatics, Aristotle University, Thessaloniki, Greece, email: 

stidimitriadis@gmail.com, laskaris@aiia.csd.auth.gr 
2.School of Medicine, University of Crete, Crete, Greece, email: akis.simos@gmail.com 
3.Electronics Laboratory, Department of Physics, University of Patras, 26504 Rio, Greece, email: 

spiros@physics.upatras.gr 
4.Department of Psychology, University of Houston, Houston, Texas, TX, USA, email: JackFletcher@uh.edu 
5.Department of Pediatrics, University of Tennessee Health Science Center, and Neuroscience Institute, Le Bonheur 

Children's Hospital, Memphis, TN, USA, email: apapanic@uthsc.edu 

 
Abstract— Magnetoencephalography (MEG) is a brain 

imaging method affording real-time temporal, and adequate 

spatial resolution to reveal aberrant neurophysiological function 

associated with dyslexia. In this study we analyzed sensor-level 

resting-state neuromagnetic recordings from 25 reading-disabled 

children and 27 non-impaired readers under the notion of 

symbolic dynamics and complexity analysis. We compared two 

techniques for estimating the complexity of MEG time-series in 

each of 8 frequency bands based on symbolic dynamics: (a) 

Lempel-Ziv complexity (LZC) entailing binarization of each MEG 

time series using the mean amplitude as a threshold, and (b) An 

approach based on the neural-gas algorithm (NG) which has been 

used by our group in the context of various symbolization schemes. 

The NG approach transforms each MEG time series to more than 

two symbols by learning the reconstructed manifold of each time 

series with a small error. Using this algorithm we computed a 

complexity index (CI) based on the distribution of words up to a 

predetermined length. 

The relative performance of the two complexity indexes was 

assessed using a classification procedure based on k-NN and 

Support Vector Machines. Results revealed the capacity of CI to 

discriminate impaired from non-impaired readers with 80% 

accuracy. Corresponding performance of LZC values did not 

exceed 55%. These findings indicate that symbolization of MEG 

recordings with an appropriate neuroinformatic approach, such 

as the proposed CI metric, may be of value in understanding the 

neural dynamics of dyslexia. 
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I. INTRODUCTION (HEADING 1) 

Reading involves the coordinated activity of distinct brain 
sub-networks, mainly in the left hemisphere, each apparently 
responsible for specific component reading operations [1,2]. 

Moreover, aberrant task-related activation profiles have been 
documented using functional magnetic resonance imaging 
(fMRI) and magnetoencephalography (MEG) as potential 
markers of deficient brain organization in developmental 
reading disability (dyslexia). Resting-state fMRI data have 
further established strong associations between reading 
networks and functional connectivity in both adults and children 
[4-7]. MEG studies have revealed an abnormal temporal 
correlation of network metric time-series extracted from 
recordings over left temporo-parietal brain areas linked to 
reading skills [8] and a greater repertoire and temporal 
variability of dominant cross-frequency coupling over right 
temporo-parietal brain areas [9].. 

To our knowledge the present is the first study that attempted 
to assess LZ complexity in dyslexia. Previous investigations 
explored the benefits of LZ complexity over symbolic sequences 
derived from MEG resting-state data in traumatic brain injury 
[12], Alzheimer’s disease [13] and epilepsy [14]. However, none 
of the aforementioned studies examined the potential limitations 
of LZ complexity in discriminating patients from age-matched 
controls. Here, we demonstrate the limitations of LZ complexity 
to discriminate reading-disabled children from non-impaired 
readers and we proposed a novel one that can capture the non-
linear dynamics of MEG recordings. 

Specifically, we compared two alternative methods for 
converting sensor-level MEG time-series into sets of symbols 
under the notion of symbolic dynamics and complexity analysis. 
Whereas the LZ method entails binarization of each MEG time 
series with mean amplitude as the appropriate threshold [15], the 
Complexity Index (CI) utilizes the NG algorithm [16] to 
transform each MEG time series to a symbolic sequence with 
more than two symbols [17].  
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Our main goal was to assess the relative classification 
accuracy of each metric and to support of their potential value 
for the study of aberrant neurophysiological activity 
characteristic of various developmental brain disorders. 

II. METHODS 

A. Participants 

MEG recordings were obtained from 25 reading-disabled 
children (aged 12.20±2.1 years) and 27 non-impaired readers 
(aged 11.35 ±2.8). All subjects provided informed consent and 
all procedures were approved by the University of Texas-Health 
Science Center Institutional Review Board. Resting state MEG 
activity was recorded using a 248-channel Magnes WH3600 
system (4D Neuroimaging Inc., San Diego, CA) at a sampling 
rate of 1017.25Hz for 3 minutes with eyes closed. Axial 
gradiometer recordings were transformed to planar gradiometer 
field approximations using the sincos method of Fieldtrip [18]. 

B. Elimination of Non-cerebral activity 

MEG recordings were filtered offline using a third order 
two-pass Butterworth filter between 0.5–80Hz and a notch filter 
at 60Hz. The extended Infomax algorithm [18] was used to 
estimate independent components (ICs) on individual channel 
recordings. Kurtosis, skewness, temporal course and spatial 
distribution of ICs were used as metrics in order to identify and 
remove ICs associated with ocular, muscle and cardiac artifacts. 
Finally, non-artifact ICs were back-projected to the original 248-
channel MEG space to reconstruct the original recordings. Data 
were subsequently bandpassed in the following conventional 
frequency bands: δ (0.5–4 Hz), θ (4–8 Hz), α1 (8–10 Hz), α2 
(10–13 Hz), β1 (13–15 Hz), β2 (15–19 Hz), β3 (20–29 Hz), and 
γ (30–45 Hz) using a zero-phase 3rd order filter in both directions 
using the filtfilt function in matlab 

C. Complexity Estimation 

The bandpassed MEG signals were subsequently 

transformed into a finite set of symbols: [0,1] for LZC, and 

optimized based on the reconstructed error for NG [19-21]. 

1) Lempel-Ziv Complexity: The LZC which is described in 

detail in [15] is an algorithm that counts different substrings in 

the binarized symbolic time series STSLZ=[01110…]. Here we 

transformed frequency-dependent oscillations into a binary 

time series using the mean amplitude as a threshold.  

2) Neural Gas (NG) Algorithm and Complexity Index (CI): 

An alternative method to transform the MEG signal into 

symbols is to adopt a proper algorithm that can learn the 

manifold of a reconstructed phase space and then determining 

the appropriate mapping between trajectories and symbols 

(alphabet). Here, we reconstructed each bandpassed time series 

into a common reconstructed space and then applied the NG 

algorithm to derive a set of symbols that can describe the 

original signal with a reduced amount of error. For details on 

the procedure see [21]. 

Each concatenated time series was first embedded in a 

multidimensional space as described in equation (1): 
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where the time lag T is determined using mutual information 

and the embedding dimension dE is obtained using the false 

nearest neighbors test [22]. 

Having estimated the reconstructed error between the 

original MEG time series and the one described by the NG-

derived codebook, we fixed the number of symbols for each 

time series. Setting the threshold for the reconstructed error rate 

at < 8%, we found that k=6 symbols could adequately describe 

the original neuromagnetic activity. Finally, each MEG sensor 

was transformed to a Symbolic Time Series STSNG=[1 2 3 4 5 

6 2 1 …] with k=6. 

The CI metric was computed based on the quantification of 

distinct words over the STSNG up to a length l=7. CI values were 

then normalized using 200 randomized versions of the original 

symbolic sequence.   

D. Classification Scheme 

The discriminative capacity of each complexity index (LZC 

and CI) was assessed via machine learning techniques. We 

adopted as an appropriate feature extraction algorithm the 

laplacian score (LS) [23] and determined the statistical 

threshold applied to LS through bootstrapping. The latter was 

defined as the mean +2SDs of 1.000 laplacian scores obtained 

via the randomization procedure across the entire set of 

features, separately for each of the complexity indexes. The 

original set of features consisted of 8 (frequency bands) x 248 

(MEG sensors) LZC and 8 x 248 CI values per participant. 

Next, the labels of the two participant groups were shuffled 

and LS was reestimated for each feature. Classification 

performance of LZC- and CI-related features was assessed via 

a k–nearest neighbor (k-NN) algorithm and Support Vector 

Machines (SVMs). Initially, each set of features was ranked in 

decreasing relative importance according to the associated LS. 

In successive classification runs we tested the performance of 

progressively increasing sets of features starting from the ones 

at the top of the ranked feature lists. The procedure was 

discontinued when classification accuracy reached a plateau. 
 

III. RESULTS 

A. Classification Performance on Complexity 

Table I and II summarize the classification accuracy, 

sensitivity and specificity of each complexity index (LZC and 

CI, respectively). We adopted two classification methods (k-

NN and SVMs) applied on a 10-fold cross validation scheme 

running over 100 iterations. Results revealed that a set of 55 CI 

features, originally associated with the highest LS scores, 

resulted in ~80% classification accuracy between students with 

dyslexia and typically achieving readers. Sensitivity and 

specificity estimates were in the same range. In contrast, the 

classification accuracy based on LZC was barely above chance 

level (55%; see Table II). 

Table III indicates that the majority of CI features 

associated with best classification results were derived the θ to 



β2 frequency range whereas Figure 2 reveals a rather widely 

distributed pattern of LS values across the sensor array. 

 

TABLE I. CLASSIFICATION PERFORMANCE FOR COMPLEXITY INDEX (CI) BASED 

ON SUBWORD LENGTH  L=7 

  Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

# of Selected 
features 

kNN 77.32±1.12 76.15±1.25 77.03±2.12 55/(248*8) 

SVM 80.36±1.14 80.19±1.41 79.28±2.17   

 

 

TABLE II. CLASSIFICATION PERFORMANCE FOR LZC  

  Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

# of Selected 

features 

kNN 54.12±1.89 53.95±1.79 54.11±2.43 39/(248*8) 

SVM 55.67±1.67 56.23±1.91 55.91±2.01   

 

TABLE III. DISTRIBUTION OF FEATURES OVER FREQUENCIES  

Band δ θ α1 α2 β1 β2 β3 γ Total 

CI 0 10 8 10 24 1 2 0 55 

LZC 1 6 8 6 5 5 6 2 39 

 

 

Fig.1. Topographical layouts of group-averaged CI values for 
each frequency band and group of participants.  

 

Fig.2. Topographical layouts of group-averaged LZC values 
for each frequency band and group of participants.  

IV. DISCUSSION AND CONCLUSSIONS 

The present study explores how symbolic dynamics and 

complexity analysis of sensor-level neuromagnetic data can 

reveal aberrant activity in children with reading difficulties. 

Additionally, we demonstrated the effect of two main 

preprocessing steps to the final outcome: a) the appropriate 

neuroinformatic tool to symbolize the reconstructed space over 

a binarization of each MEG sensor based on the mean 

amplitude and b) the adaptation of a proper complexity index 

in both aforementioned cases. 

Under the umbrella of symbolic dynamics, complexity 

analysis based on symbolic sequences extracted via the 

proposed NG scheme resulted in adequate discrimination 

capacity at the individual participant level. Moreover, the NG-

based features clearly outperformed the LZC features. In 

ongoing analyses we are exploring features based on both 

neuromagnetic signal amplitude and phase [19] and applying 

symbolic transfer entropy and symbolic mutual information to 

construct functional brain networks [21]. 
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