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Abstract

In this paper, a functional vector generation method to
maximize the data path coverage of a combinational cir-
cuit is introduced. We present a new gate model based on
sensitization requirements for transition propagation, and
introduce a new methodology to obtain functional vectors
of maximum coverage based on Mixed Integer Linear Pro-
gramming (MILP). Performance comparison and results
based on a large set of MCNC’91 [1] benchmark circuits
are given. Experimental results show significant speedups
over a greedy SAT method.

1 Introduction

The goal of a functional verification or test is to assure
compliance with the specification [2]. An important key is
the coverage metric. It measures the degree of confidence
in the verification process. In this sense, several coverage
metrics have been proposed in previous research works [3].
From all of them, the coverage metrics based on the circuit
structure are in general more intuitive and easy to measure.
For example, the toggle coverage consists in measuring the
total number of circuit nodes or gates that changes its output
values with input stimuli [4]. Most of the logic simulators
support the toggle coverage metrics. Another coverage met-
ric widely used is the data path coverage [5]. It indicates
the percent of paths that have been exercised during the ver-
ification/test stage. Against, recent logic simulators do not
yet support the data path coverage as the toggle coverage.

Since the data path coverage was formulated in [5], it
is used to check a small set of all possible paths. Some-
times, it is not possible to check all paths. That is, there
exist circuit structures that may not be logically possible to
exercise. Despite of this disadvantage, the data path cover-
age metric has demonstrated efficient to look for bugs that,
otherwise they may continue as uncovered bugs [3]. Also,
the data path coverage metric can be applied successfully

to small circuits using exhaustive simulations. However, as
the number of paths to verify grows exponentially with the
number of circuit gates, the verification based on data path
coverage is more difficult.

There are several advances in the satisfiability field [6,
7]. In particular, these advances are used to determine the
input vector to sensitize a given path, as required in data
path coverage. In addition, these recent methodologies
have proven to be more efficient than other SAT methodolo-
gies based on exhaustive simulation or backtracking search
strategies [8]. In addition the Mixed Integer Linear Pro-
gramming (MILP) technique permits to define and solve the
SAT problem in an efficient way, as is demonstrated in [7].

In this sense, this paper introduces a novel methodology
to generate functional vectors that maximize the data path
coverage of combinational circuits using MILP. Compar-
isons between our methodology and a greedy SAT checking
method are done over a large set of MCNC’91 [1] bench-
mark circuits. The greedy approach consists in the explicit
enumeration of path sets. For each set, a SAT problem is
solved, and therefore, an input vector is obtained — if the
solution is feasible.

The proposed methodology generates input vectors of
maximum coverage. The resulting vectors sensitize more
than one path, simultaneously. This approach is oriented to
reduce the total number of vectors needed to check a design.
Transitions of input vectors are propagated from primary
inputs to primary outputs through propagation paths. In a
propagation path, it is not allowed that more than one tran-
sition arrives to a gate. To characterize properly the propa-
gation path in a circuit, a gate model is provided, such that,
each logic gate is codified using two bits, namely, a data bit
and a propagation bit.

The organization of the paper is as follows. Section 2
introduces several graph definitions and concepts. Also, the
data path coverage metric and satisfiability are explained in
detail. In Section 3, the propagation of a transition and its
satisfiability conditions are discussed. To propagate transi-
tions on circuit paths, a gate model is introduced. A func-
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tional vector generation method based on explicit enumera-
tion is presented in Section 4. Our solution based on MILP
is exposed in Section 5. To sum up, experimental results
and main conclusions are given in Sections 6 and 7, respec-
tively. The obtained results show a great improvement in
computation effort of the proposed methodology versus a
SAT greedy solution.

2 Data path coverage problem

In order to understand the next sections, some graph def-
initions and concepts are following. After this introduction,
the path coverage problem is discussed in detail.

2.1 Graph–theoretic definitions

Given a graph
��
G , composed by vertices v and edges e

between vertices, it represents a combinational logic cir-
cuit [9] where: the input and output vertices of the graph
represent the combinational logic circuit inputs and outputs,
respectively. The graph internal vertices model the logic
functions of the combinational logic circuit. The edges rep-
resent the data connections between logic functions, inputs
and outputs.

Formally, given a Boolean network
��
G corresponding to

a combinational logic circuit obtained by technology inde-
pendent synthesis procedures —

��
G is a structural descrip-

tion using 2–input AND, 2–input OR and INV gates — a set
of design constrains and a logic gate library L, a mapping
M is a transformation of

��
G into a net–list of logic gates.

A walk of
��
G is a sequence of vertices vi and edges e j,

that it is expressed as v0
e0� v1

e1� ���
ek�1
� vk such, that ei con-

nects nodes vi and vi�1. A tour is a walk where all edges
are different. A path is a tour with distinct vertices. A path
connecting nodes v0 and vk is defined as pathv0�vk � v0

e0�

v1
e1� ���

ek�1
� vk; where the path tail t�pathv0�vk� is v0, i.e.

the tail of its first edge e0; the path head h�pathv0�vk� is vk,
i.e. the head of the last edge ek�1; and the set of vertices is
v�pathv0�vk � � �v0�v1� ����vk�. Moreover, we are interested
in those paths where the path tail v0 and head vk are circuit
primary inputs and outputs, respectively.

2.2 Data path coverage

A verification quality measurement is the data path cov-
erage [5]. The data path coverage metric is used to measure
how thoroughly the paths are exercised over some specified
set of values. The data path coverage value is defined as:

data path coverage �
number of exercised paths

cover set
�

where cover set is the total number of paths in the circuit.
For example, given a combinational logic circuit, as shown

in Figure 1(a), its graph
��
G is illustrated in Figure 1(b). Ta-

ble 1 enumerates all those paths that should be exercised to
obtain the circuit full verification coverage, i.e. the cover
set. The first column is the label of each path. The second
column shows the ordered set of nodes — primary input
node, internal nodes and primary output nodes — for each
path. Last column is the output logic value of some nodes
to ensure the exercising of each path, i.e. the satisfiability
conditions of a path. For example, in order to check the
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Figure 1. A data path coverage example: (a)
combinational logic circuit, (b) single path ex-
ercising, (c) multiple path exercising

correctness of the path labelled as Path3, the node I5 should
be fixed to logic zero, otherwise, Path3 can not be checked.
In this condition, a transition from low to high logic value
or high to low logic value is propagated through Path3, and
its functionality is checked. In other words, in those con-
ditions, a transition is propagated from a primary input to
a primary output. Figure 1(b) illustrates a set of primary
input logic values (i.e. the input patterns) used to exercise
Path3. The input transition stimulus is represented by the
‘p’ value. The total circuit coverage achieved in this exam-
ple with Path3 exercising is 14�286%. An important note

Table 1. Paths and satisfiability conditions of
the data path coverage example

name path conditions

Path1 A–I1–O I2 � 0
Path2 B–I2–I1–O A� 0
Path3 B–I2–I3–I4–R I5 � 0
Path4 C–I5–I3–I4–R I2 � 0
Path5 C–I5–I6–Q –
Path6 D–I5–I3–I4–R I2 � 0
Path7 D–I5–I6–Q –

that must be remarked is that one input pattern may exercise
more than one path at the same time. In this sense, paths
Path2 and Path3, are simultaneously checked with the input
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pattern 0p1x or with the pattern 0px1, as shown in Fig-
ure 1(c). Therefore, the data path coverage of this pattern is
28�57%.

3 Path propagation satisfiability

Given a graph
��
G representing a Boolean network,

pathv0�vk is a propagation path between a primary input ver-
tex v0 and a primary output vertex vk, if incoming transi-
tions at vertex v0 are propagated through the set of vertices
v�pathv0�vk �� �v0�v1� ����vk�, and transitions are available at
the primary output vertex vk. In order to establish the propa-
gation path, several primary inputs should be set to specific
logic values, that is, an input condition must be satisfied.
Given a path to propagate a transition, its input condition
depends on the propagation conditions of each gate of the
path.

To characterize properly the propagation path in a
Boolean logic circuit, we need to introduce a new gate
model. It consists in to codify each gate with two bits, a
data bit and a propagation bit (i.e. ad and ap for the sig-
nal a, respectively). If propagation bit is active, there is a
propagation. Otherwise, the data bit contains a valid data
value.

Intuitively, a 2–input AND gate — with inputs a, b and
output y — propagates a transition when a transition arrives
to one of its inputs and the other input is set to logic one.
If the transition arrives to one input and the other input is
set to logic zero, the transition is killed and the output is
set to logic zero. Finally, if more than one transition ar-
rives simultaneously — this happens when more than one
transition converge in a gate — its output could not have
a controllable value. Therefore, it must be avoided. When
there is not input transition, the gate behaviour is the normal
AND logic function. Formally, the gate model is:

yp � ��ap�bd �� φ�� �ad �bp �� φ��� �ap �bp � φ� (1)

yd � ��ad �bd �� φ�� �ap �bp � φ� (2)

In a similar manner, a 2–input OR gate propagates a transi-
tion, if a transition arrives to one of its inputs and the other
input is set to logic zero. But, if the other input is set to
logic one, the gate sets its output to logic one and kills the
propagation. When there is not input transition, the gate be-
haviour is the common OR logic function. Therefore, the
new OR gate model is described as:

yp � ��ap� b̄d �� φ�� �ād �bp �� φ��� �ap�bp � φ� (3)

yd � ��ad �bd �� φ�� �ap�bp � φ� (4)

And finally, the INV always propagates a transition when it
arrives to its single input. Otherwise, the logic inversion is
performed. The INV description is:

yp � ap (5)

yp � ād (6)

Given a path or a set of paths, the propagation satisfiability
means to find an input vector to guarantee the propagation
conditions for each gate of the given paths.

4 Functional vector generation based on
explicit enumeration

Figure 2 illustrates the algorithm to sensitize a set of
paths. Given a set of paths, the sensitization requirements
for each path of the set are annotated in the circuit. At
this stage two different errors can arise, namely, transition
convergence and sensitization contradiction. A transition
convergence error is established when several transitions ar-
rives to any gate. The propagation conditions of the paths
can derive different values at the same intermediate signals,
that is, a sensitization contradiction. At last stage, the algo-
rithm solves the SAT propagation conditions problem. The

PCFVector(path_set)
foreach path in path_set
write sensitization requirement on

intermediate signal values of current path;
end foreach
solve the SAT problem;

end PCFVector

Figure 2. Algorithm to obtain a functional vec-
tor that sensitizes a set of paths

algorithm of Figure 2 only provides an input vector that sen-
sitizes a set of paths. However, our main concern is finding
an input vector that maximizes the data path coverage of the
circuit. A greedy strategy is based on searching by explicit
enumeration an input vector that sensitizes the maximum
number of paths. In general, such approach is unpractical
when the circuit complexity — in terms of number of in-
puts, outputs and gates — is high. Therefore, we need cut
down the number of paths on each set. This bound is ex-
actly the maximum path coverage. As will be illustrated in
Table 2, higher complexity — measured in gate count —
requires longer computation time.

5 MILP functional vector generation

The functional vector generation that maximizes the data
path coverage can be modelled using MILP as follows.
First, the circuit must be translated to MILP equations. Sec-
ond, it is necessary to provide an objective function.

5.1 Circuit description in MILP

The work presented in [7] describes a method to model
binary logic gates in MILP. The models work correctly
when the input variables are kept in the integer range �0�1�.
Therefore, the output variables will be kept in the integer
range �0�1�. It implies that circuit primary input variables
must be defined as binary variables in the MILP problem.
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The behavioural of a 2–input AND gate in MILP fol-
lowing our model (see Equation 1 and 2) is expressed as
follows:

yd � ad (7)
yd � bd (8)
yd � ad �bd�1 (9)

y�p � bp (10) y��p � ap (13)
y�p � ad (11) y��p � bd (14)
y�p � ad �bp�1 (12) y��p � bd �ap�1 (15)

yp � y�p � y��p (16) ap �bp � 1 (17)

Equations 7, 8 and 9 model data bit behavioural (see
Equation 2). Signal y�p models a transition that arrives to
the input terminal b of the 2–input AND gate. For example,
the AND gate does not propagate any transition from termi-
nal b, while a transition has not arrived to the input terminal
b or the input terminal a is fixed to logic zero. That is im-
plemented with Equations 10 and 11, respectively. Equation
12 express the condition to propagate a transition from input
terminal b. Signal y��p models the propagation of a transition
from input terminal a (see Equations 13, 14 and 15). Fi-
nally, the gate propagation bit is composed by signals y�p
and y��p as is illustrated in Equation 16. Equation 17 is used
to avoid the transition convergence errors.

The behavioural of a 2–input OR gate in MILP following
our model (see Equations 3 and 4) is expressed as follows:

yd � ad (18)
yd � bd (19)
yd � ad �bd (20)

y�p � bp (21) y��p � ap (24)
y�p � ad (22) y��p � bd (25)
y�p � ad �bp�1 (23) y��p � bd �ap�1 (26)

yp � y�p � y��p (27) ap �bp � 1 (28)

Equations 18, 19 and 20 implement the OR data bit.
Equations 21, 22 and 23 model the propagation of a tran-
sition from the input b. Similarly, Equations 24, 25 and 26
conform the propagation of a transition from the input a.
Finally, the gate propagation bit is composed by signals y�p
and y��p as is illustrated in Equation 27. Equation 28 is used
to avoid the transition convergence error.

The behavioural of an INV gate in MILP following our
model (see Equation 5 and 6) is expressed as follows:

yd � 1�ad (29)
yd � ap (30)

Equation 29 implements the data inversion, and Equation
30 models the propagation bit.

5.2 MILP optimization

Given a Boolean network
��
G corresponding to a combi-

national logic circuit obtained by technology independent

synthesis procedures —
��
G is a structural description using

2–input AND, 2–input OR and INV gates — it is translated
to MILP equations using our gate models (see Equations 1–
6). The objective function to be maximized represents the
number of sensitized paths.

As result, for each gate of the sensitized paths, their
propagation bits are activated. Because our model avoids
transition convergence at each gate, if a propagation bit
is activated at the primary output, then there exists a sin-
gle path between a primary input and this primary out-
put. Therefore, maximize the number of sensitized paths
is equivalent to maximize the number of propagation bits at
the primary outputs of the circuit.

6 Experimental results

We processed a large set of two–level and multi–level ex-
amples of the MCNC’91 [1] benchmark suite to determine
a functional vector that maximizes the data path coverage
of a combinational circuit.

The results were computed in a Sun–Fire 280R server,
powered by two UltraSPARC III at 900 MHz, with 4 GByte
of RAM memory. We developed a logic simulator in C pro-
gramming language to solve the satisfiability problem with
the proposed gate model and algorithms (see Section 3 and
4). In addition, we use GLPK [10] software as MILP solver.

Each circuit of the MCNC benchmark suite was prepro-
cessed by MISII [11] logic synthesis system and mapped to
a library of logic gates — 2–inputs NAND, 2–input NOR
and INV — with minimum area and power consumption.
A functional vector exercising the maximum number of ob-
servable paths was determined by both a greedy algorithm
and the proposed methodology. The greedy approach con-
sists in the explicit enumeration of sets of paths to find a
functional vector that exercise them. In addition, we limit
the number of paths on each set of the greedy strategy to
the maximum coverage number obtained by the proposed
approach.

Table 2 shows comparisons in terms of CPU time to
compute the first functional vector that maximizes the data
path coverage of the combinational circuit. The first col-
umn gives the name of the circuit according to the MCNC
benchmark suite.

The complexity of the circuit is measured in terms of
number of gates (column two), number of inputs (column
three), number of outputs (column four) and number of
paths (column five). Column six gives the number of vari-
ables used in the MILP problem, and column seven presents
the number of Boolean variables. Column eight presents
the number of paths for the best obtained coverage. Col-
umn nine presents the total time required to solve the MILP
problem.

Column ten gives the CPU time needed to obtain an input
vector that sensitizes a set of paths. Next column provides
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Table 2. Experimental results and comparisons using MILP and data path coverage
circuit # used # bin MILP search estimated CPU time
name # gates # inputs # outputs # paths vars vars coverage CPU time CPU time # comb. CPU time ratio

5xp1 122 7 10 172 234 14 9 1.44 6.00E-05 1.37E+19 8.19E+14 5.69E+14
9sym 239 9 1 297 434 18 1 3.31 1.40E-04 9.70E+01 1.36E-02 4.10E-03

9symml 235 9 1 286 416 18 1 3.03 1.20E-04 1.34E+02 1.61E-02 5.31E-03
C17 776 5 2 9 28 10 2 0.02 1.30E-04 2.00E+01 2.60E-03 1.30E-01

C2670 1053 233 140 47295 2328 466 11 790.20 6.70E-04 7.13E+47 4.78E+44 6.04E+41
C7552 2697 207 108 565784 4270 414 9 1105.75 1.06E-03 2.32E+22 2.46E+19 2.23E+16
C880 497 60 26 22151 868 120 25 504.91 2.70E-04 1.15E+51 3.12E+47 6.17E+44
Z5xp1 635 7 10 2866 846 14 9 121.79 1.90E-04 1.81E+30 3.44E+26 2.83E+24
Z9sym 232 9 1 292 414 18 1 3.06 9.00E-05 5.40E+01 4.86E-03 1.59E-03

alu2 559 10 6 39874 808 20 6 6.10 2.00E-04 2.23E+24 4.46E+20 7.30E+19
alu4 1110 14 8 402207 1514 28 8 245.63 3.10E-04 4.92E+42 1.53E+39 6.21E+36

apex1 1312 45 45 8377 1822 90 16 844.62 4.70E-04 9.06E+57 4.26E+54 5.04E+51
apex2 482 39 3 914 818 78 3 13.76 2.00E-04 1.01E+08 2.01E+04 1.46E+03
apex3 1762 54 50 7893 2450 108 10 1494.39 5.00E-04 1.96E+38 9.79E+34 6.55E+31
apex4 2718 9 19 15171 3416 18 15 2004.89 7.40E-04 1.22E+51 9.06E+47 4.52E+44
apex5 1067 117 88 3362 1900 234 84 797.05 5.10E-04 � 1.00E+99 � 1.00E+99 � 1.00E+99
apex6 974 135 99 1783 1824 270 96 220.64 5.70E-04 � 1.00E+99 � 1.00E+99 � 1.00E+99
apex7 299 49 37 198 604 98 35 11.44 2.10E-04 9.43E+88 1.98E+85 1.73E+84
b12 105 15 9 126 220 30 7 1.69 1.20E-04 1.18E+10 1.42E+06 8.40E+05
b1 11 3 4 12 30 6 3 0.02 1.30E-04 7.20E+02 9.36E-02 4.68E+00
b9 142 41 21 214 324 82 18 1.62 1.10E-04 7.94E+33 8.74E+29 5.39E+29
bw 211 5 28 388 366 10 15 3.51 1.40E-04 1.52E+31 2.13E+27 6.06E+26
c8 149 28 18 189 300 56 18 0.43 1.10E-04 2.33E+33 2.56E+29 5.95E+29
cc 82 21 20 109 188 42 17 0.31 1.70E-04 2.64E+31 4.49E+27 1.45E+28
cht 192 47 36 235 408 94 36 0.93 2.20E-04 1.36E+57 2.99E+53 3.21E+53
clip 130 9 5 234 228 18 5 0.75 1.20E-04 5.80E+09 6.96E+05 9.28E+05

cm138a 32 6 8 48 68 12 2 0.07 8.00E-05 5.00E+00 4.00E-04 5.71E-03
cm150a 47 21 1 55 128 42 1 0.05 1.00E-04 5.40E+01 5.40E-03 1.08E-01
cm151a 27 12 2 46 72 24 2 0.03 1.30E-04 1.98E+03 2.57E-01 8.58E+00
cm152a 24 11 1 22 66 22 1 0.03 8.00E-05 8.00E+00 6.40E-04 2.13E-02
cm162a 56 14 5 83 110 28 5 0.06 7.00E-05 4.53E+08 3.17E+04 5.29E+05
cm163a 47 16 5 57 112 32 5 0.05 1.00E-04 3.68E+07 3.68E+03 7.37E+04
cm42a 34 4 10 44 72 8 2 0.09 1.00E-04 4.00E+00 4.00E-04 4.44E-03
cm82a 29 5 3 45 56 10 3 0.03 1.20E-04 3.15E+04 3.78E+00 1.26E+02
cm85a 56 11 3 91 108 22 3 0.08 1.00E-04 1.22E+03 1.22E-01 1.52E+00
cmb 56 16 4 112 122 32 2 0.23 1.20E-04 2.50E+03 3.00E-01 1.30E+00

comp 212 32 3 1536 356 64 2 7.11 1.40E-04 1.01E+06 1.42E+02 1.99E+01
con1 23 7 2 19 52 14 2 0.04 9.00E-05 1.26E+02 1.13E-02 2.84E-01

cordic 23 23 2 140 164 46 2 0.08 1.00E-04 7.02E+02 7.02E-02 8.78E-01
count 77 35 16 368 354 70 16 0.56 1.60E-04 1.15E+31 1.85E+27 3.30E+27

cu 59 14 11 96 136 28 3 0.38 9.00E-04 2.90E+10 2.61E+06 6.86E+06
dalu 1462 75 16 1157487 2112 150 16 311.41 4.60E-04 1.34E+90 6.18E+86 1.98E+84

decod 32 5 16 80 98 10 2 0.22 1.10E-04 1.76E+03 1.94E-01 8.80E-01
duke2 4704 22 29 2051 776 44 13 394.80 2.20E-04 6.85E+38 1.51E+35 3.82E+32

ex4 459 128 28 577 1126 168 14 12.04 3.20E-04 1.05E+32 3.35E+28 2.78E+27
example2 373 85 66 1327 836 170 51 370.66 2.80E-04 8.89E+92 2.49E+89 6.72E+86

f51m 137 8 8 188 262 16 8 1.19 1.20E-04 4.19E+15 5.03E+11 4.23E+11
frg1 142 28 3 148 286 56 3 0.25 2.10E-04 1.32E+02 2.77E-02 1.11E-01
frg2 1144 143 139 6075 2050 286 13 42.76 6.00E-04 4.83E+39 2.90E+36 6.77E+34
i1 55 25 16 72 156 50 13 0.13 1.80E-04 8.07E+21 1.45E+18 1.12E+19
i2 217 201 1 228 822 402 1 1.55 4.50E-04 2.27E+02 1.02E-01 6.59E-02
i3 152 132 6 132 528 264 6 0.67 3.60E-04 4.56E+06 1.64E+03 2.45E+03
i5 198 133 66 672 662 266 66 0.80 4.00E-04 � 1.00E+99 � 1.00E+99 � 1.00E+99
i6 559 138 67 778 1182 276 67 9.50 3.60E-04 � 1.00E+99 � 1.00E+99 � 1.00E+99
i7 755 199 67 1003 1558 398 67 11.79 5.90E-04 � 1.00E+99 � 1.00E+99 � 1.00E+99
i8 1331 133 81 9811 2262 266 81 51.15 5.40E-04 � 1.00E+99 � 1.00E+99 � 1.00E+99
i9 792 88 63 19919 1382 176 63 23.32 3.80E-04 � 1.00E+99 � 1.00E+99 � 1.00E+99
inc 208 7 9 520 310 14 6 8.08 1.00E-04 1.00E+15 1.00E+11 1.24E+10
k2 1313 45 45 9127 1796 90 16 330.13 3.90E-04 3.44E+58 1.34E+55 4.07E+52
lal 122 26 19 197 240 52 17 0.25 1.10E-04 2.32E+33 2.55E+29 1.02E+30

majority 13 5 1 10 30 10 1 0.01 9.00E-05 3.00E+00 2.70E-04 2.70E-02
misex1 70 8 7 119 128 16 5 0.45 1.00E-04 3.27E+09 3.27E+05 7.28E+05
misex2 122 25 18 174 254 50 5 21.94 1.30E-04 1.70E+09 2.21E+05 1.01E+04
misex3 864 14 14 2792 1380 28 11 451.35 2.80E-04 2.68E+31 7.51E+27 1.66E+25
misex3c 622 14 14 1163 1056 28 10 227.94 2.20E-04 1.40E+30 3.08E+26 1.35E+24

mux 55 21 1 55 130 42 1 0.06 1.40E-04 5.40E+01 7.56E-03 1.26E-01
my adder 268 33 17 1310505 420 66 17 1.72 2.20E-04 2.10E+75 4.62E+71 2.69E+71

o64 131 130 1 130 520 260 1 0.61 2.70E-04 6.90E+01 1.86E-02 3.05E-02
pair 1991 173 137 15513 3412 346 45 794.10 7.80E-04 � 1.00E+99 � 1.00E+99 � 1.00E+99

parity 69 16 1 352 124 32 1 0.09 1.20E-04 2.04E+02 2.45E-02 2.72E-01
pcle 84 19 9 122 166 38 9 0.13 1.70E-04 2.37E+11 4.03E+07 3.10E+08

pcler8 126 27 17 234 230 54 16 0.16 1.80E-04 4.72E+25 8.49E+21 5.31E+22
pm1 55 16 13 70 134 32 9 0.06 9.00E-05 8.00E+00 7.20E-04 1.20E-02
rd53 58 5 3 71 116 10 3 0.14 1.00E-04 2.10E+01 2.10E-03 1.50E-02
rd73 147 7 3 235 250 14 3 0.63 1.10E-04 2.01E+06 2.21E+02 3.51E+02
rd84 285 8 4 949 424 16 4 1.56 1.90E-04 1.78E+11 3.39E+07 2.17E+07
rot 808 135 107 8695 1634 270 29 52.46E-04 5.80E-04 2.83E+95 1.64E+92 3.13E+90

sao2 164 10 4 255 322 20 4 1.99 1.50E-04 2.98E+08 4.47E+04 2.24E+04
sct 90 19 15 150 184 38 13 0.20 8.00E-05 2.63E+19 2.10E+15 1.05E+16
seq 1952 41 35 4947 2882 82 17 1120.72 5.30E-04 6.81E+45 3.61E+42 3.22E+39

squar5 180 5 8 409 284 10 6 3.38 1.10E-04 3.59E+13 3.95E+09 1.17E+09
t481 563 16 1 1077 850 32 1 17.12 1.90E-04 7.49E+02 1.42E-01 8.31E-03

table3 1019 14 14 6747 1540 28 11 1504.04 3.60E-04 1.95E+41 7.00E+37 4.66E+34
table5 1007 17 14 6180 1570 34 12 278.25 3.00E-04 1.46E+37 4.38E+33 1.58E+31
tcon 40 17 16 40 114 34 16 0.04 1.10E-04 7.89E+23 8.68E+19 2.17E+21

term1 299 34 10 601 516 68 10 2.57 2.90E-04 5.98E+26 1.73E+23 6.75E+22
too large 482 38 3 941 82 76 3 0.02 2.10E-04 8.00E+07 1.68E+04 8.40E+05

ttt2 252 24 21 348 446 48 19 6.59 1.80E-04 2.50E+41 4.49E+37 6.82E+36
unreg 119 36 16 160 272 72 16 0.40 1.60E-04 4.68E+33 7.49E+29 1.87E+30
vda 817 17 39 4768 1344 34 19 854.95 2.80E-04 2.04E+61 5.72E+57 6.69E+54
vg2 113 25 8 246 232 50 7 1.32 1.00E-04 2.02E+11 2.02E+07 1.53E+07
x1 412 51 35 438 748 102 26 158.78 2.20E-04 2.95E+02 6.49E-02 4.09E-04
x2 78 10 7 81 142 20 4 0.42 1.00E-04 3.98E+05 3.98E+01 9.49E+01

xor5 18 5 1 46 36 10 1 0.02 8.00E-05 4.10E+01 3.28E-03 1.64E-01
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the number of combinations
�n

m

�
required by the explicit

enumeration, where n is the total number of paths and m
the data path coverage (see column eight). The estimated
CPU time to find a path set of maximum coverage using
the greedy search is presented in column twelve. Finally,
last column shows the CPU time ratio between the greedy
search and the MILP solution. CPU time is expressed in
seconds.

The total number of processed circuits was 94. The high-
est complex circuit — in terms of gate count — is duke2
(4704 gates), and the lowest is b11 (11 gates). In terms of
the number of inputs, the highest complex circuit is C2670
(233 primary inputs) and the lowest is b1 (3 primary inputs).
The maximum coverage was close to the number of primary
outputs. The exhaustive SAT search algorithm is not prac-
tical when coverage grows, that is when the number of out-
puts grows. This is the reason because we limit the number
of paths on each set of the greedy strategy. Even in such
condition, we obtain a significant improvement in computa-
tional effort.

7 Conclusions

The computational complexity of functional vector gen-
eration to optimize the data path coverage in combinational
circuits grows exponentially with the number of gates. We
propose an efficient methodology to determine functional
vectors that exercises paths and maximizes the data path
coverage of the verification test. We used Mixed Integer
Linear Programming (MILP) to implement the proposed
methodology. Comparisons with a greedy search strat-
egy demonstrate that our methodology using MILP obtains
functional vectors to optimize the data path coverage in a
very efficient way (in terms of CPU time). The implementa-
tion of the proposed methodology is always better than the
greedy search when the number of primary inputs and out-
puts is greater than eight and three, respectively. The CPU
time advantage of our solution based in MILP is several or-
ders of magnitude greater than the greedy solution. This
reduction allows verifying combinational logic circuits in a
practical CPU time, against the approach based on extensive
simulation. This is the first ever reported work on functional
vector generation to optimize data path coverage.

Our methodology has an obvious limitation; as the cir-
cuit grows in terms of number of gates, the vector genera-
tion takes more CPU time. In order to reduce the CPU time,
several works are in progress related to circuit partition and
word–level description of the MILP problem.
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