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Abstract—This paper presents a Bulk-Synchronous Parallel
(BSP) algorithm to compute on-the-fly whether a structured
model of a security protocol satisfies a LTL formula. Using
the structured nature of the security protocols allows us to
design a simple and efficient parallelisation of an algorithm
which constructs the state-space under consideration in a
need-driven fashion. A prototype implementation has been
developed, allowing to run benchmarks.
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I. INTRODUCTION

Designing secure protocols is a challenging problem [1].

In spite of their apparent simplicity, they are notoriously

error-prone. Unfortunately, checking if a cryptographic pro-

tocol is secure or not is not decidable in general and NP-

complete for bounded numbers of agents and sessions [2].

Model-checking is however well-adapted to find flaws [3].

In this paper, we consider the problem of checking an LTL

formula over labelled transition systems (LTS) that model

security protocols. Checking a LTL formula over a protocol

is not new [4] and has the advantage over dedicated tools for

protocols to be easily extensible to non standard behaviour

of honest principals (e.g., contract-signing protocols: partic-

ipants required to make progress) or to check some security

goals that cannot be expressed as reachability properties,

e.g., fair exchange.

But checking an LTL formula may be expensive both in

terms of memory and execution time: this is the so-called

state explosion problem. This is especially true when com-

plex data-structures are used in the model as the knowledge

of an intruder in security protocols. Because this checking

can cause memory crashing on single or multiple processor

systems, it has led to consider exploiting the larger memory

space available in distributed systems [5], which also gives

the opportunity to reduce the overall execution time. One of

the main technical issues is to partition the state space, i.e.

each state is assigned to a machine. Each subset of states

is thus “owned” by a single machine. While it has been

shown that a pure static hashing for the partition function

can effectively balance the workload [24] and achieve rea-

sonable execution time as well, this method suffers from an

obvious drawbacks: it causes too much cross transitions, i.e.,

successor states that need to be exchanged over the network

thus impairing computation locality.

Also, it is rarely necessary to compute the entire state

space before finding a path that invalidates the logic formula

(notably a flaw in a protocol): on-the-fly (local) algorithms

are designed to build the state space and check the formula

at the same time. Two approaches are generally used:

Nested Depth First Search (NDFS) and Strongly Connected

Components (SCC) algorithms for detecting on-the-fly a

reachable accepting cycle in the underlying graph — mainly

of a Büchi automaton. The former are known to be memory

efficient and the latter to be time efficient [6] and both are

hard to parallelize [7].

In this paper, we exploit the well-structured nature of

security protocols and match it to a model of parallel

computation called BSP [8]. This allows us to simplify

the writing of an efficient BSP algorithm for checking on-

the-fly an LTL formula for finite protocol sessions. It is

based on the algorithm of [9] which mainly combines the

construction a proof-structure (a graph whose nodes states

of the underlying Kripke structure together with sets of

logical formulas) with a Tarjan’s depth-first-search based

SCC algorithm. The structure of the protocols is exploited

to partition the state space and reduce cross transitions while

increasing computation locality. At the same time, the BSP

model allows to simplify the detection of the algorithm

termination and to load balance the computations.

II. CONTEXT AND DEFINITIONS

A. The BSP model

A BSP computer is a set of uniform processor-memory

pairs connected through a communication network allowing

the inter-processor delivery of messages [8]. A BSP program

is executed as a sequence of super-steps (see Fig. 1), each

one divided into three successive disjoint phases: (1) each

processor only uses its local data to perform sequential

computation and to request data transfers to other nodes;

(2) the network delivers the requested data; (3) a global

synchronisation barrier occurs, making the transferred data

available for the next super-step.
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Figure 1. A BSP super-step.

Syntax of LTL:

φ ::= a | ¬a | φ ∧ φ | φ ∨ φ | Xφ | φUφ | φVφ

Informal semantics of LTL :
Xφ : • → •φ → • → • → • → · · ·

φ1Uφ2 : •φ1 → •φ1 → •φ1 → •φ2 → • → · · ·

φ1Vφ2 : •φ2 → •φ2 → •φ2 → •φ2 → •φ2 → · · ·
or •φ2 → •φ2 → •φ2 → •φ1∧φ2 → • → · · ·

Figure 2. Syntax and informal semantics of LTL.

B. State space of security Protocols [10]

In this paper, we consider models of security protocols,

involving a set of agents, given as a labelled transition

system (LTS). We also consider a Dolev-Yao attacker that

resides on the network [11]. An execution of such a model

is thus a series of message exchanges as follows. (1) An

agent sends a message on the network. (2) This message

is captured by the attacker that tries to learn from it by

recursively decomposing the message or decrypting it when

the key to do so is known. Then, the attacker forges all

possible messages from newly as well as previously learnt

informations (i.e., attacker’s knowledge). Finally, these

messages (including the original one) are made available

on the network. (3) The agents waiting for a message

reception accept some of the messages forged by the

attacker, according to the protocol rules.

As a concrete formalism to model protocols, we have used

an algebra of coloured Petri nets called ABCD [12, Sec. 3.3]

allowing for easy and structured modelling. However, our

approach is largely independent of the chosen formalism

and it is enough to assume that the following properties

hold: (P1) LTS function succ can be partitioned into two

successor functions succR and succL that correspond re-

spectively to transitions upon which an agent (except the

intruder) receives information (and stores it), and to all

the other transitions; (P2) there is an initial state s0 and

there exists a function slice from states to natural numbers

(a measure) such that if s′ ∈ succR(s) then there is no

def bsp state space() is
todo,known←∅,∅
total←1
if cpu(s0) =mypid

todo←todo∪{s0}
while total>0

tosend←Successor(known,todo)
todo,total←Exchange(known,tosend)

return known

def Successor(known,todo) is
tosend←∅
while todo 6= ∅

pick s from todo
known←known∪{s}
todo←(todo ∪ succL(s)) \ known
for s′ ∈ succR(s)

tosend←tosend ∪{ (cpu(s′),s′)}
return tosend

def Exchange(known,tosend) is
dump(known)
return BSP EXCHANGE(Balance(tosend))

def Balance(tosend) is
histoL←{(i, ♯{(i, s) ∈ tosend})}
compute histoG from BSP EXCHANGE(histoL)
return BinPack(tosend,histoG)

Figure 3. BSP computing the state space of protocols

path from s′ to any state s′′ such that slice(s) = slice(s′′)
and slice(s′) = slice(s) + 1 (it is often call a sweep-line

progression [13]); (P3) there exists a function cpu from

states to natural numbers (a hashing) such that for all state

s if s′ ∈ succL(s) then cpu(s) = cpu(s′); mainly, the

knowledge of the intruder is not taken into account to

compute the hash of a state; (P4) if s1, s2 ∈ succR(s) and

cpu(s1) 6= cpu(s2) then there is no possible path from s1
to s2 and vice versa.

On concrete models, it is generally easy to distinguish

syntactically the transitions that correspond to a message

reception in the protocol with information storage. Thus, is

it easy to partition succ as above and, for most protocol

models, it is also easy to check that the above properties

are satisfied. This is the case in particular for us using the

ABCD formalism.

C. BSP Computing of the state space [10]

Based on the following properties, we have designed in

[10] a BSP algorithm (in a SPMD fashion) for computing

the state space of security protocols as shown in Fig. 3.

In this algorithm, “BSP EXCHANGE” is a primitive that

allows processors to globally exchange data: a set of pairs

(pid,value) is used to define values to be sends. Mainly:

(1) states are distributed across the processors using the

cpu function; (2) the algorithm finishes when no states are

exchanged; (3) function Successor is called to compute the

successors of the states, then all new states from succL
are added in todo (states to be proceeded) and states from



succR are sent to be treated at the next super-step, enforcing

an order of exploration of the state space that match the

progression of the protocol. (4) It thus becomes possible

at the beginning of each super-step, to dump from the main

memory all the known states because they cannot be reached

anymore due to the sweep-line progression. (5) States to

be sent are first balanced across the processors using an

histogram histoG (which is first totally exchanged to be the

same on each processor and enforce consistent decisions

on all the processors: each processor send its own local

histogram histoL) and according to a simple heuristic for

the bin packing problem, classes of states (consistent with

hash) are grouped on processors so there is no possibility of

duplicated computation.

This algorithm gives better performances (less cross tran-

sitions) than a naive distributed one [10] and is able to dump

all the known states at the beginning of each super-step

allows to use less memory. Partial-order reductions [14] can

also be introduced without really changing the algorithm.

D. Proof-structure and LTL checking [9]

Considerable attention has been devoted to the develop-

ment of automatic techniques, or model-checking proce-

dures, for verifying finite-state systems against specifications

expressed using various temporal logics and notably the

linear (LTL) subset. This logic permits users to characterize

many properties, including safety and liveness. One may

identify two basic approaches to model checking. The first

uses global analysis to determine if a system satisfies a for-

mula; the entire state space (mainly a Kripke structure) of the

system is constructed and subjected to analysis. However,

these algorithms may be seen to perform unnecessary work:

in many cases (especially when a system does not satisfy a

specification) only a subset of the states needs to be analyzed

in order to determine whether or not the system satisfies a

formula. On-the-fly, or local, approaches to model checking

attempt to take advantage of this observation by constructing

the state space in a demand-driven fashion. Due to lack of

space, we do not present a formal definition of what is a

Kripke structure and an LTL formula (an informal semantics

is giving on Fig 2) and concentrate on the notion of proof-

structure [9] for LTL checking: a collection of top-down

proof rules for inferring when a state in a Kripke structure

satisfies an LTL formula.

We define M = (S,R,L) to be a Kripke structure where

S is the set of states, R ⊂ S × S the relation which is

assumed to be total (thus all paths in M are infinite) and

L ∈ S → 2A the labelling. The proof-rules appear in Fig 4

[9] and they operate on assertions of the form s ⊢ AΦ where

s ∈ S and Φ is a set of path formulas. Semantically, s ⊢ AΦ
holds if s � A(

∨
φ∈Φ

φ). We write A(Φ, φ1, · · · , φn) to

represent a formula of the form A(Φ ∪ {φ1, · · · , φn}). If

σ is an assertion of the form s ⊢ AΦ, then we use φ ∈ σ

s ⊢ A(Φ, φ)

true
(R1)

s ⊢ A(Φ, φ)

s ⊢ A(Φ)
(R2)

s ⊢ A(Φ, φ1 ∨ φ2)

s ⊢ A(Φ, φ1, φ2)
(R3)

if s � φ if s 2 φ

s ⊢ A(Φ, φ1 ∧ φ2)

s ⊢ A(Φ, φ1) s ⊢ A(Φ, φ2)
(R4)

s ⊢ A(Φ, φ1Uφ2)

s ⊢ A(Φ, φ1, φ2) s ⊢ A(Φ, φ2,X(φ1Uφ2))
(R5)

s ⊢ A(Φ, φ1Vφ2)

s ⊢ A(Φ, φ2) s ⊢ A(Φ, φ1,X(φ1Vφ2))
(R6)

s ⊢ A(Xφ1, ...,Xφn)

s1 ⊢ A(φ1, ..., φn) sm ⊢ A(φ1, ..., φn)
(R7)

if succ(s) = {s1, ..., sm}

Figure 4. Proof rules for LTL checking [9]

to denote that φ ∈ Φ. Proof-rules are used to build proof-

structures that are defined as follows:

Definition 1. Let Σ be a set of nodes, Σ′ = Σ∪ true, V ⊆
Σ′, E ⊆ V ×V and σ ∈ V . Then 〈V,E〉 is a proof structure

for σ if it is a maximal directed graph such that for every

σ′ ∈ V , σ′ is reachable from σ, and the set {σ′′|(σ′, σ′′) ∈
E} results from applying some rule to σ′.

Intuitively, a proof structure for σ is a directed graph that

is intended to represent an (attempted) “proof” of σ. In what

follows, we speak of a directed graph and use traditional

graph notations when speaking of proof structures. Note

that in contrast with traditional definitions of proofs, proof

structures may contain cycles. In order to define when a

proof structure represents a valid proof of σ, we use:

Definition 2. Let 〈V,E〉 be a proof structure. Then: (1) σ ∈
V is a leaf iff there is no σ′ such that (σ, σ′) ∈ E. A leaf σ is

successful iff σ ≡ true; (2) an infinite path π = σ0, σ1, · · ·
in 〈V,E〉 is successful iff for some assertion σi infinitely

repeated on π there exists φ1Vφ2 ∈ σi such that for all

j ≥ i, φ2 /∈ σj; (3) 〈V,E〉 is successful iff all its leaves and

infinite paths are successful.

Roughly speaking, an infinite path is successful if at

some point a formula of the form φ1Vφ2 is repeatedly

“regenerated” by application of rule R6; that is, the right

subgoal (and not the left one) of this rule application appears

each time on the path. Note that after φ1Vφ2 occurs on the

path φ2 should not, since, intuitively, if φ2 would be true

then the success of the path would not depend on φ1Vφ2,

while if it would be false then φ1Vφ2 would not hold. Note

also that if no rule can be applied (i.e., Φ = ∅) then the

proof-structure and thus the formula is unsuccessful.

Theorem 1. Let M be a Kripke structure with s ∈ S and

Aφ an LTL formula, and let 〈V,E〉 be a proof structure for

s ⊢ A{φ}. Then s � Aφ iff 〈V,E〉 is successful.



One consequence of this theorem is that if σ has a

successful proof structure, then all proof structures for σ
are successful. Thus, in searching for a successfull proof

structure for an assertion no backtracking is necessary. It also

turns out that the success of a finite proof structure may be

determined by looking at its strongly connected components

for any accepting cycle. An obvious solution to this problem

would be to construct the proof structure for the assertion

and then check if the proof structure is successful. Of course,

this algorithm is not on-the-fly as it does not check the

success of a proof structure until after it is built. An efficient

algorithm, on the other hand, combines the construction of

a proof structure with the process of checking whether the

structure is successful. A Tarjan’s like algorithm was used

in [9] but a NDFS one could also be used.

III. BSP ON-THE-FLY LTL CHECKING

As explained in the previous section, we use two LTL

successors functions for constructing the Kripke structure:

succR ensures a measure of progression slice that intuitivelly

decomposes the Kripke structure into a sequence of slices

S0, . . . , Sn where transitions from states of Si to states of

Si+1 come only from succR and there is no possible path

from states of Sj to states Si for all i < j. Also after succR
transitions (with different hashing), there is no possible

common paths which is due to different knowledge of the

agents. In this way, if we assume, as in Fig 3, a distribution

of the Kripke structure across the processors using the cpu

function, then the only possible accepting cycles or SCCs

are locals to each processor. Thus, because proof-structures

follow the Kripke structure (rule R7), accepting cycles

or SCCs are also only locals. This fact ensures that any

sequential algorithm to check cycles or SCCs can be used

for the parallel computation.1 Call this generic algorithm

SeqChkLTL which takes an assertion σ = s ⊢ AΦ, a

set of assertions to be sent (for the next super-step), and

(V,E) the sub-part of the proof-graph (a set of assertions as

vertices and a set of edges) that has been previously proceed

(this sub-part can grow during this computation). Now, in

the manner of [10], we can design our BSP algorithm

which is mainly an iteration over the independant slices,

one slice per super-step and, on each processor, working on

independant sub-parts of the slice by calling SeqChkLTL.

This algorithm is given in Fig 5.

The main function is ParChkLTL, it first calls an

initialisation function in which only the one processor that

owns the initial state saves it in its todo list. The variable

total stores the number of states to be processed at the

beginning of each super step; V and E store the proof

graph; super step stores the current super step number;

dfn is used for the SCC algorithm; finally, flag is used to

1It is mainly admited that SCC computation gives smaller traces than
NDFS. Both methods are equivalent for our purpose.

def Init main() is
super step,dfn,V,E,todo←0,0,∅,∅,∅
if cpu(σinit)=mypid

todo←todo ∪ {σinit}
flag, total←⊥,1

def ParChkLTL((s ⊢ Φ) as σ) is
Init main()
while flag=⊥ ∧ total>0

send←∅
while todo 6= ∅ ∧ flag=⊥

pick σ from todo
if σ /∈ V

flag←SeqChkLTL(σ,send,E,V)
if flag 6= ⊥

send←∅
flag,todo,total←Exchange(send,flag)

case flag
| ⊥ =⇒ print "OK"
| σ =⇒ Build trace(σ)

def Exchange(tosend,flag) is
dump (V,E) at super step
super step←super step+1
tosend←tosend ∪ {(i,flag) | 0 ≤ i < p}
rcv, total←BSP EXCHANGE(Balance(tosend))
flag,rcv←filter flag(rcv)
return flag, rcv, total

def subgoals(σ,send) is
case σ
| s ⊢ A(Φ, p) =⇒ subg←if s � p then {True}

else {s ⊢ A(Φ)} (R1, R2)
| s ⊢ A(Φ, φ1 ∨ φ2) =⇒ subg←{s ⊢ A(Φ, φ1, φ2)} (R3)
| s ⊢ A(Φ, φ1 ∧ φ2) =⇒ subg←{s ⊢ A(Φ, φ1), s ⊢ A(Φ, φ2)} (R4)
| s ⊢ A(Φ, φ1Uφ2) =⇒ subg←{s ⊢ A(Φ, φ1, φ2),

s ⊢ A(Φ, φ2,X(φ1Uφ2))} (R5)
| s ⊢ A(Φ, φ1Vφ2) =⇒ subg←{s ⊢ A(Φ, φ2),

s ⊢ A(Φ, φ1,X(φ1Vφ2))} (R6)
| s ⊢ A(Xφ1, ...,Xφn) =⇒

subg←{s′ ⊢ A(φ1, ...φn) | s′ ∈ succL(s)}
tosend←{s′ ⊢ A(φ1, ...φn) | s′ ∈ succR(s)}
E←E ∪ {σ 7→R σ′ | σ′ ∈ tosend }
if subg=∅ ∧ tosend6=∅

subg←{True}
send←send ∪ tosend (R7)

E←E ∪ {σ 7→L σ′ | σ′ ∈ subg }
return subg

Figure 5. A BSP algorithm for LTL checking

check whether the formula has been proved false (flag set

to the violating state) or not (flag=⊥).

The main loop processes each σ in todo using the se-

quential checker SeqChkLTL, which is possible because the

corresponding parts of the proof structure are independent

(sec. 2.2, P4). SeqChkLTL uses subgoals to traverse the

proof structure. For rules (R1) to (R6), the result remains

local because the Petri net states does not change. However,

for rule (R7), we compute separately the next states for

succL and succR: the former results in local states to be

processed in the current step, while the latter results in

states to be processed in the next step. If no local state is

found but there exists remote states, we set subg←{True}



which indicates that the local exploration succeeded (P2)

and allows to proceed to the next super step in the main

loop. When all the local states have been processed, states

are exchanged, which leads to the next slice (i.e., the next

super step). In order to terminate the algorithm as soon

as one processor discovers a counterexample, each locally

computed flag is sent to all the processors and the received

values are then aggregated using function filter flag that

selects the non-⊥ flag with the lowest dfn value computed

on the processor with the lowest number, which allows

to ensure that every processor chooses the same flag and

then computes the same trace. If no such flag is selectable,

filter flag returns ⊥. To balance the computation, we use

the number of states as well as the size of the formula (on

which the number of subgoals directly depends).

Notice also that at each super step, each processor dumps

V and E to its local disk, recording the super step number,

in order to be able to reconstruct a trace. When a state σ that

invalidates the formula is found, a trace from the initial state

to σ is constructed. The data to do so is distributed among

processors into local files, one per super step. We thus use

exactly as many steps to rebuild the trace as we have used

to reach σ. The algorithm is presented in Fig. 6: a trace

π whose “oldest” state is σ is reconstructed following the

proof graph backward. The processor that owns σ invokes

Local trace to find a path from a state σ′, that was in todo

at the beginning of the super state, to σ. Then it sends σ′

to its owner to let the reconstruction continue. To simplify

things, we print parts of the reconstructed trace as they

are locally computed. Among the predecessors of a state,

we always choose those that are not yet in the trace π
(set of trace(π) returns the set of states in π) and selects

one with the minimal dfn value (using function min dfn),

which allows to select shorter traces.

IV. EXPERIMENTAL RESULTS

In order to evaluate our algorithm, we have used two

formulas of the form φ U deadlock, where deadlock is an

atomic proposition that holds iff state has no successor and φ
is a formula that checks for an attack on the considered pro-

tocol: Fml1 is the classical ”secrecy“ and Fml2 is ”aliveness“

[15] – which are the most common formulas for verifying

security protocols. The chosen formulas globally hold so

that the whole proof graph is computed. Indeed, on several

instances with counterexamples, we have observed that the

sequential algorithm can be faster than the parallel version

when a violating state can be found quickly: our parallel

algorithm uses a global breadth-first search while the sequen-

tial exploration is depth-first, which usually succeeds earlier.

But when all the exploration has to be performed, which is

widely acknowledged as the hardest case, our algorithm is

always much faster. Moreover, we sometimes could not com-

pute the state space sequentially while the distributed version

def Build trace(σ) is
end←False
repeat
π←ǫ
my round←(cpu(σ)=mypid)
end←(σ=σ0)
send←∅
if my round

dump (V,E) at super step
super step←super step−1
undump (V,E) at super step
σ,π←Local trace(σ,π)
F←F ∪ set of trace(π)
print π

σ←Exchange trace(my round,σ)
until ¬end

def Exchange trace(my round,tosend,σ) is
if my round

tosend←tosend ∪ {(i, σ) | 0 ≤ i < p}
{σ}, ←BSP EXCHANGE(tosend)
return σ

def Local trace(σ,π) is
if σ = σ0

return (σ,π)
tmp←prec(σ) \ set of trace(π)
if tmp=∅
σ′←min dfn(prec(σ))

else
σ′←min dfn(tmp)

π←π.σ′

if σ′ 7→R σ
return(σ′,π)

return Error trace(σ′,π)

Figure 6. Building the trace after an error

succeeded, thanks to the distribution of states and sweep-line

strategy — which is also used for sequential computing.

We have implemented a prototype version in Python, us-

ing SNAKES [16] for the Petri net part (which also allowed

for a quick modelling of the protocols, including the Dolev-

Yao attacker) and a Python BSP library [17] for the BSP rou-

tines (which are close to an MPI “alltoall”). We actually used

the MPI version (with MPICH) of the BSP-Python library.

While largely suboptimal (Python programs are interpreted

and there is no optimisation about the representation of the

states in SNAKES and the implementation of the attacker

is not optimal at all), this prototype nevertheless allows

an accurate comparison for acceleration. The benchmarks

presented below have been performed using a cluster with

20 PCs connected through a 1 Gigabyte Ethernet network.

Each PC is equipped with a 2GHz Intel® Pentium® dual

core CPU, with 2GB of physical memory. This allowed to

simulate a BSP computer with 40 processors equipped with

1GB of memory each.

Our case studies involved the following four protocols:

(1) Needham-Schroeder public key protocol for mutual

authentication; (2) Yahalom key distribution and mutual

authentication using a trusted third party; (3) Otway-Rees
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Figure 7. Benchmark results for the four protocols where Fml1 is “secrecy”
and Fml2 ’aliveness“

key sharing using a trusted third party; (4) Kao-Chow key

distribution and authentication. These protocols and their

security issues are documented at the Security Protocols

Open Repository (SPORE) [18]. Fig 7 gives the speed-up for

each the two formulas and two sessions of each protocol. For

the Yahalom protocol, the computation fails due to a lack of

main memory (swapping) if less that 4 nodes are used: we

could thus not give the speedup but only times. We observed

a relative speedup with respect to the number of processors.

Finally, measuring the memory consumption of our algo-

rithm, we could also confirm the benefits of our sweep-line

implementation when large state spaces are computed.

V. RELATED WORKS

A. Verification of security protocols

There are many tools dedicated to the modelling and

verification of security protocols as [3], [19]. Most of them

limit possible kinds of attacks or limit in their model

language how addresses of agents can be manipulated in

ad-hoc protocols (using arithmetic operations). Paper [20]

presents different cases study of verifying security protocols

with various standard tools. To summarise, there is currently

no tool that provides all the expected requirements.

A distributed memory algorithm with its tool for verifica-

tion of security protocols is described in [21]. The authors

use buffering principle and employ a cache of recently sent

states in their implementation to decrease the number of

messages sent. Unfortunately, the verification of temporal

properties is not supported due to the difficulties of combin-

ing the parallel checking with the symmetry reduction. [22]

allows to verify some properties about some classes of pro-

tocols for an infinite number of sessions and with some pos-

sibility of replay using a process algebra. But no logic can

be used here and each time a new property is needed, a new

theorem needs to be proved. That can be complicated for the

maintenance of the method. Also, the method cannot be ap-

plied to, e.g., the Yahalom protocol. On the contrary, our ap-

proach is based on a modelling framework with explicit state

space construction, that is not tied to any particular appli-

cation domain and our implementation using Python allows

us to manipulate any kind of data-structures are used for the

modelling protocols. Using Python has been shown a good

trade-off between quick modelling and performance [12] and

model compilation approaches can be successfully applied

to compete with state-of-the-art tools as shown in [23]. So,

instead of using a dedicated framework, our approach mainly

relies on the particular structure of security protocols.

B. Distributed LTL checking

The main idea of most known approaches to the

distributed memory state space generation is similar to the

naive algorithm [24]. More references can be found in [5]

and in [25] for high-level Petri nets. Close to our hashing

technique, [26] presents a hashing function that ensures



that most of the successors are local. For load balancing,

[27] presents a new dynamic partition function scheme that

builds a dynamic remapping, based on the fact that the

state space is partitioned into more pieces than the number

of involved machines. When load on a machine is too high,

the machine releases one of the partitions it is assigned and

if it is the last machine owning the partition it sends the

partition to a less loaded machine.

Very close to our idea, we can cite [28] which used a

partition function that enables cycles for a parallel NDFS

algorithm to be local only (as for us) using SCC in the

formula Büchi automata. The limits of the method are the

cost of this function and furthermore the number of SCCs

which is not enough to scale. [29] presents a distributed

algorithm for SCC computation. In our work, all SCC are

purely local, which is easier and more efficient to handle.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

There are now many tools that check the security of

cryptographic protocols. But none is sufficient and adaptable

for complicated scenarios. Using LTL for such applications

is not new but we have exploited characteristics of these

models to structure the parallel computations accordingly.

Our solution is to use the well-structured nature of security

protocols to choose which part of the state and formulas

is really needed for the partition function and to empty the

data-structure at each super-step of the parallel computation.

Our solution also entails automated classification of states

and dynamic mapping of classes to processors. We find that

our method ensures good acceleration and allows to find

small counterexamples due to its breadth-first search global

strategy but DFS stategy on each processor. Furthermore, we

find that our method to balance states does indeed achieve

better network use, memory balance and runs faster than

methods based on direct states exchanges.

The common method for LTL checking is using a Büchi

automaton. Using proof-structures instead theoretically

has the same worst-case time but it ensures to distinguish

easily local and global successors for the distribution. We

have demonstrated techniques that prove the feasibility

of this approach and showed its potential. Key elements

to our success were (1) an automated states classification

that reduces cross transitions and memory footprint, while

improving the locality of computation (2) using global

barriers (which is a low-overhead method) to compute a

global remapping of states and thus improve balancing

workload, achieving a good scalability.

B. Future work

For future work we think about extending the logic and

increasing the performances. First, proof-structures were

used to check CTL* formula in [9]. We are currently

working to extend our algorithm for this logic and we may

also consider Past operators (in the manner of [30]) that

proved to be useful for protocols [4]. Second, and more

pratical: we want to have a tool that could translate HSPSL

models [4] into ABCD ones since HSPSL is mainly used by

the community; It will also allow us to test our algorithm

on different attackers than the Dolev-Yao one. To optimize

the performance, using a specific library as Divine [31] and

model-compilation [23] will also be considered.

We are also working on the formal proof of our algorithm.

Proving a verification algorithm is highly desirable in order

to certify the truth of the delivered diagnostics. Such a

proof is possible because, thanks to the BSP model, our

algorithm remains simple in its structure which allows us

to use a specific tool for checking BSP algorithms using

Hoare logic [32]. Finally, we would like to generalise our

present results by extending the application domain. In the

security domain, we will consider more complex protocols

with branching and looping structures, as well as complex

data types manipulations. In particular, we will consider

protocols for secure storage distributed through peer-to-peer

communication [33], [34] because it is currently modeled

using ABCD and generates large state spaces.
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