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ABSTRACT 
SmartNet is a scheduling framework for  heterogeneous systems. Preliminary conservative simulation results for  one of 

the optimization criteria, show a I .21 improvement over Load Balancing and a 25.9 improvement over Limited Best Assign- 
ment, the two policies that evolved f rom homogeneous environments. SmartNet achieves these improvements through the im- 
plementation of several innovations. I t  recognizes and capitalizes on the inherent heterogeneity of computers in today’s 
distributed environments; it recognizes and accounts for  the underlying non-determinism of the distributed environment; it 
implements an original partitioning approach, making runtime prediction more accurate and useful; it effectively schedules 
based on all shared resource usage, including network characteristics; and it uses statistical andfiltering techniques, making 
a greater amount of prediction information available to the scheduling engine. In this paper, the issues associated with au- 
tomatically managing a heterogeneous environment are reviewed, SmartNet’s architecture and implementation are de- 
scribed, and performance data is summarized. 

1 Introduction 

1.1 Background 
Shared, heterogeneous computing environments 

abound. The USA’s National Science Foundation super- 
computing centers, NASA’s EOSDIS centers [An94], and 
the workstation clusters of engineering firms are examples 
of such. At any one time in these environments, many dis- 
tinct programs-most with predictable behaviors-are 
contending for resources. In this paper, we focus on the 
shared heterogeneous environments that are used for exe- 
cuting I/O-intensive and/or compute-intensive applica- 
tions. 

In the above environments, users assign their jobs to 
the various computers in a multitude of ways. In general, 
these assignment methods can be divided into 3 classes: 

Manual-Users log directly into the computers 
where their job will execute; 

Resource Management Systems (RMSs)-Us- 
ers submit jobs to an RMS client running on 
their local machine. The jobs are then as- 
signed automatically to lightly loaded ma- 
chines [Br911 [Mh961 [Dall; and 

Distributed Operating Systems (Dist0Ss)- 
The user views the shared environment as a 
single computing resource [Br89] [Act361 
[Tat311 [Ro88]. 

When manually submitting their jobs, users often con- 

(1) The loads on the various machines: and 

(2) their understanding of their program’s performance 

Theoretical papers have argued for years that schedul- 
ers operating in heterogeneous environments must account 
for both elements. However, policies used in most of to- 
day’s RMSs and DistOSs use the first element exclusively 
in assigning jobs to machines. An exception, HeNCE, uses 
only the second element. 

A good scheduling framework for a heterogeneous en- 
vironment must account for both of the above elements. In 
addition, it must have the flexibility to incorporate different 
measures of schedule “goodness.” For example, in some 
environments, the most important criteria is to maximize 
throughput, whereas, in others, it is to minimize the aver- 
age penalty ratio. 

We present a simple example to motivate why a good 
scheduler must account for both elements 1 and 2 listed 
above. In this example, we compare the time at which the 
last job finishes-meaning the time when all jobs have 
completed-for three schedulers using different schedul- 
ing policies. We call these the OLB Scheduler, the LBA 
Scheduler, and the Smart Scheduler. The OLB Scheduler, 
like those found in RMSs and DistOSs, uses Opportunistic 
Load Balancing (OLB) and assigns the next queued job to 
the next available machine. The LBA Scheduler uses only 
element 2, assigning each job to the machine where it is 
predicted, assuming that all machines are unused, to exe- 

sider the following two elements: 

on the different platforms. 
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cute the fastest (a policy referred to as Limited Best As- 
signment or LBA). The Smart Scheduler assigns jobs to 
machines based both upon their expected performance on 
the various pla.tforms as well as the loads on those ma- 
chines. For simplicity in this example, we assume that ev- 
ery job executes for exactly the predicted amount of time. 
In addition, we assume that the jobs all arrive siimulta- 
neously and are queued in the order given in Table 1 .  

Table 11 : Job execution lengths. 

MachineA 
Machine B 
Machine C 

I JOBS I MACHINES 

jobl (41 job4 (Is)] 
job2 (3 
iob3 (911 

I I I 

1 2  I l1 
I I I 

I ‘I1 
I ‘I 

Figure 1 compares the different schiedulers. The OLB 
Scheduler assigns Jobs 1 and 4 to Machine A, Job 2 to Ma- 
chine B, and Job 3 to Machine D, resulting in the last job 
completing at time 15. The LBA Scheduler assigns Jobs 1, 
2 and 3 to Machine A and Job 4 to Machine B, resulting in 
the last job completing at time 13. The: Smart Scheduler, 
accounting for both machine load and the affinity of certain 
jobs for particular machines, assigns Jobs 1 and 3 to Ma- 
chine A, Job 4 to Machine B and Job 2 to Machine D. re- 
sulting in the last job completing at time 8. 

Machine B /job4 (411 
Machine C. bob2 (611 

1 -  I 

SmartNet schedule 

- 
Figure 1. Schedule comparison. 

vice provided to users. Similarly, policies such as that used 
by the LBA Scheduler [Be941 assume that a job has sole 
use of its environment. Unfortunately, excellent single user 
performance does not translate to similar performance in 
most economically feasible, that is shared, environments. 
In contrast, schedulers that take both elements 1 and 2 into 
account deliver superior performance in the shared envi- 
ronment. The Smart Scheduler, in the small example 
above, cut the total runtime by approximately a factor of 2 
over that obtained when only one element was considered. 

In this paper, we introduce a scheduling framework for 
heteirogeneous computing. We then use this framework to 
demonstrate the performance of a scheduler that takes into 
account both affmities and loads, meaning elements 1 and 
2 above. This framework is called SmartNet [C0941 [E951 
Fr941 [He951 and has b e n  developed by the Heteroge- 
neous Computing Team at the US Navy’s facility at the 
NCCOSC RDTE Division in San Diego. 

SmartNet is designed (1) to act as a stand-alone system 
for managing jobs and resources in a heterogeneous envi- 
ronment; (2) to act as a coordinator of RMSs by providing 
a means by which they can exchange jobs and exploit the 
advantages of the Sman.Net scheduling framework; and (3) 
assist individual RMSs to better manage their own hetero- 
geneous environment. SmartNet has many useful features 
including its ability to account for both machine loads and 
job/machine affinity; to leardestimate the runtime distri- 
butions of jobs and provide facilities for users to enter ini- 
tial predictions; and to be utilized in a non-intrusive way. It 
has been integrated with CONDOR [He951 and we have 
worlked with both IBM and Cray Research to integrate 
LoaclLeveler and NQE with SmartNet. SmartNet is modu- 
lar, permitting the easy incorporation of new optimization 
criteria. SmartNet is in use at many computing centers 
across the USA. 

1.2 Organization of Paper 
The purpose of this paper is to illustrate how a sched- 

uling framework, such as SmartNet, can effectively man- 
age a heterogeneous computing environment. We first 
describe our heterogeneous scheduling framework, Smart- 
Net, presenting its architecture in Section 2. In Section 3 
we review the current state of its present implementation 
and provide initial performance results. Finally, in Section 
4, we summarize our experiences with SmartNet. 

2 Architecture 
SmartNet is designed as an inclusive system for man- 

aging jobs in a heterogeneous environment. Since hetero- 
geneous system management is a relatively new research 
area, SmartNet’s architectural design leads its implementa- 
tion. In this section, we present SmartNet’s architecture: 
the state of its implementation will be discussed in the next 
section. 

Schedulers based upon OLB techniques only ensure 
that each machine stays busy rather than the quality of ser- 
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Figure 2: Architecture of SmartNet. 

2.1 SmartNet 

verview 
SmartNet is a scheduling framework for managing 

jobs and resources in a heterogeneous computational envi- 
ronment. As such, it not only implements scheduling algo- 
rithms, it also provides the information necessary for these 
algorithms to make wise decisions. SmartNet is designed to 
measure both machine affinity and loads, and provide this 
information to its scheduling algorithms. SmartNet im- 
proves the performance of the algorithms by using en- 
hanced predictions of job runtimes and resource use, by 
providing flexible and efficient methods for determining 
the best schedule satisfying job requirements, and by pro- 
viding a means whereby the schedule can be implemented. 
It accomplishes this by fumishing the functionality needed 
to perform the above actions, as well as that functionality 
needed to interface SmartNet with its administrator, its us- 
ers, and with the heterogeneous environment Smart.Net is 
designed to manage. 

SmartNet’s basic functional architecture is shown in 
Figure 2. SmartNet contains a controller and a set of inter- 
faces that manage its different components. The hardware 
and RMSs managed by SmartNet are connected to it via 
these interfaces. In addition, Smarr.Net has interfaces for 
communicating with users and the administrator. The users 
wish to utilize SmartNet to execute their jobs more quickly. 

The administrator uses his interface to ensure that Smart- 
Net is satisfying the needs and requirements of the facility. 

What is a scheduling framework? 

Being a scheduling framework, SmartNet is neither an 
RMS nor “simply” a scheduler. A scheduler only deter- 
mines where to run each job, leaving the gathering of the 
information it needs and the implementation of its schedule 
up to some other mechanism. In a practical sense, RMSs 
accept requests to execute a job or a sequence of jobs, as- 
sign the jobs to particular machines, and monitor their exe- 
cution. RMSs therefore contain a scheduler. Almost 
without exception, RMSs use OLB to decide where to exe- 
cute each job. 

Though SmartNet incorporates an RMS, it is more 
than an RMS. SmartNet is designed literally to serve as a 
framework, not only for executing applications in produc- 
tion environments but as an extensible and flexible re- 
search tool. Besides scheduling, it also provides a means 
whereby the state of the virtual heterogeneous machine 
(VHM) and the jobs being executed can be monitored. It 
also provides sophisticated means for learning, intelligent 
decision making, and accounts for the uncertainty rampant 
in distributed environments. Perhaps most importantly, it is 
designed to be very modular, permitting it to adapt readily 
to different environments, as well as to incorporate and 
make available many different scheduling criteria and 
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search strategies for managing its operating environiment’s 
resources and jobs. 

2.2 Innovations 
There have been many different attempts at distributed 

computing over the years. Smart.Net differs from these oth- 
er attempts in six distinct ways, most of them unique to 
Smarr.Net. These are (1) how Smart.Net recognizes atnd ex- 
ploits heterogeneity, (2) its development of what we call 
Compute Characteristics, (3) SmartNet’s ability to handle 
uncertainty, (4) how it accounts for the slharing of resources 
in a distributed environment, (5) its view of optimization 
criteria(s), and (6) the methods employed by it to search the 
scheduling space. 

Heterogeneity 
Various researchers have recognized the heterogeneity 

inherent in different computer architectures. For example, 
some architectures are particularly suited for data parallel- 
ism, whereas others, for control parallelism. Indeed, a com- 
puter’s architecture can be classified even further by 
looking at the characteristics that affect the computer’s per- 
formance when the class of jobs is varied. We call this “re- 
source heterogeneity”. Examples of suclh heterogeneity are 
to be found in cache size, disk speed, disk size, memory 
size, memory speed, internal data architecture, organiza- 
tion and interconnection of processors, and network access 
bandwidth. The execution rate of some jobs may be direct- 
ly proportional only to processor speed, while others also 
depend upon network access latency. 

I SmartNet I 

Figure 3. SmartNet as an RMS/resource 
coordinator. 

Typically, specific computers perform very well for 
certain applications but not as well for others. Figure 5 
gives an illustrative example. The performance of three 
machines across a wide range of jobs is presented. (We re- 
alize that it isn’t mathematically possible to usefully and 
uniquely organize programs with regards to “types” that 
can be represented along the real line. Even so, the illustra- 
tive nature of Figure 5 still holds.) M,xhine A performs 

well for scalar jobs, as well as for certain types of data par- 
allel programs. Machine B performs well for data parallel 
programs but not for those that are control parallel. Ma- 
chine C performs very well for control parallel programs 
but not elsewhere. 

Freund, the leader of the SmartNet design team, was 
aware of such performance differences and hypothesized 
that a distributed collection of machines with diverse archi- 
tectures would, as in the example above, be able to provide 
a collective performance equal to that of the best machine. 
For example, if a program is largely data parallel, it would 
be executed on a machine similar to Machine B. If, instead, 
the program was largely control parallel, it would be placed 
instead on a machine of architecture similar to that of Ma- 
chine c. Thus the heavy grey line of Figure 5 represents the 
collective performance of a “distributed machine.” The 
peak capability of this machine corresponds to the aggre- 
gate of the performance peaks of the machines it is com- 
posed of. SmartNet is designed with this philosophy in 
mind. (Though there is overlap, note that the problem 
SmartNet addresses is very different from research that is 
looking at the scheduling of a single heterogeneous appli- 
cation in a distributed environment.) 

Compute Characteristics 
The Smart.Net design team very quickly recognized 

that something had to be done with regards to making the 
runtime of a job more predictable. With certain exceptions, 
the runtimes of most computer jobs are not very predictable 
and so, not very useful. The runtime distributions of such 
jobs typically have a very wide variance and are multi- 
modal in nature. See Figure 4. Though it is easy to obtain 
statistical averages, and even the distribution, associated 
with a job’s runtime, their usefulness in scheduling is de- 
batable because of this wide variance and multi-modality. 

r 

Figure 4: Typical job runtime distribution. 

Some means had to be found for partitioning a job’s 
runtime into quantities useful for its scheduling. The 
SmartNet team decided on apartitioning scheme that is still 
the basis of SmartNet’s success. They divide up the run- 
time distribution into pieces delineated by Compute Char- 
acteristics. Compute Characteristics are most easily 
defined in terms of deterministic jobs executing in a quies- 
cent system with no wait states (we relax this deterministic 
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irmance 
distributed machine 

machine B 

t 
(scalar) (control parallel) (data parallel) program type 

Figure 5: Computer heterogeneity. 

restriction in the next section, Uncertainty). Also, to obtain 
a clear understanding of Compute Characteristics, we ex- 
pand the typical definition of parameter to include all data 
input by a job. For example, if a job requires the name of a 
file from which data is read, the parameters of the job in- 
clude the data in that input file. The Compute Characteris- 
tics of the job then are all of those parameten that influence 
the runtime of that job. A specific set of values for those 
parameters represents a Compute Characteristic Operating 
Point, or CCOP. SmartNet’s scheduling algorithms obtain 
a runtime distribution from a database by supplying the 
CCOP in the query. The database manager obtains the dis- 
tribution using a combination of actual experiential data as 
well as functions of Compute Characteristics that have 
been (optionally) supplied by the programmer. When the 
programmer does not specify the functions, numerical 
analysis techniques are applied to the experiential data to 
find closely fitting curves. Figure 6 shows a job with a sin- 

Figure 6: Partitioned runtime distribution. 

gle Compute Characteristic and three different CCOPs. 
For many jobs, it is easy for the programmer to specify 

the Compute Characteristics [Ki96]. For commercial soft- 

ware, where Compute Characteristics are not known a pri- 
ori, multi-modal distribution analysis is applied. 

Uncertainty 
The distributed environment is inherently non-deter- 

ministic. Machines are operating asynchronously, sharing 
resources-such as file servers and networks-and execut- 
ing a host of different jobs simultaneously. In fact, even a 
single machine is non-deterministic in a practical sense as 
interrupts (some from external sources), system mainte- 
nance routines and handlers are all executing at a level of 
complexity that mimics a non-deterministic system. 

The developers of SmartNet have not just recognized 
this non-determinism but have succeeding in tracking and 
accounting for it. By accounting for uncertainty, SmartNet 
further improves its performance over systems that would 
assume a purely deterministic environment. 

Shared Resource Usage 
Much work has been done in the multi-tasking unipro- 

cessor realm on the problem of allocating shared resources 
such as memory, the CPU, and disk space. Similarly, a sub- 
stantial body of CPU-based scheduling work exists for the 
multiprocessor realm (theoretical and applied) as well as in 
the distributed realm (theoretical). SmartNet, however, has 
pioneered the allocation of other shared resources, in par- 
ticular the network, in the distributed processing arena. 
Hensgen, Kidd, and Campbell of the SmartNet team initi- 
ated the generalization of this work to include other shared 
resources such as fie servers and memory. [Ki941 

When considering the simultaneous allocation of mul- 
tiple shared resources, several issues must be resolved hav- 
ing to do with the different possible ways of sharing 
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resources. These different methods include serially reusing 
(e.g., processors), concurrently using (e.g., memory), mu- 
tually exclusive (e.g., non-multiplexed networks), and pre- 
emptably (e.g.? disk space). Also, before allocating these 
resources in an intelligent way, the system needs im esti- 
mate or measure of use for each of the particular resources. 
This estimate can range from fine-grained to large-grained. 
The problem with fine-grained usage measuremenlts in a 
shared heterogeneous environment is that they are inot de- 
terministic. Once an estimate of use for each of the resourc- 
es is available, then scheduling algorithms that assign jobs 
to machines must account for the sharing of all of thiese re- 
sources. 

Optimization Engine and Criteria 
The Smart.Net Scheduler is modular and designed to 

implement any optimization criteria thoat satisfies the fol- 
lowing requirements: (1) it fulfills the Scheduler’s interfac- 
ing requirements, and (2) it uses information that can be 
obtained from SmanNet’s database. These requirements 
are very liberal as the information in the database is large, 
containing not only instantaneous values but statistical mo- 
ments and state estimates as well. 

Search Engine and Algorithms 
In general, for any group of machines and set of jobs 

with dependencies and constraints, a large number of 
scheduling options exist. (A schedule is considered a solu- 
tion if it satisfies the dependency and constraint require- 
ments of the jobs being run.) The optimization criteria 
defines the metric of performance and makes it possible to 
select a “good schedule. Usually, finding an optimal 
schedule corresponds to solving a general Integer Program- 
ming Problem. Unfortunately, solving such a problem is 
NP-complete IGa791. To this end, SmartNet has included 
in its Scheduler both optimization and search engines; the 
search engine explores the solution space for a good sched- 
ule as defied by the criteria in the optirnization engine. As 
with the optimization engine, the search engine is modular 
and designed to implement any search algorithm that meets 
its relatively simple interfacing requirements. Some exam- 
ples of different search algorithms already implemented in 
SmartNet include greedy, fast greedy, and evolutionary 
programming based algorithms. 

Prior to SmartNet’s development, a1 fair amount of the- 
oretical work had been done in the search algorithim area 
for processor scheduling, particularly in finding worst case 
bounds on the goodness of schedules obtained from partic- 
ular algorithms. Unfortunately, before SmartNet, this work 
had little application because its undeIlying operating as- 
sumptions could not be practically satisfied [Ib77]. By us- 
ing Compute Characteristics, measures of heterogeneity, 
uncertainty, and additional information concerning shared 
resources, SmartNet has been able to capitalize on and im- 
prove upon this earlier theoretical work.. 
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2.3 System Description 
The Smart.Net framework is illustrated in Figure 2. 

SmartNet’s core processes consist of the Scheduler, the 
SmartNet Database, the Learning/Accounting process, and 
the Controller. Three types of information-flows are 
shown: Requests, Control information, and Data paths. Re- 
quests differ from Control and Data in that they require re- 
sponses. Requests are represented as dashed lines; Control 
information is denoted by thin solid lines; and Data paths 
appear as thick solid lines. 

On the User side, SmartNet has two types of interfac- 
es, one to the user-the person who is submitting their ap- 
plication-and the other to the Smarr.Net administrator- 
the person whose job it is to make sure everything is run- 
ning correctly. These interfaces are termed, respectively, 
the :Execution Interface and the Administrative Interface. 

On the Resource side, SmartNet interfaces with the 
various compute facilities that it controls either partially or 
completely. It does this via the Smart.Net Controller. These 
compute facilities can include machines, resources, other 
executing copies of SmartNet, and RMSs. Smart.Net is de- 
signed (1) to allow redundancy in critical environments: (2) 
to operate in environments where it has either partial or 
complete control over processor, network and other re- 
somrces; (3) to be integrated with an RMS that will use 
SmartNet as a scheduling advisor; and (4) to serve as a co- 
ordinator for multiple RMS environments. 

3 Implementation and Performance 
There are two current implementations of SmartNet: 

the released version, which is being used by computational 
researchers outside of the SmartNet team, and the experi- 
mental version, which is a research and development ver- 
sion. The released version is at SCI level 2. After features 
have been completely evaluated and tested in the experi- 
mental version, they are migrated into the released version. 
In tlhis section we document the experimental version; doc- 
umentation on the released version can be found in the 
SmmNet User’s Manual. 

Prototypes of each of the modules shown in Figure 2 
have been implemented and we are continuing to expand 
on their functionality. 

On the User side, both Execution and Administrative 
Interfaces have been implemented. Graphical as well as 
command-line versions exist for both. The graphical ver- 
sion is implemented using TCL/TK. Via the execution in- 
terface, the user can specify that, at a maximum, only a 
subset of the available machines should be used for his job. 
Instead of a single job, the user can also request that a set 
of jobs with sequential constraints be executed where the 
jobs can, potentially, have different user-specified priori- 
ties. The administrator specifies, via the Administrative In- 
terface, the mix of optimization criteria and search 
algorithms to be used. The administrator can also override 
job priorities. 
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There are two currently implemented optimization cri- 
teria: (1) maximizing throughput by minimizing the time at 
which the last job is expected to finish, and (2) minimizing 
the average expected runtime for each job. Many search en- 
gines have been implemented. To date these include an 
O(n) greedy algorithm, three O(n2) greedy algorithms 
[Ib77], an evolutionary algorithm Fo941, and a hybrid be- 
tween genetic programming and simulated annealing 
[Sh96]. Initial algorithms are being used to account for pri- 
orities, sequencing constraints, shared data, and other 
shared resources besides computers and networks (such as 
individual processors and memory). However, we are cur- 
rently implementing more sophisticated algorithms which 
promise substantial improvements. 

All of the search engines above make use of expected 
runtimes statistics that are stored in the database. The data- 
base contains expected usage times for each of the resourc- 
es, including computers and networks, and for each job and 
its CCOPs. The database contains both theoretical and ex- 
periential estimates. The administrator and progmmers 
can enter formulas, that is, functions of Compute Charac- 
teristics, that correspond to expected resource usage. 

Arch. Mix 1 arch. 1 

Table 2. Several scheduling algorithms, numbers 
normalized to super-optimal. 

Arch. Mix 

LBA 

1 I 5001100 1 50011100 I 1000/500 I 

26.5 27.5 105.5 

Currently the learning algorithms are very rudimenta- 
ry. We are in the process of expanding the usage of Com- 
pute Characteristic and searching for and recording what 
we term “hidden” Compute Characteristics. There is a 
“rogue job” handling facility. When jobs execute much 
longer than they were originally expected to, several differ- 
ent actions are possible. The particular action chosen de- 
pends upon what was specified by the user and/or 
administrator. Either the job can complete, iteratively be- 
ing given additional increments of time and possibly caus- 
ing re-scheduling of other jobs; an electronic mail can be 
sent to both the user and administrator; or the job can be 
checkpointed and an electronic mail sent to the user de- 
scribing how to re-submit the checkpointed job. 

The controller reacts to events such as job completion, 
jobs executing well beyond the expected time, new job re- 
quests, and machines or networks going down or being 

Arch. Mix I arch. 1 

added. These events cause new schedules to be computed 
and jobs to be restarted, sometimes from the beginning 
and sometimes from a checkpointed state. The controller is 
also responsible for relaying information between the re- 
sources and the Execution and Administrative Interfaces. 

We have integrated several commercial runtime man- 
agement systems with SmartNet, including CRAY’s NQE, 
University of Wisconsin’s Condor, and IBM’s LoadLevel- 
er [He95]. We have also built a library that can be used by 
other commercial vendors to interface SmartNet with their 
RMSs. We have not yet attempted to run multiple, commu- 
nicating copies of SmartNet, but intend to do so soon using 
the ISIS toolkit [Bi87]. 

Table 3. Several scheduling algorithms, numbers 
normalized to super-optimal. 

Arch. Mix I 
I 

I I I I I 
job/ 1 machines 1 500/100 I 500/100 I 1000/500 I 

I OLB I 1.45 I 1.28 I 1.83 I 

I I 1 MinMin 1 1.13 1 
(SmartNet) 

3.1 Preliminary Performance Results 
We have initiated a set of simulations designed to ex- 

pose the effectiveness of the SmartNet scheduling frame- 
work. We constructed several scheduling problems that 
vary in both the number of jobs and machines, and the 
amount of heterogeneity. For each problem, the number of 
jobs and machines vary between 2 and 1000 and 2 and 500, 
respectively. Two modes of minor heterogeneity were em- 
ployed, perfectly scalable architectures, and mixed archi- 
tecture. Two machines, A and B, have perfectly scalable 
architectures-that one job runs faster on Machine A than 
on Machine B implies that all jobs run faster on Machine 
A. If two machines A and B have mixed architectures, 
some jobs may run faster on A, while other jobs run faster 
on B. 

We judged the algorithms on how well they minimized 
the time at which the last job completes. We ran 100 differ- 
ent runs for each number of job/machine pairs. Since ob- 
taining an optimal schedule is an NP-complete problem, 
we normalized our data using a value obtained from a low- 
er bound algorithm. The lower bound algorithm does not 
produce valid schedules, but obtains a lower bound on the 
time at which the last job can complete. Table 3 shows that 
with 500 jobs scheduled on 100 mixed architecture ma- 
chines, SmartNet’s schedules (MinMin) complete the last 
job in 6% more time than the lower bound, OLB completes 
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the last job in 28% more time than the lower bound and 
LBA requires 26,500% more time. The averages of the 
time of completion for the last job is shown in Table 2. 

4 Summary 
In summary, SmartNet achieves improvements in per- 

formance over other existing RMSs and promises mlore in 
realistic environments. It accomplishes this (1) by more 
fully utilizing tihe strengths, meaning the heterogeneity, of 
the computers amd jobs in its environment, (2) by partition- 
ing the runtime space of its jobs to maxiimize their piredict- 
ability, (3) through the innovative use of the inherent 
uncertainty undlerlying the distributed environment, (4) by 
compensating for the use of many shared resources when 
scheduling a job to a processor, and (5) by collecting and 
having available a greater array of useful data for the 
scheduling engine. 

SmartNet has been under development for about 8 
years. In its present implementation, it is used in a variety 
of application areas including biological research, NASA 
distributed computing, and weather modeling. It has been 
successfully integrated with RMSs incliuding CONDOR, 
IBM’s LoadLeveler, and CRAY’s NQE. It is supported by 
strong research[, development and confguration manage- 
ment teams. 

Though we anticipate increasing use of SmartWet by 
production and research communities, SmartNet is still an 
evolving product. Some of the directions to be undertaken 
by SmartNet’s research and development teams will be to 
further improve its ability to schedule resources and to be- 
come a coordinator of RMSs. It will achieve this by con- 
tinuing to pursue R&D with an eye tloward developing 
better search algorithms for optimizing ]performance crite- 
ria: improving SmartNet’s ability to measure, predict and 
account for changes in the system state: establishing stan- 
dards for RMS communication and control; continuing re- 
search into the use of various granularity and types of 
shared resources; and by broadening SmartNet’s applica- 
tion domain. 
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