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RELATION GRAPHS AND PARTIAL CLONES ON A

2-ELEMENT SET

MIGUEL COUCEIRO, LUCIEN HADDAD, KARSTEN SCHÖLZEL,

AND TAMÁS WALDHAUSER

Abstract. In a recent paper, the authors show that the sublattice of partial
clones that preserve the relation {(0, 0), (0, 1), (1, 0)} is of continuum cardinal-

ity on 2. In this paper we give an alternative proof to this result by making
use of a representation of relations derived from {(0, 0), (0, 1), (1, 0)} in terms
of certain types of graphs. As a by-product, this tool brings some light into the

understanding of the structure of this uncountable sublattice of strong partial
clones.

1. Introduction

Let A be a finite non-singleton set. Without loss of generality we assume that
A = k := {0, . . . , k − 1}. For a positive integer n, an n-ary partial function on k is
a map f : dom (f) → k where dom (f) is a subset of kn called the domain of f . If

dom (f) = kn, then f is a total function (or operation) on k. Let Par(n)(k) denote

the set of all n-ary partial functions on k and let Par(k) :=
∪
n≥1

Par(n)(k). The set

of all total operations on k is denoted by Op(k).

For n,m ≥ 1, f ∈ Par(n)(k) and g1, . . . , gn ∈ Par(m)(k), the composition of f

and g1, . . . , gn, denoted by f [g1, . . . , gn] ∈ Par(m)(k), is defined by

dom (f [g1, . . . , gn]) := {~a ∈ km : ~a ∈
n∩

i=1

dom (gi) and (g1(~a), . . . , gn(~a)) ∈ dom (f)}

and

f [g1, . . . , gn](~a) := f(g1(~a), . . . , gn(~a))

for all ~a ∈ dom (f [g1, . . . , gn]).
For every positive integer n and each 1 ≤ i ≤ n, let eni denote the n-ary i-

th projection function defined by eni (a1, . . . , an) = ai for all (a1, . . . , an) ∈ kn.
Furthermore, let

Jk := {eni : 1 ≤ i ≤ n}
be the set of all (total) projections.

Definition 1. A partial clone on k is a composition closed subset of Par(k) con-
taining Jk.

The partial clones on k, ordered by inclusion, form a lattice LPk
in which the

infinimum is the set-theoretical intersection. That means that the intersection of
an arbitrary family of partial clones on k is also a partial clone on k.

Examples.

(1) Ωk :=
∪
n≥1

{f ∈ Par(n)(k) : dom (f) 6= ∅ =⇒ dom (f) = kn} is a partial

clone on k.
1
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(2) For a = 0, 1 let Ta be the set of all total functions satisfying f(a, . . . , a) = a,
M be the set of all monotone total functions and S be the set of all self-dual
total functions on 2. Then T0, T1,M and S are (total) clones on 2.

(3) Let
T0,2 := {f ∈ Op(2) : [(a1, b1) 6= (1, 1), . . . , (an, bn) 6= (1, 1)]

=⇒ (f(a1, . . . , an), f(b1, . . . , bn)) 6= (1, 1)}.
Then T0,2 is a (total) clone on 2.

(4) Let

S̃ := {f ∈ Par(2) : {(a1, . . . , an), (¬a1, . . . ,¬an)} ⊆ dom (f)
=⇒ f(¬a1, . . . ,¬an) = ¬f(a1, . . . , an)},

where ¬ is the negation on 2. Then S̃ is a partial clone on 2.

Definition 2. For h ≥ 1, let ρ be an h-ary relation on k and f be an n-ary partial
function on k. We say that f preserves ρ if for every h×n matrix M = [Mij ] whose
columns M∗j ∈ ρ, (j = 1, . . . , n) and whose rows Mi∗ ∈ dom (f) (i = 1, . . . , h), the
h-tuple (f(M1∗), . . . , f(Mh∗)) ∈ ρ. Define

pPol (ρ) := {f ∈ Par(k) : f preserves ρ}.

It is well known that pPol ρ is a partial clone called the partial clone determined
by the relation ρ. Note that if there is no h× n matrix M = [Mij ] whose columns
M∗j ∈ ρ and whose rows Mi∗ ∈ dom (f), then f ∈ pPol (ρ).

Each partial clone of the form pPol (ρ) is closed under taking subfunctions, in
the sense that if a partial function f belongs to pPol (ρ), then so does any partial
function g such that dom (g) ⊆ dom (f) and g is the restriction of f to dom g.
Such partial clones are called strong partial clones. Note also that the total clone
on k determined by the relation ρ is Pol (ρ) := pPol (ρ) ∩ Op(k).

In the examples above Ta = Pol ({a}), M = Pol (≤), S = Pol ( 6=), T0,2 =

Pol ({(0, 0), (0, 1), (1, 0)}) and S̃ = pPol (6=), whereas Ωk is not a strong partial
clone. Here, for simplicity, we write ≤ for {(0, 0), (0, 1), (1, 1)} and 6= for {(0, 1), (1, 0)}.

The study of partial clones on 2 := {0, 1} was initiated by Freivald [7]. Among
other things, he showed that the set of all monotone partial functions and the set
of all self-dual partial functions are both maximal partial clones on 2. In fact,
Freivald showed that there are exactly eight maximal partial clones on 2. To state
Freivald’s result, we introduce the following two relations: let

R1 = {(x, x, y, y) : x, y ∈ 2} ∪ {(x, y, y, x) : x, y ∈ 2}
R2 = R1 ∪ {(x, y, x, y) : x, y ∈ 2}.

Theorem 3. ([7]) There are exactly 8 maximal partial clones on 2: pPol ({0}),
pPol ({1}), pPol ({(0, 1)}), pPol (≤), pPol (6=), pPol (R1), pPol (R2) and Ω2.

Note that the set of total functions preserving R2 form the maximal clone of all
(total) linear functions over 2.

Also interesting is to determine the intersections of maximal partial clones. It is
shown in [1] that the set of all partial clones on 2 that contain the maximal clone
consisting of all total linear functions on 2 is of continuum cardinality (for details
see [1, 10] and Theorem 20.7.13 of [14]). A consequence of this is that the interval
of partial clones [pPol (R2) ∩ Ω2,Par(2)] is of continuum cardinality.

A similar result, (but slightly easier to prove) is established in [9] where it is
shown that the interval of partial clones [pPol (R1)∩Ω2,Par(2)] is also of continuum
cardinality. Notice that the three maximal partial clones pPolR1, pPolR2 and Ω2

contain all unary functions (i.e., maps) on 2. Such partial clones are called S lupecki
type partial clones in [10, 17]. These are the only three maximal partial clones of
S lupecki type on 2.
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For a complete study of the pairwise intersections of all maximal partial clones of
S lupecki type on a finite non-singleton set k, see [10]. The papers [11, 12, 15, 18, 19]
focus on the case k = 2 where various interesting, and sometimes hard to obtain,
results are established. For instance, the intervals

[pPol ({0}) ∩ pPol ({1}) ∩ pPol ({(0, 1)}) ∩ pPol (≤),Par(2)]

and

[pPol ({0}) ∩ pPol ({1}) ∩ pPol ({(0, 1)}) ∩ pPol (6=),Par(2)]

are shown to be finite and are completely described in [11]. Some of the results in
[11] are included in [18, 19] where partial clones on 2 are handled via the one point
extension approach (see section 20.2 in [14]).

In view of results from [1, 9, 11, 18, 19], it was thought that if 2 ≤ i ≤ 5
and M1, . . . ,Mi are non-S lupecki maximal partial clones on 2, then the interval
[M1 ∩ · · · ∩Mi,Par(2)] is either finite or countably infinite. Now it is shown in [12]
that the interval of partial clones [pPol (≤)∩ pPol (6=),Par(2)] is infinite. However,
it remained an open problem to determine whether [pPol (≤)∩ pPol ( 6=),Par(2)] is
countably or uncountably infinite. This problem was settled in [3]:

Theorem 4. The interval of partial clones [pPol (≤)∩pPol ( 6=),Par(2)] that contain
the strong partial clone of monotone self-dual partial functions, is of continuum
cardinality on 2.

The main construction in proving this result was later adapted in [4] to solve
an intrinsically related problem that was first considered by D. Lau, and tackled
recently by several authors, namely: Given a total clone C on 2, describe the
interval I(C) of all partial clones on 2 whose total component is C.

In [4] we established a complete classification of all intervals of the form I(C),
for a total clone C on 2, and showed that each such I(C) is either finite or of
continuum cardinality. Given the previous results by several authors, the missing
case was settled by the following:

Theorem 5 ([4]). The interval of partial clones I(T0,2) is of continuum cardinality.

In this paper we provide an alternative proof of Theorem 5 based on a rep-
resentation of relations that are invariant under T0,2 by graphs. By defining an
appropriate closure operator on graphs, we will show that there are a continuum of
such closed classes of graphs, which in turn are in a one-to-one correspondence with
strong partial clones containing T0,2, thus providing an alternative proof of Theo-
rem 5. As we will see, this construction will contribute to a better understanding
of the structure of this uncountable sublattice of partial clones.

This paper is organized as follows. In Section 2 we recall some basic notions and
preliminary results on relations, graphs and lattices that will be needed throughout.
In Section 3 we introduce a representation of relations by graphs and show that the
lattice of strong partial clones containing T0,2 is dually isomorphic to the lattice
of “closed” classes of graphs. Motivated by this duality, in Section 4 we focus on
this lattice of closed classes of graphs and provide some preliminary results about
its structure. (The descriptions of this section are given in terms of graphs. Their
dual counterparts, i.e., descriptions in terms of strong partial clones will be part of
an extension to the current paper.)

2. Preliminaries

2.1. Relations. Let k ≥ 2 and k = {0, 1, . . . , k − 1}. An n-ary relation over k is a
subset ρ of kn. Sometimes it will be convenient to think of a relation ρ as an n×|ρ|
matrix, whose columns are the tuples belonging to ρ (the order of the columns is
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irrelevant). We can also regard ρ as a map kn → {0, 1}, whose value at (a1, . . . , an)
is 1 iff (a1, . . . , an) ∈ ρ. We shall need the following constructions for relations.

• If two relations ρ and σ, considered as matrices, can be obtained from each
other by permuting rows and adding or deleting repeated rows, then we say
that ρ and σ are esentially the same, and we write ρ ≈ σ. Notice that in
such a case we have pPol ρ = pPolσ.

• For ρ ⊆ kn and σ ⊆ km, the direct product of ρ and σ is the relation
ρ× σ ⊆ kn+m defined by

ρ× σ =
{

(a1, . . . , an+m) ∈ kn+m : (a1, . . . , an) ∈ ρ and (an+1, . . . , an+m) ∈ σ
}
.

• Let ρ ⊆ kn and let ε be an equivalence relation on {1, 2, . . . , n}. Define
∆ε (ρ) ⊆ kn by

∆ε (ρ) = {(a1, . . . , an) ∈ kn : (a1, . . . , an) ∈ ρ and ai = aj whenever (i, j) ∈ ε} .
We say that ∆ε (ρ) is obtained from ρ by diagonalization.

For a class R of relations on k, we say that R is closed if

1) if ρ, σ ∈ R, then ρ× σ ∈ R;
2) if ρ ∈ R, then ∆ε (ρ) ∈ R (for all appropriate equivalence relations ε);
3) ∅,k ∈ R (here k is understood as the total unary relation);
4) if ρ ∈ R and σ ≈ ρ, then σ ∈ R.

The closure of a class of relations R is the smallest closed class 〈R〉 that contains
R. This closure can be described in terms of first order formulas, too: σ ⊆ kn

belongs to 〈R〉 if and only if σ is definable by a quantifier-free primitive positive
formula over the set R∪{=}. Formally, σ ∈ 〈R〉 if and only if there exist relations

ρ1, . . . , ρt ∈ R∪{=} of arities r1, . . . , rt, respectively, and there are variables z
(j)
i ∈

{x1, x2, . . . , xn} (j = 1, . . . , t; i = 1, . . . , rj) such that

σ (x1, . . . , xn) =

t∧
j=1

ρj

(
z
(j)
1 , . . . , z(j)rj

)
.

The closure operator described above is exactly the Galois closure corresponding
to the Galois connection pPol-Inv between partial functions and relations: for every
class R of relations on k we have 〈R〉 = Inv pPolR.

2.2. Graphs. We consider finite undirected graphs without multiple edges. For
any graph G, let V (G) and E (G) denote the set of vertices and edges of G, respec-
tively. An edge uv ∈ E (G) is called a loop if u = v. A map ϕ : V (G) → V (H) is
a homomorphism from G to H if for all uv ∈ E (G) we have ϕ (u)ϕ (v) ∈ E (H).
We use the notation G → H to denote the fact that there is a homomorphism from
G to H. The homomorphic image of G under ϕ is the subgraph ϕ (G) of H given
by V (ϕ (G)) = {ϕ (v) : v ∈ V (G)} and E (ϕ (G)) = {ϕ (u)ϕ (v) : uv ∈ E (G)}. If
ϕ (G) is an induced subgraph of H, then we say that ϕ is a faithful homomorphism;
this means that every edge of H between two vertices in ϕ (V (G)) is the image of
an edge of G under ϕ. If ϕ : G → H is a surjective faithful homomorphism, then ϕ
is said to be a complete homomorphism. In this case H is the homomorphic image
of G under ϕ (i.e., H = ϕ (G)), and we shall denote this by G � H.

If ε is an equivalence relation on the set of vertices V (G) of a graph G, then we
can form the quotient graph G/ε as follows: the vertices of G/ε are the equivalence
classes of ε, and two such equivalence classes C,D are connected by an edge in
G/ε if and only if there exist u ∈ C, v ∈ D such that uv ∈ E (G). Note that a
vertex of G/ε has no loop if and only if the corresponding equivelence class is an
independent set in G (i.e., there are no edges inside this equivalence class in G).
There is a canonical correspondence between quotients and homomorphic images:
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the quotient G/ε is a homomorphic image of G (under the natural homomorphism
sending every vertex to the ε-class to which it belongs), and if ϕ : G � H is a
complete homomorphism, then H is isomorphic to the quotient of G corresponding
to the kernel of ϕ.

For n ≥ 0, the complete graph Kn is the graph on n vertices that has no loops
but has an edge between any two distinct vertices, i.e.,

E (Kn) = {uv : u, v ∈ V (Kn) and u 6= v} .
Note that this defines Kn only up to isomorphism (as the vertex set is not specified).
In fact, in the following we will not distinguish between isomorphic graphs. For
n = 0 we obtain the null graph K0 with an empty set of vertices, cf. [13]. For
n = 1 we get the graph K1 consisting of a single isolated vertex. We will denote
the one-vertex graph with a loop by L.

A homomorphism G → Kn is a proper coloring of G by n colors (regard the
vertices of Kn as n different colors; properness means that adjacent vertices of G
must receive different colors). The chromatic number χ (G) of a loopless graph
is the least number of colors required in a proper coloring of G. Observe that if
G → H, then χ (G) ≤ χ (H), since G → H → Kn implies G → Kn for all natural
numbers n. A graph is bipartite if and only if χ (G) ≤ 2, i.e., G is 2-colorable.

The girth of a graph is the length of its shortest cycle (if there is a cycle at all),
and the odd girth of a graph G is the length of the shortest cycle of odd length in
G (is there is an odd cycle at all, i.e., if G is not bipartite). The odd girth can
be described in terms of homomorphisms as follows. Let Cn denote the cycle of
length n without loops (just like Kn, this graph is defined only up to isomorphism).
Then the odd girth of a non-bipartite graph G is the least odd number n such that
Cn → G. It follows that if G → H, then the odd girth of H is at most as large as
the odd girth of G. Paul Erdős has proved that for any pair of natural numbers
(k, g) with k, g ≥ 3 there exists a graph with chromatic number k and girth g [6].

The disjoint union of graphs G and H will be denoted by G ⊕ H. Observe
that there exist natural homomorphisms G → G ⊕ H and H → G ⊕ H. By
k ·G := G⊕· · ·⊕G we denote the disjoint union of k copies of G (with 0 ·G = K0).
For classes K1 and K2 of graphs, let K1 ⊕K2 = {G1 ⊕G2 : G1 ∈ K1, G2 ∈ K2}.

2.3. Technical lemma on meet irreducible elements of lattices. In the last
section we will make use of the following result dealing with meet irreducible ele-
ments of complete lattices. For general background in lattice theory we refer the
reader to [5, 8].

Lemma 6. If L is a complete lattice and a ∈ L is meet irreducible but not com-
pletely meet irreducible then a does not have an upper cover in L.

Proof. Assume for contradiction that a ∈ L is meet irreducible but not completely
meet irreducible yet a does have an upper cover b in L. Since a is not completely
meet irreducible, there exists a set S ⊆ L such that

∧
S = a and a /∈ S. For

arbitrary s ∈ S we have a ≤ s∧ b ≤ b, thus either s∧ b = a or s∧ b = b, as b covers
a. However, a is meet irreducible, hence s∧b = a is impossible. Therefore, s∧b = b,
i.e., s ≥ b for all s ∈ S. This implies

∧
S ≥ b, which contradicts

∧
S = a. �

3. Representing relations by graphs

Let ρ0,2 be the binary relation ρ0,2 = {(0, 0) , (0, 1) , (1, 0)} ⊆ 22. We will rep-
resent relations in 〈ρ0,2〉 by graphs, and we will introduce an appropriate closure
operator on graphs such that the closed classes of graphs are in a one-to-one cor-
respondence with the closed subclasses of 〈ρ0,2〉, which are in turn in a one-to-one
correspondence with the strong partial clones containing pPol ρ0,2. This will allow
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us to give a simple proof for the fact that there is a continuum of strong partial
clones containing T0,2, and we will be able to describe the bottom and the top of
the lattice of these clones.

Let G denote the set of all (isomorphism types of) finite graphs without multiple
edges but possibly with loops. If G ∈ G is a graph with V (G) = {v1, . . . , vn}, then
we can define a relation rel (G) ⊆ 2n by

rel (G) (x1, . . . , xn) =
∧

vivj∈E(G)

ρ0,2 (xi, xj) .

Note that if we enumerate the vertices of G in a different way, then we obtain
a different relation; however, these two relations differ only in the order of their
rows, hence they are essentially the same. Clearly, rel (G) ∈ 〈ρ0,2〉 for every G ∈ G;
moreover, for any σ ∈ 〈ρ0,2〉 there exists G ∈ G such that σ and rel (G) are esentially
the same. Indeed, σ ∈ 〈ρ0,2〉 implies that σ is of the form

σ (x1, . . . , xn) =
t∧

j=1

ρ0,2
(
xuj

, xvj

)
∧

s∧
j=t+1

(
xuj

= xvj

)
,

where uj , vj ∈ {1, 2, . . . , n} (j = 1, . . . , s). Now if we define G ∈ G by V (G) =
{1, 2, . . . , n} and

E (G) = {u1v1, . . . , utvt} ,
then we have σ ≈ rel (G/ε), where ε is the least equivalence relation on V (G) that
contains the pairs (ut+1, vt+1) , . . . , (us, vs).

It may happen that nonisomorphic graphs induce essentially the same relation.
This is captured by the following equivalence relation. We say that the graphs
G,H ∈ G are loopvivalent (notation: G 	 H) if the following two conditions are
satisfied:

• G has a loop if and only if H has a loop;
• the subgraphs spanned by the loopless vertices in G and H are isomorphic.

Lemma 7. For any G,H ∈ G, we have rel (G) ≈ rel (H) ⇐⇒ G 	 H.

Proof. Let G ∈ G be an arbitrary graph with V (G) = {v1, . . . , vn}. Since ρ0,2 =
22\{(1, 1)}, a tuple a = (a1, . . . , an) ∈ 2n belongs to rel (G) if and only if a−1 (1) :=
{vi : ai = 1} ⊆ V (G) is an independent set. Thus the tuples in rel (G) are in a one-
to-one correspondence with the independent sets of G. Therefore, for any G,H ∈ G
with V (G) = V (H) = {v1, . . . , vn}, we have rel (G) = rel (H) if and only if G
and H have the same independent sets. This holds if and only if G and H have
the same loops and they have the same edges between loopless vertices. Indeed,
a vertex vi has a loop if and only if the set {vi} is not independent, and there is
an edge between loopless vertices vi and vj if and only if the set {vi, vj} is not
independent. Moreover, edges between a looped vertex and any other vertex are
irrelevant in determining independent sets, since a set containing a looped vertex
can never be independent.

Now let us determine the possible repeated rows of the matrix of rel (G). If
two vertices vi and vj both have a loop, then the i-th and the j-th rows of the
matrix of rel (G) are identical (in fact, they are constant 0, as a looped vertex
cannot belong to any independent set). On the other hand, if, say, vi does not have
a loop, then {vi} is an independent set, and the corresponding tuple a ∈ rel (G)
satisfies 1 = ai 6= aj = 0, hence the i-th and the j-th rows of the matrix of rel (G)
are different. Thus the matrix of rel (G) has repeated rows if and only if G has
more than one loop, and in this case the repeated rows are the constant 0 rows
corresponding to the looped vertices.
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From the above considerations it follows that for any G,H ∈ G we have rel (G) ≈
rel (H) if and only if G 	 H. �

We say that a class K ⊆ G of graphs is closed if

1) if G,H ∈ K, then G⊕H ∈ K;
2) if G ∈ K and G � H, then H ∈ K;
3) K0,K1 ∈ K;
4) if G ∈ K and G 	 H, then H ∈ K.

The closure of a class of graphs K ⊆ G is the smallest closed class 〈K〉 that
contains K.

Remark 1. For the following considerations it will be useful to observe that if a
graph G can be built by gluing together copies of given graphs H1, . . . , Hk, then
G ∈ 〈H1, . . . ,Hk〉. For instance, any graph can be built from edges, isolated vertices
and looped vertices, hence G = 〈K2,K1, L〉 = 〈K2〉. (We can omit K1, since it is
automatically included in every closed class by defintion, and we can omit L as it
is a homomorphic image of K2.)

Proposition 8. The lattice of closed subclasses of 〈ρ0,2〉 is isomorphic to the lattice
of closed subclasses of G.

Proof. For closed classes K ⊆ G and R ⊆ 〈ρ0,2〉, let

Φ (K) = {σ ∈ 〈ρ0,2〉 : ∃G ∈ K such that σ ≈ rel (G)} ;

Ψ (R) = {G ∈ G : rel (G) ∈ R} .
It is straightforward to verify that Φ (K) is a closed subclass of 〈ρ0,2〉 and Ψ (R) is
a closed subclass of G. It is clear that both Φ and Ψ are order-preserving maps,
hence it only remains to show that they are inverses of each other:

ΨΦ (K) = {G ∈ G : rel (G) ∈ Φ (K)} = {G ∈ G : ∃H ∈ K such that rel (G) ≈ rel (H)}
= {G ∈ G : ∃H ∈ K such that G 	 H} = K;

ΦΨ (R) = {σ ∈ 〈ρ0,2〉 : ∃G ∈ Ψ (R) such that σ ≈ rel (G)}
= {σ ∈ 〈ρ0,2〉 : ∃G ∈ G such that rel (G) ∈ R and σ ≈ rel (G)} = R.

�
Corollary 9. The lattice of strong partial clones containing T0,2 is dually isomor-
phic to the lattice of closed subclasses of G.

4. The lattice of closed classes

From now on, we focus on the lattice of closed subclasses of G. We will first
take a closer look at the bottom and the top of the lattice, and then we show that
the “middle part” embeds the power set of a countably infinite set, hence it has
continuum cardinality.

4.1. The bottom and the top. The smallest closed class is 〈∅〉 = 〈K1〉, which
is just the set of edgeless graphs. Any graph containing an edge has L (the graph
having only one vertex with a loop on it) as a homomorphic image, hence the second
smallest closed class is 〈L〉, which consists of graphs containing no edges between
loopless vertices. In the next lemma we prove that the third smallest closed subclass
of G is G0 ∪〈K1〉, where G0 stands for the class of all graphs containing at least one
loop.

Lemma 10. At the bottom of the lattice of closed subclasses of G we have the three-
element chain 〈K1〉 ≺ 〈L〉 ≺ 〈K2 ⊕ L〉 = G0 ∪ 〈K1〉. All other closed subclasses of
G contain 〈K2 ⊕ L〉.
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Proof. Let K ⊆ G be a closed class such that 〈L〉 ⊂ K. Then K contains a graph G
with an edge uv where u and v are distinct loopless vertices. We form the disjoint
union G ⊕ L, and then we identify all vertices of this graph except for u and v.
Then we obtain a graph G′ ∈ K with V (G′) = {u, v, w} and {uv,ww} ⊆ E (G′) ⊆
{uv,ww, uw, vw}. Deleting the edges uw and vw (if they are present) we arrive at
a graph G′′ with V (G′′) = {u, v, w} and E (G′′) = {uv,ww}. Since G′′ 	 G′, we
have G′′ ∈ K; moreover, G′′ is isomorphic to K2 ⊕ L, hence 〈K2 ⊕ L〉 ⊆ K. This
proves that 〈K2 ⊕ L〉 is the third smallest closed subclass of G.

It only remains to prove that 〈K2 ⊕ L〉 = G0 ∪ 〈K1〉. It is clear that G0 ∪ 〈K1〉 is
closed and K2⊕L ∈ G0∪〈K1〉, therefore 〈K2 ⊕ L〉 ⊆ G0∪〈K1〉. For the containment
G0 ∪ 〈K1〉 ⊆ 〈K2 ⊕ L〉, consider an arbitrary graph G ∈ G0 ∪ 〈K1〉. If G has no
loops, then G ∈ 〈K1〉 ⊆ 〈K2 ⊕ L〉. If G has a loop, then let G∗ = H ⊕ L, where H
is the loopless part of G, and let k = |E (G∗)| − 1 = |E (H)|. Then an appropriate
quotient of k · (K2 ⊕ L) is isomorphic to G∗ (we need to identify all k copies of L,
and identify the vertices of the k copies of K2 in such a way that we obtain the
graph H). Thus G 	 G∗ ∈ 〈K2 ⊕ L〉, and then we have G ∈ 〈K2 ⊕ L〉, proving
that G0 ∪ 〈K1〉 ⊆ 〈K2 ⊕ L〉. �

As we will see later, we have to stop our climbing up in the lattice here, as there
is no fourth smallest closed class, so we now focus on the top of the lattice. The
largest closed class is clearly G, which, as we observed in Remark 1, can be generated
by K2. The following lemma describes the second largest closed class, for which we
need a notation: let G1 denote the class of all loopless non-bipartite graphs without
isolated vertices. Note that G1 ⊕ 〈K1〉 consists of all loopless non-bipartite graphs
(with or without isolated vertices).

Lemma 11. At the top of the lattice of closed subclasses of G we have the two-
element chain G = 〈K2〉 � G0 ∪ 〈K1〉 ∪ (G1 ⊕ 〈K1〉). All other closed subclasses of
G are contained in G0 ∪ 〈K1〉 ∪ (G1 ⊕ 〈K1〉).

Proof. Consider a closed class K such that G0 ∪ 〈K1〉 ⊆ K ⊂ G. If K contains
a graph G that is bipartite and has at least one edge (which cannot be a loop,
because of bipartiteness), then we have G � K2 ∈ K. Then we can conclude K ⊇
〈K2〉 = G (cf. Remark 1). Thus the second largest closed class must be contained
in G0∪〈K1〉∪(G1 ⊕ 〈K1〉). It remains to show that the class G0∪〈K1〉∪(G1 ⊕ 〈K1〉)
is closed. To verify this, one just needs to observe that if at least one of G and H is
not bipartite, then G⊕H is not bipartite either; furthermore, if G is not bipartite
and G � H, then H is not bipartite either (otherwise we would have G � H → K2,
hence G → K2, contradicting the non-bipartiteness of G). Therefore, the second
largest closed class is indeed G0 ∪ 〈K1〉 ∪ (G1 ⊕ 〈K1〉). �

We will see in the next subsection that there is no third largest closed subclass
of G, therefore we finish our climbing down here and summarize our findings in the
following theorem.

Theorem 12. A class K ⊆ G is closed if and only if either

1) K = 〈K1〉, or
2) K = 〈L〉, or
3) K = 〈K2 ⊕ L〉 = G0 ∪ 〈K1〉, or
4) K = 〈K2〉 = G, or
5) K = G0 ∪ 〈K1〉 ∪ (G1 ⊕ 〈K1〉), or
6) K = G0 ∪ 〈K1〉 ∪ (K1 ⊕ 〈K1〉), where K1 ⊂ G1 satisfies

(a) if G,H ∈ K1, then G⊕H ∈ K1;
(b) if G ∈ K1 and G � H, then H ∈ G0 ∪ K1.
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Proof. By Lemmas 10 and 11, the classes listed in the first five items are closed,
and any other closed class K satisfies G0 ∪ 〈K1〉 ⊂ K ⊂ G0 ∪ 〈K1〉 ∪ (G1 ⊕ 〈K1〉).
Let K be such a class, let G be a loopless non-bipartite member of K, and let G1

be the subgraph of G spanned by its non-isolated vertices. Then we have G � G1

(identify all isolated vertices with another vertex), hence G1 ∈ K. This means that
K can be written in the form K = G0 ∪ 〈K1〉 ∪ (K1 ⊕ 〈K1〉), where K1 ⊂ G1 is the
set of all loopless non-bipartite members of K that have no isolated vertices. To
finish the proof, one just has to verify that a class K = G0 ∪ 〈K1〉 ∪ (K1 ⊕ 〈K1〉),
with K1 ⊆ G1 is closed if and only if K1 is closed under disjoint unions and loopless
homomorphic images. �
4.2. The middle. In this subsection we focus on the interval

[G0 ∪ 〈K1〉 ,G0 ∪ 〈K1〉 ∪ (G1 ⊕ 〈K1〉)]
in the lattice of closed subclasses of G. Therefore, from now on we consider only
classes J ⊆ G1, and we introduce a new closure operator for such classes: let 〈J 〉1
stand for the class of all loopless graphs that can be built from elements of J
by forming disjoint unions and homomorphic images. (Observe that 〈J 〉1 ⊆ G1,
since disjoint unions and homomorphic images cannot create isolated vertices.)
We say that J is 1-closed if 〈J 〉1 = J . It follows from Theorem 12 that the
interval [G0 ∪ 〈K1〉 ,G0 ∪ 〈K1〉 ∪ (G1 ⊕ 〈K1〉)] is isomorphic to the lattice of 1-closed
sublasses of G1 under the isomorphism G0 ∪ 〈K1〉 ∪ (K1 ⊕ 〈K1〉) 7→ K1. (Note that
we allow K1 to be empty.)

In the sequel we will assume that all homomorphisms map to loopless graphs; in
particular, we never identify vertices connected by an edge. It is easy to see that a
disjoint union of quotients of graphs H1, . . . , Hk is also a quotient of H1⊕· · ·⊕Hk,
thus we obtain the following description of 1-closure.

Fact 13. For arbitrary J ⊆ G1 and G ∈ G1 we have G ∈ 〈J 〉1 ⇐⇒ H1⊕· · ·⊕Hk �
G for some k ∈ N and H1, . . . , Hk ∈ J .

The following theorem shows that the lattice of 1-closed subclasses of G1 is
uncountable, hence there is a continuum of strong partial clones containing T0,2.

Theorem 14. There exist continuously many 1-closed classes J ⊆ G1.

Proof. Note that if J ⊆ G1 is an order filter (upset) with respect to the homo-
morphism order (i.e., G ∈ J , G → H implies H ∈ J for all H ∈ G1), then J is
1-closed. It follows that if A ⊆ G1 is an infinite antichain in the homomorphism
order, then the order filters generated by different subsets of A yield a continuum
of 1-closed subclasses of G1. The existence of such an antichain is well-known; for
instance, let A = {A3, A5, A7, . . .}, where Ak is a graph with chromatic number k
and odd girth k (cf. [6]). �

Now we turn to the proof of the promised fact that there is no “fourth smallest”
element in the lattice of closed subclasses of G. By Theorem 12, this is equivalent
to the nonexistence of atoms in the lattice of 1-closed subclasses of G1.

Lemma 15. For every G ∈ G1 and n ≥ 3 we have Kn ∈ 〈G〉1 if and only if
χ (G) ≤ n.

Proof. If Kn ∈ 〈G〉1, then, by Fact 13, there exists a complete homomorphism
ϕ : k · G � Kn for some k ≥ 1. Restricting ϕ to any one of the k copies of Kn

we get a homomorphism (not necessarily complete) G → Kn, and this show that
χ (G) ≤ n.

Now assume that χ (G) ≤ n, and let us use the numbers 1, 2, . . . , n for the n
colors in proper n-colorings of G. Fix an edge uv ∈ E (G), and for each pair of
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colors i 6= j, choose a proper n-coloring of G such that u and v receive the colors
i and j, respectively. Joining all these

(
n
2

)
colorings we obtain a homomorphism(

n
2

)
· G → Kn, which is complete, as each edge ij ∈ E (Kn) is the image of one of

the
(
n
2

)
copies of the edge uv. This proves that Kn ∈ 〈G〉1. �

Theorem 16. The empty class is meet irreducible in the lattice of 1-closed sub-
classes of G1, but it is not completely meet irreducible, as it is the intersection of
the descending chain

(1) 〈K3〉1 ⊃ 〈K4〉1 ⊃ 〈K5〉1 ⊃ · · · .

Therefore, there is no atom in the lattice of 1-closed subclasses of G1.

Proof. By Fact 13, a graph G ∈ G1 belongs to 〈Kn〉1 if and only if G is a quotient
of k ·Kn for some k ≥ 1. Since G has no loops, we cannot identify vertices within
the same copy of Kn, i.e., G is built by gluing together k complete graphs of size n.
This shows that 〈Kn〉1 consists of those graphs that have the property that every
vertex is contained in a complete subgarph (clique) of size n. Now, if the maximum
clique size of G ∈ G1 is n, then G /∈ 〈Kn+1〉1, hence the intersection of the chain
(1) is indeed empty.

In order to prove that the empty class is meet irreducible, we consider two
nonempty 1-closed classes J and K. Choose arbitrary graphs G ∈ J , H ∈ K, and
let n = max (χ (G) , χ (H)). From Lemma 15 we obtain

Kn ∈ 〈G〉1 ∩ 〈H〉1 ⊆ J ∩ K,

hence J ∩ K is not empty.
The last statement of the theorem follows now from Lemma 6. �

Finally, we prove that there is no “third largest” element in the lattice of closed
subclasses of G. By Theorem 12, this is equivalent to the nonexistence of coatoms
in the lattice of 1-closed subclasses of G1.

Lemma 17. For every G ∈ G1 and every odd number n ≥ 3 we have G ∈
〈Cn ⊕K2〉1 if and only if the odd girth of G is at most n.

Proof. If G ∈ 〈Cn ⊕K2〉1, then, by Fact 13, there exists a complete homomorphism
ϕ : k · (Cn ⊕K2) � G for some k ≥ 1. Restricting ϕ to any one of the k copies
of Cn we get a homomorphism (not necessarily complete) Cn → G, and this show
that the odd girth of G is at most n.

Now assume that the odd girth of G is g and g ≤ n. Let H be a cycle of length g
in G, and let k = |E (G)|− g = |E (G) \ E (H)|. For every edge uv ∈ E (G) \E (H)
let ϕuv : Cg⊕K2 → G be a homomorphism that maps Cg to H and (the edge of) K2

to uv. Combining all these homomorphisms ϕuv (uv ∈ E (G) \ E (H)) we obtain a
homomorphism ϕ : k · (Cg ⊕K2) � G, which is complete, as every edge of H is the
image of k edges from the cycles Cg, and every other edge uv ∈ E (G)\E (H) is the
image of the edge of one of the complete graphs K2. Since g ≤ n, we have Cn � Cg,
hence k · (Cn ⊕K2) � k · (Cg ⊕K2) � G. This proves that G ∈ 〈Cn ⊕K2〉1. �

Theorem 18. The class G1 is join irreducible in the lattice of 1-closed subclasses
of G1, but it is not completely join irreducible, as it is the join of the ascending
chain

(2) 〈C3 ⊕K2〉1 ⊂ 〈C5 ⊕K2〉1 ⊂ 〈C7 ⊕K2〉1 ⊂ · · · .

Therefore, there is no coatom in the lattice of 1-closed subclasses of G1.

Proof. Lemma 17 implies that the join of the chain (2) is G1, as every non-bipartite
graph contains an odd cycle.
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In order to prove that G1 is join irreducible, we consider two proper 1-closed
subclasses J and K of G1. Since J 6= G1, only finitely many of the graphs C3 ⊕
K2, C5⊕K2, . . . can belong to J . A similar argument applies to K, thus there exists
an odd number n ≥ 3 such that Cn⊕K2 /∈ J ∪K. We claim that Cn⊕K2 /∈ J ∨K.
Suppose for contradiction that Cn ⊕K2 ∈ J ∨ K = 〈J ∪ K〉1. Then, by Fact 13,
there is a complete homomorphism

ϕ : G1 ⊕ · · · ⊕Gj ⊕H1 ⊕ · · · ⊕Hk � Cn ⊕K2,

where G1, . . . , Gj ∈ J , H1, . . . , Hk ∈ K. Since ϕ is a complete homomorphism,
G := ϕ (G1 ⊕ · · · ⊕Gj) ∈ 〈J 〉1 = J and H := ϕ (H1 ⊕ · · · ⊕Hk) ∈ 〈K〉1 = K are
subgraphs of Cn ⊕ K2 such that every edge of Cn ⊕ K2 is contained in at least
one of G and H. We may assume without loss of generality that the edge of K2 is
contained in G. If all edges of Cn also belong to G, then we have Cn⊕K2 = G ∈ J ,
contrary to our assumption. If at least one of the edges of Cn does not belong to
G, then G ∈ J is a biparitite graph, which is again a contradiction, as J ⊆ G1.
These contradictions imply that Cn ⊕ K2 /∈ J ∨ K, hence J ∨ K 6= G1, and this
proves that G1 is indeed join irreducible.

The last statement of the theorem follows now from the dual of Lemma 6. �
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