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Continuum Percolation in the
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Abstract—The intrinsically secure communications graph
(iS-graph) is a random graph which captures the connections
that can be securely established over a large-scale network, in the
presence of eavesdroppers. It is based on principles of information-
theoretic security, widely accepted as the strictest notion of security.
In this paper, we are interested in characterizing the global
properties of the iS-graph in terms of percolation on the infinite
plane. We prove the existence of a phase transition in the Poisson
iS-graph, whereby an unbounded component of securely connected
nodes suddenly arises as we increase the density of legitimate nodes.
Our work shows that long-range communication in a wireless
network is still possible when a secrecy constraint is present.

Index Terms—Information-theoretic security, wireless networks,
stochastic geometry, percolation, connectivity.

I. I NTRODUCTION

Percolation theory studies the existence of phase transitions in
random graphs, whereby an infinite cluster of connected nodes
suddenly arises as some system parameter is varied. Percolation
theory has been used to study connectivity of multi-hop wireless
networks, where the formation of an unbounded cluster is
desirable for communication over arbitrarily long distances.

Various percolation models have been considered in the
literature. The Poisson Boolean model was introduced in [1],
which derived the first bounds on the critical density, and started
the field of continuum percolation. The Poisson random con-
nection model was introduced and analyzed in [2]. The Poisson
nearest neighbour model was considered in [3]. The signal-to-
interference-plus-noise ratio (SINR) model was characterized in
[4]. A comprehensive study of the various models and resultsin
continuum percolation can be found in [5]. Secrecy graphs were
introduced in [6] from an information-theoretic perspective, and
in [7] from a geometrical perspective. The local connectivity of
secrecy graphs was extensively characterized in [8], whilethe
scaling laws of the secrecy capacity were presented in [9]. The
effect of eavesdropper collusion on the secrecy propertieswas
studied in [10].

In this paper, we characterize long-range secure connec-
tivity in wireless networks by considering theintrinsically
secure communications graph(iS-graph), defined in [8]. The
iS-graph describes the connections that can be established with
information-theoretic security over a large-scale network. We
prove the existence of a phase transition in the PoissoniS-graph,
whereby an unbounded component of securely connected nodes
suddenly arises as we increase the density of legitimate nodes.
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In particular, we determine for which combinations of system
parameters does percolation occur. Our work shows that long-
range communication in a wireless network is still possible
when a secrecy constraint is present.

This paper is organized as follows. Section II describes the
system model. Section III introduces various definitions. Sec-
tion IV presents the main theorem, whose underlying lemmas
are proved in Sections V and VI. Section VII provides additional
insights through numerical results. Section VIII presentssome
concluding remarks.

II. SYSTEM MODEL

A. Wireless Propagation Characteristics

Given a transmitter nodexi ∈ R
d and a receiver nodexj ∈

R
d, we model the received powerPrx(xi, xj) associated with

the wireless link−−→xixj as

Prx(xi, xj) = P · g(xi, xj), (1)

where P is the transmit power, andg(xi, xj) is the power
gain of the link−−→xixj . The gaing(xi, xj) is considered con-
stant (quasi-static) throughout the use of the communications
channel, corresponding to channels with a large coherence time.
Furthermore, the functiong is assumed to satisfy the following
conditions, which are typically observed in practice: i)g(xi, xj)
depends onxi andxj only through the link length|xi − xj |;1
ii) g(r) is continuous and strictly decreasing withr; and
iii) limr→∞ g(r) = 0.

B. iS-Graph

Consider a wireless network where the legitimate nodes and
the potential eavesdroppers are randomly scattered in space,
according to some point processes. TheiS-graph is a conve-
nient representation of the links that can be established with
information-theoretic security on such a network.

Definition 2.1 (iS-Graph [8]): Let Πℓ = {xi} ⊂ R
d denote

the set of legitimate nodes, andΠe = {ei} ⊂ R
d denote the

set of eavesdroppers. TheiS-graph is the directed graphG =
{Πℓ, E} with vertex setΠℓ and edge set

E = {−−→xixj : Rs(xi, xj) > ̺}, (2)

where ̺ is a threshold representing the prescribed infimum
secrecy rate for each communication link; andRs(xi, xj) is the
maximum secrecy rate(MSR) of the link−−→xixj , given by

Rs(xi, xj) =

[

log2

(

1 +
Prx(xi, xj)

σ2
ℓ

)

− log2

(

1 +
Prx(xi, e

∗)

σ2
e

)]+

(3)

1With abuse of notation, we can writeg(r) , g(xi, xj)||xi−xj |→r .
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Figure 1. Example of aniS-graph onR2.

in bits per complex dimension, where[x]+ = max{x, 0}; σ2
ℓ , σ

2
e

are the noise powers of the legitimate users and eavesdroppers,
respectively; ande∗ = argmax

ek∈Πe

Prx(xi, ek).2

In the remainder of the paper, we consider that the noise
powers of the legitimate users and eavesdroppers are equal,
i.e., σ2

ℓ = σ2
e = σ2. In such case, we can combine (1)-(3)

to obtain the following edge set

E =
{−−→xixj : g(|xi−xj |) > 2̺g(|xi−e∗|)+ σ2

P
(2̺−1)

}

, (4)

where e∗ = argmin
ek∈Πe

|xi − ek| is the eavesdropper closest to

the transmitterxi. The particular case of̺ = 0 corresponds to
considering theexistenceof secure links, in the sense that an
edge−−→xixj is present iffRs(xi, xj) > 0. In such case, the edge
set in (4) simplifies to

E =
{−−→xixj : |xi − xj | < |xi − e∗|, e∗ = argmin

ek∈Πe

|xi − ek|
}

.

Fig. 1 shows an example of such aniS-graph onR2.
The spatial location of the legitimate and eavesdropper nodes

can be modeled either deterministically or stochastically. In
many cases, the node positions are unknown to the network
designer a priori, so they may be treated as uniformly random
according to a Poisson point process [12]–[14].

Definition 2.2 (PoissoniS-Graph): The PoissoniS-graph is
an iS-graph whereΠℓ,Πe ⊂ R

d are mutually independent,
homogeneous Poisson point processes with densitiesλℓ andλe,
respectively.

In the remainder of the paper (unless otherwise indicated),
we focus on PoissoniS-graphs inR2.

III. D EFINITIONS

Graphs: We useG = {Πℓ, E} to denote the (directed)
iS-graph with vertex setΠℓ and edge set given in (2).
In addition, we define two undirected graphs: theweak
iS-graphGweak = {Πℓ, Eweak}, where

Eweak = {xixj : Rs(xi, xj) > ̺ ∨ Rs(xj , xi) > ̺},

and thestrong iS-graphGstrong = {Πℓ, Estrong}, where

Estrong = {xixj : Rs(xi, xj) > ̺ ∧ Rs(xj , xi) > ̺}.

2This definition usesstrong secrecyas the condition for information-theoretic
security. See [8], [11] for more details.

Graph Components:We use the notationx
G→ y to represent

a path from nodex to nodey in a directed graphG, andx G∗
— y

to represent a path between nodex and nodey in an undirected
graphG∗. We define four components:

Kout(x) , {y ∈ Πℓ : ∃x
G→ y}, (5)

Kin(x) , {y ∈ Πℓ : ∃ y
G→x}, (6)

Kweak(x) , {y ∈ Πℓ : ∃x Gweak

— y}, (7)

Kstrong(x) , {y ∈ Πℓ : ∃x Gstrong

— y}. (8)

Percolation Probabilities: To study percolation in the
iS-graph, it is useful to define percolation probabilities asso-
ciated with the four graph components. Specifically, letpout∞ ,
pin∞, pweak

∞ , andpstrong∞ respectively be the probabilities that the
in, out, weak, and strong components containing nodex = 0
have an infinite number of nodes, i.e.,3

p⋄∞(λℓ, λe, ̺) , P{|K⋄(0)| = ∞}

for ⋄ ∈ {out, in,weak, strong}.4 Our goal is to study the
properties and behavior of these percolation probabilities.

IV. M AIN RESULT

Typically, a continuum percolation model consists of an
underlying point process defined on the infinite plane, and a
rule that describes how connections are established between the
nodes [5]. A main property of all percolation models is that
they exhibit aphase transitionas some continuous parameter
is varied. If this parameter is the densityλ of nodes, then
the phase transition occurs at somecritical densityλc. When
λ < λc, denoted as thesubcritical phase, all the clusters are a.s.
bounded.5 Whenλ > λc, denoted as thesupercritical phase, the
graph exhibits a.s. an unbounded cluster of nodes, or in other
words, the graphpercolates.

In this section, we aim to determine if percolation in the
iS-graph is possible, and if so, for which combinations of
system parameters(λℓ, λe, ̺) does it occur. The mathematical
characterization of theiS-graph presents two challenges: i) the
iS-graph is a directed graph, which leads to the study of
directed percolation; and ii) theiS-graph exhibits dependencies
between the state of different edges, which leads to the study
of dependent percolation. The result is given by the following
main theorem.

Theorem 4.1 (Phase Transition in theiS-Graph): For any
λe > 0 and̺ satisfying

0 ≤ ̺ < ̺max , log2

(

1 +
P · g(0)

σ2

)

, (9)

there exist critical densitiesλout
c , λin

c , λweak
c , λstrong

c satisfying

0 < λweak
c ≤ λout

c ≤ λstrong
c < ∞ (10)

0 < λweak
c ≤ λin

c ≤ λstrong
c < ∞ (11)

3We condition on the event that a legitimate node is located atx = 0.
According to Slivnyak’s theorem [15, Sec. 4.4], apart from the given point at
x = 0, the probabilistic structure of the conditioned process isidentical to that
of the original process.

4Except where otherwise indicated, we use the symbol⋄ to represent the out,
in, weak, or strong component.

5We say that an event occurs “almost surely” (a.s.) if its probability is equal
to one.
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(a) Conditions for a faceH in Lh to be closed,
according to Definition 5.1.
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(b) A finite open component at the origin, surrounded by
a closed circuit.

Figure 2. Auxiliary diagrams for proving Lemma 4.1.

such that

p⋄∞ = 0, for λℓ < λ⋄
c , (12)

p⋄∞ > 0, for λℓ > λ⋄
c , (13)

for any ⋄ ∈ {out, in,weak, strong}. Conversely, if̺ > ̺max,
thenp⋄∞ = 0 for anyλℓ, λe.

To prove the theorem, we introduce the following three
lemmas.

Lemma 4.1:For anyλe > 0 and̺ satisfying (9), there exists
an ǫ > 0 such thatpweak

∞ (λℓ) = 0 for all λℓ < ǫ.
Proof: Postponed to Section V of the present paper.

Lemma 4.2:For anyλe > 0 and̺ satisfying (9), there exists
a ζ < ∞ such thatpstrong∞ (λℓ) > 0 for all λℓ > ζ.

Proof: Postponed to Section VI of the present paper.
Lemma 4.3:For any λe > 0 and ̺ ≥ 0, the percolation

probability p⋄∞(λℓ) is a non-decreasing function ofλℓ.
Proof: This follows directly from a coupling argument. The

details can be found in [16].
With these lemmas we are now in condition to prove Theo-

rem 4.1.
Proof of Theorem 4.1:We first show that if̺ > ̺max, then

p⋄∞ = 0. The MSRRs of a link −−→xixj , given in (3), is upper
bounded by the channel capacityR of a link with zero length,
i.e., Rs(xi, xj) ≤ R (xi, xi) = log2

(

1 + P ·g(0)
σ2

)

. If the thresh-

old ̺ is set such that̺ > ̺max, the conditionRs(xi, xj) > ̺ in
(2) for the existence of the edge−−→xixj is never satisfied by any
xi, xj . Thus, theiS-graphG has no edges and cannot percolate.
We now consider the case of0 ≤ ̺ < ̺max. From the definitions
in (5)-(8), we haveKstrong(0) ⊆ Kout(0) ⊆ Kweak(0) and
Kstrong(0) ⊆ Kin(0) ⊆ Kweak(0), and thereforepstrong∞ ≤
pout∞ ≤ pweak

∞ and pstrong∞ ≤ pin∞ ≤ pweak
∞ . Then, Lemmas 4.1,

4.2, and 4.3 imply that each curvep⋄∞(λℓ) departs from the zero
value at some critical densityλ⋄

c , as expressed by (12) and (13).
Furthermore, these critical densities are nontrivial in the sense
that 0 < λ⋄

c < ∞. The ordering of the critical densities in (10)
and (11) follows from similar coupling arguments.

V. PROOF OFLEMMA 4.1

In this proof, it is sufficient to show thatGweak does not
percolate for sufficiently smallλℓ in the case of̺ = 0, since

for larger̺ the connectivity is worse andGweak certainly does
not percolate either.6

A. Mapping on a Lattice

We start with some definitions. LetLh be an hexagonal lattice
as depicted in Fig. 2(a), where each face is a regular hexagon
with side lengthδ. Each face has astate, which can be either
openor closed. A set of faces (e.g., a path or a circuit) inLh is
said to be open iff all the faces that form the set are open. We
now specify the state of a face based on how the processesΠℓ

andΠe behave inside that face.
Definition 5.1 (Closed Face inLh): A faceH in Lh is said

to beclosediff all the following conditions are met:
1) Each of the 6 equilateral triangles{Ti}6i=1 that compose

the hexagonH has at least one eavesdropper.
2) The hexagonH is free of legitimate nodes.
The above definition was chosen such that discrete face

percolation inLh can be tied to continuum percolation inGweak,
as given by the following proposition.

Proposition 5.1 (Circuit Coupling):If there exists a closed
circuit in Lh surrounding the origin, then the compo-
nentKweak(0) is finite.

Proof: Assume there is a closed circuitC in Lh surrounding
the origin, as depicted in Fig. 2(b). This implies that the
open component inLh containing0, denoted byKLh(0), must
be finite. Since the area of the regionKLh(0) is finite, the
continuous graphGweak has a finite number of vertices falling
inside this region. Thus, to prove thatKweak(0) is finite, we
just need to show that no edges ofGweak cross the circuitC.
Consider Fig. 2(a), and suppose that the shaded faces are part
of the closed circuitC. Let x1, x2 be two legitimate nodes such
that x1 falls on an open face on the inner side ofC, while x2

falls on the outer side ofC. Clearly, the most favorable situation
for x1, x2 being able to establish an edge acrossC is the one
depicted in Fig. 2(a). The edgex1x2 exists inGweak iff either
Bx1

(δ) or Bx2
(δ) are free of eavesdroppers.7 This condition

6A simple coupling argument shows that the percolation probabili-
ties p⋄∞(λℓ, λe, ̺) are non-increasing functions of̺.

7We useBx(ρ) , {y ∈ R
2 : |y − x| ≤ ρ} to denote the closed two-

dimensional ball centered at pointx, with radiusρ.
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Figure 3. Auxiliary diagrams for proving Lemma 4.2.

does not hold, since Definition 5.1 guarantees that at least one
eavesdropper is located inside the triangleTi ⊂ Bx1

(δ)∩Bx2
(δ).

Thus, no edges ofGweak cross the circuitC, which implies that
Kweak(0) has finite size.

B. Discrete Percolation

Having performed an appropriate mapping from a continuous
to a discrete model, we now analyze discrete face percolation
in Lh.

Proposition 5.2 (Discrete Percolation inLh): If the parame-
tersλℓ, λe, δ satisfy

(

1− e−λe

√
3

4
δ2
)6

· e−λℓ
3
√

3
2

δ2 >
1

2
, (14)

then the origin is a.s. surrounded by a closed circuit inLh.
Proof: The model introduced in Section V-A can be seen

as a face percolation model on the hexagonal latticeLh, where
each face is closed independently of other faces with probability

p , P{faceH of Lh is closed}

= P

{(

6
∧

i=1

Πe{Ti} ≥ 1

)

∧Πℓ{H} = 0

}

=
(

1− e−λe

√
3

4
δ2
)6

· e−λℓ
3
√

3
2

δ2 . (15)

Face percolation on the hexagonal lattice can be equivalently
described as site percolation on the triangular lattice. Inpartic-
ular, recall that if

P{H is open} <
1

2
, (16)

then theopen component inLh containing the origin is a.s.
finite [17, Ch. 5, Thm. 8], and so the origin is a.s. surrounded
by a closedcircuit in Lh. Combining (15) and (16), we obtain
(14).

We now use the propositions to finalize the proof of
Lemma 4.1, wherebypweak

∞ (λℓ) = 0 for sufficiently small (but
nonzero)λℓ.

Proof of Lemma 4.1:For any fixedλe, it is easy to see
that condition (14) can always be met by making the hexagon
side δ large enough, and the densityλℓ small enough (but
nonzero). For any such choice of parametersλℓ, λe, δ satisfying
(14), the origin is a.s. surrounded by a closed circuit inLh (by
Proposition 5.2), and the componentKweak(0) is a.s. finite (by
Proposition 5.1), i.e.,pweak

∞ (λℓ) = 0.

VI. PROOF OFLEMMA 4.2

A. Mapping on a Lattice

We start with some definitions. LetLs , d · Z2 be a square
lattice with edge lengthd. Let L′

s , Ls +
(

d
2 ,

d
2

)

be the dual
lattice of Ls, depicted in Fig. 3(a). We make the origin of the
coordinate system coincide with a vertex ofL′

s. Each edge has a
state, which can be eitheropenor closed. We declare an edgea′

in L′
s to be open iff its dual edgea in Ls is open.

We now specify the state of an edge based on how the
processesΠℓ andΠe behave in the neighborhood of that edge.
Consider Fig. 3(b), wherea denotes an edge inLs, andS1(a)
and S2(a) denote the two squares adjacent toa. Let {vi}4i=1

denote the four vertices of the rectangleS1(a) ∪ S2(a). We
then have the following definition.

Definition 6.1 (Open Edge inLs): An edgea in Ls is said
to beopeniff all the following conditions are met:

1) Each squareS1(a) andS2(a) adjacent toa has at least
one legitimate node.

2) The regionZ(a) is free of eavesdroppers, whereZ(a)
is smallest rectangle such that

⋃4
i=1 Bvi(rfree) ⊂ Z(a)

with8

rfree , g−1

(

2−̺g(
√
5d)− σ2

P
(1− 2−̺)

)

. (17)

The above definition was chosen such that discrete edge
percolation in L′

s can be tied to continuum percolation in
Gstrong, as given by the following two propositions.

8To ensure thatrfree in (17) is well-defined, in the rest of the paper we
assume thatd is chosen such thatd < 1√

5
g−1

(

σ2

P
(2̺ − 1)

)

.



Proposition 6.1 (Two-Square Coupling):If a is an open edge
in Ls, then all legitimate nodes insideS1(a) ∪ S2(a) form a
single connected component inGstrong.

Proof: If two legitimate nodesx1, x2 are to be placed inside
the regionS1(a) ∪ S2(a), the most unfavorable configuration
in terms of MSR is the one wherex1 andx2 are on opposite
corners of the rectangleS1(a)∪S2(a) and thus|x1−x2| =

√
5d.

In such configuration, we see from (4) that the edge−−→x1x2

exists inG iff |x1−e∗| > g−1
(

2−̺g(
√
5d)− σ2

P (1 − 2−̺)
)

,

rfree, where e∗ is the eavesdropper closest tox1. As a re-
sult, the edgex1x2 exists in Gstrong iff both Bx1

(rfree) and
Bx2

(rfree) are free of eavesdroppers. Now, ifZ(a) is the
smallest rectangle containing the region

⋃4
i=1 Bvi(rfree), the

conditionΠe{Z(a)} = 0 ensures the edgexixj exists inGstrong

for anyxi, xj ∈ S1(a)∪S2(a). Thus, all legitimate nodes inside
S1(a)∪S2(a) form a single connected component inGstrong.

Proposition 6.2 (Component Coupling):If the open compo-
nent in L′

s containing the origin is infinite, then the compo-
nentKstrong(0) is also infinite.

Proof: Consider Fig. 3(c). LetP = {a′i} denote a path of
open edges{a′i} in L′

s. By the definition of dual lattice, the
path P uniquely defines a sequenceS = {Si} of adjacent
squares inLs, separated by open edges{ai} (the duals of
{a′i}). Then, each square inS has at least one legitimate node
(by Definition 6.1), and all legitimate nodes falling insidethe
region associated withS form a single connected component
in Gstrong (by Proposition 6.1). Now, letKL

′
s(0) denote the

open component inL′
s containing0. Because of the argument

just presented, we have|KL
′
s(0)| ≤ |Kstrong(0)|. Thus, if

|KL
′
s(0)| = ∞, then |Kstrong(0)| = ∞.

B. Discrete Percolation

Having performed an appropriate mapping from a continuous
to a discrete model, we now analyze discrete edge percolation
in L′

s. Let Ns be the number of squares that compose the
rectangleZ(a) introduced in Definition 6.1. We first study the
behavior of paths inLs with the following proposition.

Proposition 6.3 (Geometric Bound):The probability that a
given path inLs with lengthn is closed is bounded by

P{path inLs with lengthn is closed} ≤ qn/Ne , (18)

whereNe is a finite integer and

q = 1− (1− e−λℓd
2

)2 · e−λeNsd
2

(19)

is the probability that an edge inLs is closed.
Proof: (outline)Using Definition 6.1, we can write

q , P{edgea in Ls is closed}
= 1− P{Πℓ{S1(a)} ≥ 1 ∧Πℓ{S2(a)} ≥ 1 ∧ Πe{Z(a)} = 0}
= 1− (1− e−λℓd

2

)2 · e−λeNsd
2

.

Now, let P = {ai}ni=1 denote a path inLs with lengthn and
edges{ai}. Even though the edges{ai} do not all have indepen-
dent states (in which case we would haveP{P is closed} = qn),
it is possible to show thatP{P is closed} ≤ qn/Ne for a
finite integerNe, by finding a subsetQ ⊆ P of edges with
independent states (see [16] for details).

Having obtained a geometric bound on the probability of
a path of lengthn being closed, we can now use a Peierls
argument to study the existence of an infinite component.9

Proposition 6.4 (Discrete Percolation inL′
s): If the proba-

bility q satisfies

q <

(

11− 2
√
10

27

)Ne

, (20)

then

P{open component inL′
s containing0 is infinite} > 0. (21)

Proof: We start with the key observation that the
open component inL′

s containing 0 is finite iff there is
a closed circuit in Ls surrounding 0, as illustrated in
Fig. 3(c). Thus, the inequality in (21) is equivalent to
P{∃ closed circuit inLs surrounding0} < 1. Let ρ(n) denote
the possible number of circuits of lengthn in Ls surrounding0
(a deterministic quantity). Letκ(n) denote the number ofclosed
circuits of lengthn in Ls surrounding0 (a random variable).
From combinatorial arguments, it can be shown [19, Eq. (1.17)]
that ρ(n) ≤ 4n3n−2. Then, for a fixedn,

P{κ(n) ≥ 1} ≤ ρ(n) · P{path inLs with lengthn is closed}
≤ 4n3n−2qn/Ne ,

where we used the union bound and Proposition 6.3. Also,

P{∃ closed circuit inLs surrounding0}
= P{κ(n) ≥ 1 for somen}

≤
∞
∑

n=1

4n3n−2qn/Ne =
4q1/Ne

3(1− 3q1/Ne)2
, (22)

for q <
(

1
3

)Ne . We see that ifq satisfies (20), then (22) is
strictly less than one, and (21) follows.

We now use the propositions to finalize the proof of
Lemma 4.2, wherebypstrong∞ (λℓ) > 0 for sufficiently large (but
finite) λℓ.

Proof of Lemma 4.2:For any fixed λe, it is easy to
see the probabilityq in (19) can be made small enough to
satisfy condition (20), by making the edge lengthd sufficiently
small, and the densityλℓ sufficiently large (but finite). For
any such choice of parametersλℓ, λe, d satisfying (20), the
open component inL′

s containing0 is infinite with positive
probability (by Proposition 6.4), and the componentKstrong(0)
is also infinite with positive probability (by Proposition 6.2),
i.e., pstrong∞ (λℓ) > 0.

VII. S IMULATION RESULTS

In this section, we obtain additional insights about percolation
in the iS-graph via Monte Carlo simulation. Figure 4 shows the
percolation probabilities for the weak and strong components
of the iS-graph, versus the densityλℓ of legitimate nodes.
As predicted by Theorem 4.1, the figure suggests that these
components experience a phase transition asλℓ is increased.
In particular,λweak

c ≈ 3.4m−2 andλstrong
c ≈ 6.2m−2, for the

case ofλe = 1m−2 and̺ = 0. Operationally, this means that

9A “Peierls argument”, so-named in honour of Rudolf Peierls and his 1936
article on the Ising model [18], refers to an approach based on enumeration.
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nents of theiS-graph, versus the densityλℓ of legitimate nodes (λe = 1m−2,
̺ = 0).

if long-range bidirectional secure communication is desired in
a wireless network, the density of legitimate nodes must be
at least6.2 times that of the eavesdroppers. In practice, the
density of legitimate nodes must be even larger, because a
secrecy requirement greater than̺ = 0 is typically required.
This dependence on̺ is illustrated in Figure 5. In practice, it
might also be of interest to increaseλℓ fairly beyond the critical
density, since this leads to an increased average fractionp⋄∞ of
nodes which belong to the infinite component, thus improving
secure connectivity.

VIII. D ISCUSSION ANDCONCLUSIONS

Theorem 4.1 shows that each of the four components of the
iS-graph (in, out, weak, and strong) experiences a phase tran-
sition at some nontrivial critical densityλ⋄

c of legitimate nodes.
Operationally, this implies that long-range communication over
multiple hops is still feasible when a secrecy constraint is
present. We proved that percolation can occur for any prescribed
secrecy threshold̺ satisfying̺ < ̺max = log2

(

1 + P ·g(0)
σ2

)

,
as long as the density of legitimate nodes is made large enough.
This implies that for unbounded path loss models such as
g(r) = 1/rγ , percolation can occur forany arbitrarily large
secrecy requirement̺ , while for bounded models such as
g(r) = 1/(1 + rγ), the desired̺ may be too high to allow
percolation. Our results also show that as long as̺ < ̺max,
percolation can be achieved even in cases where the eavesdrop-
pers are arbitrarily dense, by making the density of legitimate
nodes large enough. Using Monte Carlo simulation, we obtained
numerical estimates for various critical densities. For example,
when̺ = 0 we estimated that if the density of eavesdroppers is
larger than roughly30% that of the legitimate nodes, long-range
communication in the weakiS-graph is completely disrupted, in
the sense that no infinite cluster arises. In the strongiS-graph,
we estimated this fraction to be about16%. For a larger secrecy
requirement̺ , an even more modest fraction of attackers is
enough to disrupt the network. We are hopeful that further
efforts will lead to tight analytical bounds for these critical
densities.
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