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Abstract—The intrinsically secure communications graph
(iS-graph) is a random graph which captures the connections
that can be securely established over a large-scale netwark the
presence of eavesdroppers. It is based on principles of infmation-
theoretic security, widely accepted as the strictest notimof security.
In this paper, we are interested in characterizing the glob&a
properties of the iS-graph in terms of percolation on the infinite
plane. We prove the existence of a phase transition in the Pssion
1S-graph, whereby an unbounded component of securely connesd
nodes suddenly arises as we increase the density of legititaaodes.
Our work shows that long-range communication in a wireless
network is still possible when a secrecy constraint is presg.

Index Terms—Information-theoretic security, wireless networks,
stochastic geometry, percolation, connectivity.

I. INTRODUCTION
Percolation theory studies the existence of phase transitn

random graphs, whereby an infinite cluster of connected $10
suddenly arises as some system parameter is varied. R&ngola

theory has been used to study connectivity of multi-hop leg®

networks, where the formation of an unbounded cluster

desirable for communication over arbitrarily long distasc

Various percolation models have been considered in tR
literature. The Poisson Boolean model was introducedin [

which derived the first bounds on the critical density, araditet]

the field of continuum percolation. The Poisson random co
nection model was introduced and analyzed’in [2]. The Paiss
nearest neighbour model was considered In [3]. The signal- {

interference-plus-noise ratio (SINR) model was charazgerin

In particular, we determine for which combinations of syste
parameters does percolation occur. Our work shows that long
range communication in a wireless network is still possible
when a secrecy constraint is present.

This paper is organized as follows. Sectloh Il describes the
system model. Sectidnlll introduces various definitionsc-S
tion [V] presents the main theorem, whose underlying lemmas
are proved in Sectiois]V afdlVI. Section V1l provides addigib
insights through numerical results. Section VIl presesime
concluding remarks.

1. SYSTEM MODEL
A. Wireless Propagation Characteristics

Given a transmitter node; € R? and a receiver node; €
RY, we model the received powd?,(z;,z;) associated with
éhe wireless linkz;z; as

Prx(xiaxj) = (1)

\%hereP is the transmit power, ang(z;,z;) is the power
gain of the Imkxlxj The gaing(z;,x;) is considered con-
tant (quasi-static) throughout the use of the commumioati
hannel, corresponding to channels with a large coherémee t
urthermore, the function is assumed to satisfy the following
aonditions, which are typically observed in practicey();, z;

P g(xiaxj)a

epends onx; andz; only through the link lengthz; — x|
r) is continuous and strictly decreasing with and
) lim,~ g(r) = 0.

[4]. A comprehensive study of the various models and results
continuum percolation can be found [ [5]. Secrecy grapheweB. iS-Graph

introduced in[[6] from an information-theoretic perspeetiand
in [[Z] from a geometrical perspective. The local connettiwf
secrecy graphs was extensively characterizedlin [8], wthiée

Consider a wireless network where the legitimate nodes and
the potential eavesdroppers are randomly scattered inespac
according to some point processes. Tisegraph is a conve-

scaling laws of the secrecy capacity were presented|in [8. Tnient representation of the links that can be established wi

effect of eavesdropper collusion on the secrecy propeviges
studied in [10].

information-theoretic security on such a network.
Definition 2.1 (S-Graph [8]): LetII; = {x;} c R denote

In this paper, we characterize long-range secure connefe set of legitimate nodes, afit. = {e;} C R denote the

tivity in wireless networks by considering thimtrinsically

set of eavesdroppers. Th&-graphis the directed graplir =

secure communications graglS-graph), defined in[8]. The {11,, £} with vertex setll, and edge set

1S-graph describes the connections that can be establistied
information-theoretic security over a large-scale nekwdie
prove the existence of a phase transition in the PoisSegraph,

wi € = {ziz) : Re(wi, 25) > o}, @

where ¢ is a threshold representing the prescribed infimum

whereby an unbounded component of securely connected no§i@srecy rate for each communication link; a&qx“%) is the
suddenly arises as we increase the density of legitimatesiodnaximum secrecy rat@MSR) of the link z;z;, given by
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lwith abuse of notation, we can writg(r) £ g(mi,zj)\‘zi,zj‘ér.
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e Legiimatenode | % ’/\ Graph ComponentsWe use the notatiom >y to represent

°
X Eavesdropper node a path from node: to nodey in a directed grapld;, andz <~y

——————————————— ! X to represent a path between nadand nodey in an undirected
e graphG*. We define four components:
KoM (@) £ {y € T : Fw Sy}, (5)
K™ (z) & {y € T, : 3y S a}, 6
Figure 1. Example of anS-graph onR2. (:c) {y ¢ Y wjf ( )
KKk (z) & {y € T, : Jo ="y}, (7)
Ko (z) £ {y € T, : 3o T ). (®)

in bits per complex dimension, whefg]* = max{x, 0}; 07, 02 _ . S
are the noise powers of the legitimate users and eavesdmppe Percolation Probabilities: To study percolation in the
respectively; and* = argmax P (1, e5,) B iS-graph, it is useful to define percolation probabilitiescass
er€lle ciated with the four graph components. Specifically, 7gt,
In the remainder of the paper, we consider that the noi§g, pueak andpsirons respectively be the probabilities that the
powers of the legitimate users and eavesdroppers are edydlout, weak, and strong components containing node 0
ie., o = 0¢ = o In such case, we can combirg (I)-(3have an infinite number of nodes, .,
to obtain the following edge set
Pee(Aes de, 0) = P{IK°(0)] = oo}
2
&= {aTx;-:gﬂxi—a:jD > 299(|xi_e*|)+a_(2g_1)}, (4) for o € {out in, weak strong | Our goal is to study the
P properties and behavior of these percolation probalslitie

where e* = argmin |z; — ei| is the eavesdropper closest to

. en€ll, i IV. MAIN RESULT
the transmitterr;. The particular case of = 0 corresponds to

considering theexistenceof secure links, in the sense that an 1YPically, a continuum percolation model consists of an
edgem is present iff®,(z;, z;) > 0. In such case, the edgeunderlylng point process defined on the infinite plane, and a
set in @') simplifies to ' rule that describes how connections are established betthee

nodes [[5]. A main property of all percolation models is that
they exhibit aphase transitionas some continuous parameter
}' is varied. If this parameter is the density of nodes, then
the phase transition occurs at sowréical density \.. When
Fig.[d shows an example of such as-graph onR?2. A < A, denoted as thsubcritical phaseall the clusters are a.s.
The spatial location of the legitimate and eavesdroppeesodounded When) > ., denoted as thsupercritical phasgthe
can be modeled either deterministically or stochasticdlly graph exhibits a.s. an unbounded cluster of nodes, or irr othe
many cases, the node positions are unknown to the netwd@rds, the grapipercolates
designer a priori, so they may be treated as uniformly randomin this section, we aim to determine if percolation in the
according to a Poisson point process| [12]+-[14]. iS-graph is possible, and if so, for which combinations of
Definition 2.2 (PoissoriS-Graph): The PoissoniS-graphis ~System parameterS\;, e, 0) does it occur. The mathematical
an iS-graph wherell;, II. ¢ R? are mutually independem,characterization of théS-graph presents two challenges: i) the
homogeneous Poisson point processes with densitiesd \,, S-graph is a directed graph, which leads to the study of
respectively. directed percolationand_ii) theiS-graph exhibits dependencies
In the remainder of the paper (unless otherwise indicate@ftween the state of different edges, which leads to theystud
we focus on PoissonS-graphs inR?. of (_jependent percolationThe result is given by the following
main theorem.
Theorem 4.1 (Phase Transition in th&-Graph): For any

[1l. DEFINITIONS Xe > 0 and o satisfying

&= {xixj Sa — x| <z —ef], €' =argmin |x; — eyl
| e €lle

)

o2

) . A P'Q(O)
Graphs: We useG = {II;,&} to denote the (directed) 0<p<omx=logy 1+ ;

iS-graph with vertex setll, and edge set given in[](2). _
In addition, we define two undirected graphs: theeak there exist critical densitiea2"t, Al*, Ayeak, Astrone satisfying
iS-graph Gveak = {II,, £veak}, where

0< szeak < )\SUtS /\itrong < 00 (10)
p weak in strong
Evelk — (7w Ry(wi, x5) > oV Re(wy, ) > 0}, 0 <A< AT <A < %0 (11)
3 . " .
o strong __ strong We condition on the event that a legitimate node is located: at 0.
and theStrong i§ graph G - {Hf’ € }' where According to Slivnyak's theoreni[15, Sec. 4.4], apart frdm given point at

x = 0, the probabilistic structure of the conditioned processléntical to that
gstrong _ {m . %(xi’xj) > oA Rs(xj,xi) > Q}. of:he original process. S
Except where otherwise indicated, we use the symiol represent the out,
in, weak, or strong component.
2This definition usestrong secrecys the condition for information-theoretic  >We say that an event occurs “almost surely” (a.s.) if its pholity is equal
security. See[8],[111] for more details. to one.



open face

closed face

(a) Conditions for a faceH in L), to be closed, (b) A finite open component at the origin, surrounded by
according to Definitiof 5]1. a closed circuit.

Figure 2. Auxiliary diagrams for proving Lemnia %.1.

such that for larger o the connectivity is worse an@"°** certainly does
P =0, for A <\, (12) not percolate eith&.
P >0, for Xp > A, (13) A. Mapping on a Lattice
for any ¢ € {outin,weak strong. Conversely, ifo > omax We start with some definitions. L&}, be an hexagonal lattice
thenpS, = 0 for any Ay, Ae. as depicted in Fid. 2(), where each face is a regular hexagon
To prove the theorem, we introduce the following threwith side lengthé. Each face has atate which can be either
lemmas. openor closed A set of faces (e.g., a path or a circuit) 4l is
Lemma 4.1:For any). > 0 and satisfying [9), there exists said to be open iff all the faces that form the set are open. We
ane > 0 such thatp¥eak()\,) = 0 for all A, < e. now specify the state of a face based on how the procé$ses

Proof: Postponed to SectidnlV of the present paper] andIl. behave inside that face.
Lemma 4.2:For any)\e > 0 andy satisfying [9), there exists  Definition 5.1 (Closed Face if}): A face # in £, is said

a ¢ < oo such thapsrore(),) > 0 for all A\, > C. to be closediff all the following conditions are met:
Proof: Postponed to Sectidn VI of the present papef.] 1) Each of the 6 equilateral trianglé§;}%_; that compose
Lemma 4.3:For any A\e > 0 and o > 0, the percolation the hexagor#{ has at least one eavesdropper.
probability p, (\¢) is a non-decreasing function of. 2) The hexagorH{ is free of legitimate nodes.
Proof: This follows directly from a coupling argument. The  The apove definition was chosen such that discrete face
details can be found i [16]. _ B "1 percolation inZy, can be tied to continuum percolationdeax,
With these lemmas we are now in condition to prove Thegg given by the following proposition.
rem[4.1. Proposition 5.1 (Circuit Coupling)if there exists a closed

Proof of Theoreri 4]1we flrsﬂow_that ifo > omax, then  cjreyit in £, surrounding the origin, then the compo-
pS, = 0. The MSR R, of a link z;z7, given in [3), is upper nentACveak (0) is finite.
bounded by the channel capaciy of a link with zero length, Proof: Assume there is a closed circdiin £y, surrounding
i.e., Rs(zi, ;) < R(wi, ;) = log, (1+P%2(0))- If the thresh- the origin, as depicted in Fid. 2{b). This implies that the
old o is set such thab > omayx, the condition®s(z;, z;) > o in  open component i}, containing0, denoted byC~® (0), must
(@) for the existence of the edgg_x} is never satisfied by any be finite Since the area of the regioki“»(0) is finite, the
x;, ;. Thus, theiS-graphG' has no edges and cannot percolateontinuous grapl&:*<* has a finite number of vertices falling
We now consider the case 0f< o < omax. From the definitions inside this region. Thus, to prove th&t™e2k(0) is finite, we
in @-(@), we havexstons(0) C K°ut(0) C K"ak(0) and just need to show that no edges @k cross the circuiC.
Kcstrons(0) € Kn(0) € Kveak(0), and thereforepstone < Consider Fig[ 2(@), and suppose that the shaded faces are par
pout < pueak gnd pstrone < pin < pweak Then, Lemmag 411, of the closed circuit. Let zy, 22 be two legitimate nodes such
[4.2, and 4B imply that each curpg, (\,) departs from the zero that z; falls on an open face on the inner side@fwhile x
value at some critical density?, as expressed bl ({12) aid{13)falls on the outer side &f. Clearly, the most favorable situation
Furthermore, these critical densities are nontrivial ia flense for x1,z2 being able to establish an edge acréss the one
that0 < A2 < oo. The ordering of the critical densities i {10)depicted in Fig[ 2(&). The edggzs exists inG™eak iff either

and [11) follows from similar coupling arguments. 0 B, (9) or B,,(d) are free of eavesdropp&sThis condition

V. PROOF OFLEMMA [£] 6A simple coupling argument shows that the percolation pritba
. L . ties pS (Mg, Ae, 0) are non-increasing functions of
k (o'} ) )
In this proof, it is sufficient to show that;"*** does not 7. useBa(p) 2 {y € R? : |y —a| < p} to denote the closed two-

percolate for sufficiently smalk, in the case ofp = 0, since dimensional ball centered at poiat with radiusp.
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with o. The figure plots the case @f= 0.

Figure 3. Auxiliary diagrams for proving Lemnha #.2.

does not hold, since Definitidn $.1 guarantees that at le@st o~ Proof of Lemmd_4]1For any fixed ), it is easy to see
eavesdropper is located inside the triarfle- B,, (6)NB.,(5). that condition[(IW) can always be met by making the hexagon
Thus, no edges af"*** cross the circuit, which implies that side 6 large enough, and the density, small enough (but
KC¥eak (0) has finite size. [0 nonzero). For any such choice of parameters)\e, ¢ satisfying
(I4), the origin is a.s. surrounded by a closed circuitin(by

B. Discrete Percolation Propositior{ 5.R), and the compone@t©2¥(0) is a.s. finite (by

] ) , . Propositiof51), i.ep¥eak(),) = 0. 0
Having performed an appropriate mapping from a continuous
to a discrete model, we now analyze discrete face percalatio VI. PROOF OFLEMMA [Z2
in L. A. Mapping on a Lattice
Proposition 5.2 (Discrete Percolation iy,): If the parame- "~ Pping ] o .
ters A\, \e, 8 satisfy We start with some definitions. Let, = d - Z? be a square
T ; lattice with edge lengthl. Let £, £ £, + (4, 2) be the dual
(1 _ e—Ae§52) Y L 17 (14) lattice of £, depicted in Fig[3(&). We make the origin of the
2 coordinate system coincide with a vertex@f. Each edge has a
then the origin is a.s. surrounded by a closed circuitin state which can be eitheopenor closed We declare an edgé

Proof: The model introduced in Sectign VA can be seeim £/ to be open iff its dual edge in L is open.
as a face percolation model on the hexagonal lafigewhere ~ We now specify the state of an edge based on how the
each face is closed independently of other faces with pritityab processe$l, andIls behave in the neighborhood of that edge.

a . Consider Fig[ 3(B), where denotes an edge if;, andS;(a)
p =P{face# of Ly is closed and Sy(a) denote the two squares adjacentatoLet {v;}}_,

6 .
denote the four vertices of the rectangfe(a) U Sz(a). We
=F { </\ e{Ti} = 1) AIL{H} = 0} then have the following definition.

=1 6 Definition 6.1 (Open Edge if,): An edgea in L is said
= (1 - e”e?“) R (15) to beopeniff all the following conditions are met:

) . ) 1) Each squares;(a) and Sz(a) adjacent toa has at least
Face percolation on the hexagonal lattice can be equilalent one legitimate node.

described as site percolation on the triangular latticgpdrtic- 2) The regionZ(a) is free of eavesdroppers, whea)

ular, recall that if is smallest rectangle such thief_, By, (rfee) C Z(a)

withd

P{H is openr} < 1, (16)
2 o2
Tfree = g_l (2_99(\/5(1) - F(l - 2_9)) . (17)

then theopen component inL;, containing the origin is a.s.

Enite ’ gh 5’. T_hm. 8](,:an<ljo_sp the origin is %’S' surrobun_ded-l-he above definition was chosen such that discrete edge
y aclosedcircuit in £,. Combining [I5) and (16), we o talnpercolation in £, can be tied to continuum percolation in

GE) | strong i : H
" L , as given by the following two propositions.
We now use the propositions to finalize the proof 0? d y d prop

Lemmal4.1, whereby*°a()\,) = 0 for sufficiently small (but  8To ensure thats. in (I7) is well-defined, in the rest of the paper we
nonzero)\,. assume that is chosen such that < Jlggf1 (%(29 - 1)) .




Proposition 6.1 (Two-Square Couplinglf a is an open edge Having obtained a geometric bound on the probability of
in L, then all legitimate nodes insid&, (a) U Sz(a) form a a path of lengthn being closed, we can now use a Peierls
single connected component @Ftrone, argument to study the existence of an infinite compoent.

Proof: If two legitimate nodes:;, z» are to be placed inside  Proposition 6.4 (Discrete Percolation ig}): If the proba-

the regionS;(a) U S2(a), the most unfavorable configurationbility ¢ satisfies
in terms of MSR is the one whereg, andx, are on opposite N,
corners of the rectang®, (a)US:(a) and thugz; — 2| = v/5d. - (U= 210
In such configuration, we see frorfil (4) that the edges 7 27 ’
exists inG iff |z; —e*| > g~ ! (2‘99(\/5(1) - "—;(1 - 2—9)) £
reee, Where e* is the eavesdropper closest i9. As a re-
sult, the edgeriz; exists in G52 iff both B,, (rgee) and P{open component il containing0 is infinite} > 0. (21)
B.,(rwee.) are free of eavesdroppers. Now, E(a) is the
smallest rectangle containing the regilgjlelivi (riree), the
conditionlle{Z(a)} = 0 ensures the edgew; exists inG*""¢ . oc04 circuit in £, surrounding 0, as illustrated in
foranyz;,z; € S (a)gsg(a). Thus, all legitimate nodes jnsideFig' [Blc). Thus, the inequality in[{21) is equivalent to
S1(a)US:(a) form a single connected componentGhi**«. [} P{3 closed circuit inZ, surrounding)} < 1. Let p(n) denote

Proposition 6.2 (Component Coupling)t the open compo- yhe nossible number of circuits of lengthin £, surrounding)

nent intﬁg containing the origin is infinite, then the COMPOY4 deterministic quantity). Let(n) denote the number afosed
stron, 1 H N1
nentC=°7%(0) is also infinite. circuits of lengthn in £, surroundingd (a random variable).

Proof: Consider Fig[ 3(¢). LeP = {a;} denote a path of o combinatorial arguments, it can be sholvr [19, Eq. (1.17
open edgeda.} in L. By the definition of dual lattice, the that p(n) < 4n3"2. Then, for a fixedn

path P uniquely defines a sequence = {S;} of adjacent

squares inL, separated by open edgés,} (the duals of P{x(n)>1} < p(n)-P{path inLs with lengthn is closed
{a}}). Then, each square ifi has at least one legitimate node < Apgn—2gn/Ne,

(by Definition[6.1), and all legitimate nodes falling insitiee )

region associated witl$ form a single connected componentvhere we used the union bound and Propositioh 6.3. Also,
in Gstrong (by Proposition 6J1). Now, lekc%:(0) denote the PP{3 closed circuit inL, surrounding)}

open component i, containing0. Because of the argument

(20)

then

Proof: We start with the key observation that the
open component inl. containing 0 is finite iff there is

just presented, we havgCL:(0)| < |Kstons(0)]. Thus, if =P{n(n) 2 1 for somen} /
[ICE2(0)] = oo, then| K=o (0)] = oo, O ez ane g
< 2_:4”3 = s (22)
n=1
B. Discrete Percolation for ¢ < (%)N We see that ifg satisfies [[20), ther((22) is
Having performed an appropriate mapping from a continuoggictly less than one, an@{21) follows. 0

to a discrete model, we now analyze discrete edge percolatiowe now use the propositions to finalize the proof of

in L£{. Let Ny be the number of squares that compose th&mmaZ.2, wherebys™o"s()\,) > 0 for sufficiently large (but
rectangleZ(a) introduced in Definitiod 6]1. We first study thefinite) \,.

behavior of paths inCs with the following proposition. Proof of Lemma[4]2:For any fixed )\, it is easy to
Proposition 6.3 (Geometric Bound)the probability that a see the probability; in (I9) can be made small enough to
given path inLs with lengthn is closed is bounded by satisfy condition[(200), by making the edge lengtlsufficiently
) ) ) " small, and the density\, sufficiently large (but finite). For
P{path in £, with lengthn is closed < ¢"/™, (18)  any such choice of parameteds, Mo, d satisfying [20), the
where N, is a finite integer and open component inC, containing0 is infinite with positive
probability (by Propositiof 614), and the compongiit'»e(0)
g=1—(1—e M2 g reNod? (19) is also infinite with positive probability (by Propositién2,
i.e., psrons(),) > 0. O

is the probability that an edge ifi; is closed.

Proof: (outline) Using Definition[6.1, we can write VIl. SIMULATION RESULTS

q 2 P{edgea in L, is closed In this section, we obtain additional insights about peatioh

=1 - P{IL{Si(a)} > 1 ATL{Ss(a)} > 1 ATLe{Z(a)} = 0} in thezS_—graph via l_\/!c_mte Carlo simulation. Figure 4 shows the
percolation probabilities for the weak and strong compésen
of the iS-graph, versus the density, of legitimate nodes.

As predicted by Theorem 4.1, the figure suggests that these
components experience a phase transitiomass increased.

In particular, \7**k ~ 3.4m~2 and A$™"¢ ~ 6.2m~2, for the
case of\e = 1m~2 and o = 0. Operationally, this means that

—1_ (1 _ e—)xgd2)2 .e—AeNsd2'

Now, let P = {a;}", denote a path irCs with lengthn» and
edges{a;}. Even though the edgds; } do not all have indepen-
dent states (in which case we would h&/éP is closed = ¢"),
it is possible to show thaP{P is closeq < ¢*/- for a

ﬁnite integer N, by finding a SUbseQ_ C P of edges with o spejeris argument”, so-named in honour of Rudolf Peieris &is 1936
independent states (see[[16] for details). [J article on the Ising mode[[18], refers to an approach baseeérameration.
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