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Abstract—Automorphism ensemble (AE) decoding for polar
codes was proposed by decoding permuted codewords with
successive cancellation (SC) decoders in parallel and hence has
lower latency compared to that of successive cancellation list
(SCL) decoding. However, some automorphisms are SC-invariant,
thus are redundant in AE decoding. In this paper, we find a
necessary and sufficient condition related to the block lower-
triangular structure of transformation matrices to identify SC-
invariant automorphisms. Furthermore, we provide an algorithm
to determine the complete SC-invariant affine automorphisms
under a specific polar code construction.

I. INTRODUCTION

Polar codes [1] are proved to asymptotically achieve capac-

ity on discrete binary memoryless symmetric (BMS) channels

under SC decoding. To enhance the finite-length performance,

SCL decoding was proposed in [2]. Moreover, cyclic redun-

dancy check (CRC)-aided polar codes [3] achieve outstanding

performance at short to moderate block lengths.

A substantial part of SCL decoding complexity and latency

is related to path management, i.e., sorting and pruning paths

according to path metric (PM). In order to reduce the latency,

decoding under stage permutations on the factor graph was

proposed in [4]. In [5], AE decoding utilized more SC-variant

automorphisms instead of only stage permutations to enhance

error correcting performance. A key step in AE decoding is the

identification and avoidance of SC-invariant automorphisms,

which produce duplicate decoding results. The automorphisms

formed by lower-triangular affine (LTA) transformations [6]

were proved to be SC-invariant [5]. In [7] and [8], the

block lower-triangular affine (BLTA) group was proved to

be the complete affine automorphism group of polar codes.

BLTA transformations showed better performance under AE

decoding [7] [9] [10]. In [10], affine automorphism group

was classified into equivalent classes, where each class will

yield the same SC decoding result. Therefore selecting at most

one automorphism from each equivalent class guarantees SC-

variance. In contrast of AE decoding, some other applica-

tions require SC-invariant automorphisms. In [11], n
4 -cyclic

shift permutations, which are SC-invariant, were proposed for

implicit timing indication in Physical Broadcasting Channel

(PBCH). In both applications, identifying SC-invariant auto-

morphisms is a key step.

Some previous works attempt to identify SC-invariant affine

automorphisms for general polar codes [5] [10]. However,

given a specific code construction, SC-invariant automor-

phisms can not be completely found in [5], [10]. In this paper,

we identify and prove the complete SC-invariant affine auto-

morphisms. For example, as shown in Table 1 of section IV,

the number of the complete SC-invariant affine automorphisms

for (256,128) polar code is 21× 228 but only 3× 228 of them

are founded in [10].

The rest of this paper is organized as follows. In section

II, we review polar codes and automorphism group. In section

III, we provide a low complexity algorithm to distinguish SC-

invariant affine automorphisms. We further prove SC-invariant

affine automorphism group is also of the form BLTA and

provide an algorithm to determine it. In section IV, simulation

results show distinguishing SC-invariant automorphisms can

reduce redundancy in AE decoding. Finally, we draw some

conclusions in section V.

II. PRELIMINARIES

A. Polar codes as monomial codes

Let F =

[

1 0
1 1

]

and Gm = F⊗m, where m is the

code dimension. A polar code (n = 2m,K) is generated by

selecting K rows of Gm. The set I ⊆ {0, 1, ..., n − 1} of

indices of selected rows is the information set, and F = Ic is

the frozen set. Denote the polar code with information set I
by C(I).

Polar codes can be described as monomial codes [6]. The

monomial set is

M = {xg1
1 ...xgm

m |(g1, ..., gm)T ∈ F
m
2 },

and the evaluation of g ∈M is

eval(g) = (g(u))u∈F
m
2
.

Then each row of Gm can be represented by eval(g) for

some g ∈ M. For example, assume z ∈ {0, 1, ..., 2m − 1},
there is a unique binary representation a = (a1, ..., am)T of

2m − z − 1, where a1 is the least significant bit, such that

m
∑

i=1

2i−1(1 − ai) = z.

http://arxiv.org/abs/2201.12714v4


Then the evaluation of monomial eval(xa1

1 ...xam
m ) is exactly

the (2m − z − 1)-th row of Gm. Therefore, the information

set I can be regarded as a subset of {0, ..., n− 1} or a subset

of M. As seen, the three representations, i.e., the number z,

the binary representation of 2m − 1 − z = (a1, ..., am)T and

the corresponding monomial xa1

1 ...xam
m all refer to the same

thing.

Two monomials of the same degree are ordered as

xi1 ...xit 4 xj1 ...xjt if and only if il ≤ jl for all l ∈ {1, ..., t},
where we assume i1 < ... < it and j1 < ... < jt. This partial

order is extended to monomials with different degrees through

divisibility, namely f 4 g if and only if there is a divisor g′

of g such that f 4 g′.
An information set I ⊆ M is decreasing if ∀g 4 f and

f ∈ I we have g ∈ I. A decreasing monomial code C(I)
is a monomial code with a decreasing information set I. If

the information set is selected according to the Bhatacharryya

parameter, polar codes will be decreasing monomial codes [6],

[12]. In this way, polar codes can be generated by Imin, where

the information set is the smallest decreasing set containing

Imin. From now on, we always suppose I is decreasing.

B. Affine automorphism group

Let C be a decreasing monomial code with length n. A

permutation π in the symmetric group Sym(n) is an auto-

morphism of C if for any codeword c = (c0, ..., cn−1) ∈ C,

π(c) = (cπ(0), ..., cπ(n−1)) ∈ C. The automorphism group

Aut(C) is the subgroup of Sym(n) containing all automor-

phisms of C.

Let M be an m × m binary invertible matrix and b be

a length-m binary column vector. The affine transformation

(M, b) permutes a ∈ F
m
2 to Ma+ b.

A matrix M is lower-triangular if M(i, i) = 1 and

M(i, j) = 0 for all j > i. The LTA group is the group of

all affine transformations (M, b) where M is lower-triangular.

Similarly, a matrix M is upper-triangular if M(i, i) = 1 and

M(i, j) = 0 for all j < i.
BLTA([s1, ..., sl]) is a BLTA group of all affine transforma-

tions (M, b) where M can be written as a block matrix of the

following form










B1,1 0 · · · 0
B2,1 B2,2 · · · 0

...
...

. . . 0
Bl,1 Bl,2 · · · Bl,l











, (1)

where Bi,i are full-rank si × si matrices. BLTA equals the

complete automorphisms of decreasing polar codes that can

be formulated as affine transformations [8].

C. Successive cancellation decoding

Let Li,t be the log likelihood ratio (LLR) of the i-th node

at stage t and Li,m be the received LLRs from channels. Li,t

are propagated from stage t+ 1 according to

Li,t = f(Li,t+1, Li+2t,t+1) = log

(

eLi,t+1+Li+2t,t+1 + 1

eLi,t+1 + eLi+2t,t+1

)

;

Li+2t,t = g(ui,t, Li,t+1, Li+2t,t+1)

= (−1)ui,tLi,t+1 + Li+2t,t+1.

At stage 0, we have

ui,0 =











0, if i ∈ F ;

0, if i ∈ I, Li,0 ≥ 0;

1, if i ∈ I, Li,0 < 0.

Then hard decisions ui,t are propagated from stage t − 1
according to

ui,t = ui,t−1 ⊕ ui+2t,t−1;

ui+2t,t = ui+2t,t−1.

where ⊕ means the addition modulo 2.

Let SCI : R
n → F

n
2 map the received LLR vector

y = (Li,m)i∈{0,...,n−1} ∈ R
n to the SC decoding result

(ui,m)i∈{0,...,n−1} = SCI(y) ∈ C(I).

D. Automorphism ensemble decoding

Let π1, ..., πt be t different automorphisms of the code C
and y ∈ R

n be the received LLR vector. A list of decoders can

independently decode each permuted LLR πj(y). The decoded

candidate codeword of y using πj is

x̂j = π−1
j (SCI(πj(y)).

A final decoding result is selected according to the minimum

Euclidean distance rule:

x = arg min
x̂j ,j=1,...,t

||x̂j − y||.

For an automorphism π of C(I), we say π commutes with

SCI if for all y ∈ R
n, SCI(π(y)) = π(SCI(y)). If π

commutes with SCI , the corresponding permuted SC decoder

always outputs the same decoding result as the non-permuted

SC decoder.

The automorphism π in LTA group is SC-invariant for C(I),
which means it commutes with SCI [5]. Moreover, in [10],

two affine automorphisms π, π′ are called equivalent for C(I),
denoted by π ∼I π′, if for all y ∈ R

n

π−1(SCI(π(y))) = π′−1SCI(π
′(y)).

The equivalence classes are defined as

[π]I = {π′ : π′ ∼I π}.

Let 1 be identity permutation, the equivalence class [1]I con-

sists of the complete affine automorphisms commuting with

SCI , which is an automorphism subgroup. The authors of [10]

proved that BLTA([2, 1..., 1]) ⊆ [1]I , that is, automorphisms

in BLTA([2, 1..., 1]) commute with SCI of any decreasing

monomial code C(I) whose automorphism group includes

BLTA([2, 1..., 1]). A natural question arises: are these the

complete SC-invariant affine automorphisms?



Fig. 1: The factor graph of an (8,4) polar code

III. ANALYSIS ON SC-INVARIANT AUTOMORPHISMS

In this section, we give a necessary and sufficient condition

to identify SC-invariant affine automorphisms for any specific

code C(I). The key technique in proofs is that the block

lower-triangular structure of transformation matrix can be used

to decompose the corresponding automorphism into shorter

ones (detailed description is in Definition 1). Therefore, C(I)
can be decomposed to shorter subcodes, and we can identify

SC-invariant automorphisms inductively.

A. Notations and definitions

Let M be a full-rank matrix. We say M has the block lower-

triangular structure s(M) = 〈s1, ..., sl〉 if M can be written as

(1) and none of Bi,i can be written as a block lower-triangular

matrix with more than one block. Define St =
∑t−1

i=1 si for

2 ≤ t ≤ l + 1 and S1 = 0.

Define [a, b] to be the integer set {i ∈ N|a ≤ i ≤ b}
for a, b ∈ N, and M([a, b], [c, d]) to be the corresponding

submatrix of M .

The affine transformation (M, 0) ⊆ [1]I if and only if

(M, b) ⊆ [1]I for any b ∈ F
m
2 . For convenience, define ϕ(M)

to be the permutation (M, 0) which permutes a ∈ F
m
2 to Ma.

Define Indm(ai1 = ci1 , ..., ait = cit) = {(a1, ..., am)T ∈
F
m
2 |aij = cij , ∀j = 1, ..., t} to be a set of indices whose

i1, ..., it-th bits are fixed to be ai1 , ..., ait . Define

I(Indm(ai1 = ci1 , ..., ait = cit))

={(a1, ...ai1−1, ai1+1, ..., ait−1, ait+1, ..., am)T ∈ F
m−t
2 |

(a1, ..., am)T ∈ I, aij = cij , ∀j = 1, ..., t}

to be the information set of length-2m−t subcode consisting

of indices in Indm(ai1 = ci1 , ..., ait = cit). F(Indm(ai1 =
ci1 , ..., ait = cit)) is defined in the same way.

For example, the factor graph of (8,4) polar code is shown in

Fig. 1, where I = {3, 5, 6, 7}. In Fig. 1, I(Ind3(a1 = 1)) =
{3} (resp. I(Ind3(a1 = 0)) = {1, 2, 3}) is the information

set of length-4 subcode consisting of indices that the least

significant bit a1 is equal to 1 (resp. 0), i.e. the even (resp. odd)

bits. Similarly, I(Ind3(a3 = 1)) = {3} (resp. I(Ind3(a3 =

0)) = {1, 2, 3}) is the information set of length-4 subcode

consisting of indices that the most significant bit a3 is equal

to 1 (resp. 0), i.e. the first (resp. last) four bits. This definition

simplifies the description of decomposed shorter subcodes in

our proofs.

B. Transformations of matrices

In this subsection, we provide two lemmas on matrix

transformations.

Lemma 1 (lower-triangular transformation). Let M be a

full-rank matrix and M1,M2 be two lower-triangular matri-

ces. π = ϕ(M) and π′ = ϕ(M1MM2) are two automor-

phisms of C(I). Then π′ commutes with SCI if and only if π
commutes with SCI . Moreover, s(M) = s(M1MM2).

Proof. It is from the fact that ϕ(M1MM2) =
ϕ(M1)ϕ(M)ϕ(M2) and ϕ(M1), ϕ(M2) and ϕ(M) all

commute with SCI .

Let s(M) = 〈s1, ..., sl〉 and s(M1MM2) = 〈s′1, ..., s
′
k〉.

Notice that L1M means adding upper row of M to

lower, while ML2 means adding right column of M
to left. Therefore, M([1, s1], [s1 + 1,m]) = 0 implies

M1MM2([1, s1], [s1 + 1,m]) = 0, so s′1 ≤ s1.

Since M = M−1
1 (M1MM2)M

−1
2 , similarly, we have s1 ≤

s′1. Therefore, s1 = s′1. And so on, s(M) = s(M1MM2).

Remark 1. Thanks to Lemma 1, we only need to investi-

gate upper-triangular matrices since every matrix M can be

transformed to an upper-triangular matrix by lower-triangular

transformation while maintaining the block lower-triangular

structure.

Next, we show how to decompose upper-triangular trans-

formation by exploiting its block lower-triangular structure.

Definition 1. Let M be an upper-triangular matrix with

s(M) = 〈s1, ..., sl〉 and π = ϕ(M). We have M = M1M2

where

M1(i, j) =











M(i, j), if 1 ≤ i, j ≤ Sl;

1, if Sl + 1 ≤ i = j ≤ m;

0, otherwise .

And

M2(i, j) =











M(i, j), if Sl + 1 ≤ i, j ≤ m;

1, if 1 ≤ i = j ≤ Sl;

0, otherwise .

We define four permutations related to π: π1 = ϕ(M1), π2 =
ϕ(M2), π̃1 = ϕ(M([1, Sl], [1, Sl])), π̃2 = ϕ(M([Sl +
1,m], [Sl + 1,m])).

Lemma 2 (Permutation Decomposition). Let M be an

upper-triangular matrix with s(M) = 〈s1, ..., sl〉 and π =
ϕ(M). Let π1, π2, π̃1, π̃2 be the permutations defined in Defi-

nition 1. For 0 ≤ z1 ≤ 2Sl − 1 and 0 ≤ z2 ≤ 2sl − 1,

π(z1 + 2Slz2) = π1(z1) + π2(2
Slz2), (2)



π(z1 + 2Slz2) = π̃1(z1) + 2Slπ̃2(z2). (3)

Moreover, if sl = 1, then π = π1 and π2 is the identical

permutation, which means

π(z1 + 2m−1z2) = π(z1) + 2m−1z2 (4)

for 0 ≤ z1 ≤ 2m−1 − 1 and z2 = 0, 1. And (4) means

π([0, n/2−1]) = [0, n/2−1] and π([n/2, n−1]) = [n/2, n−
1], that is, bits in the upper (lower) half branch remain in the

upper (lower) half branch after permutation.

Proof. Since π = π2 ◦ π1,

π(z1 + 2Slz2)

=π2 ◦ π1(z1 + 2Slz2)

=π2(π1(z1) + 2Slz2)

=π1(z1) + π2(2
Slz2).

So (2) is proved. (3) is from π1(z1) = π̃1(z1) and π2(2
Slz2) =

2Sl π̃2(z2).

Remark 2. Due to the block lower-triangular structure of M ,

π = π2 ◦ π1 = π1 ◦ π2, where π1 only affects the first Sl bits

and π2 only affects the last sl bits. To be specific, permutation

π can be decomposed into two steps.

Step 1 (the effect of π1): Divide [0, 2m− 1] into 2sl blocks

[i2Sl , (i + 1)2Sl − 1], 0 ≤ i ≤ 2sl − 1, then apply the same

permutation π̃1 to each block.

Step 2 (the effect of π2): Treat each block as a whole, apply

π̃2 to 2sl blocks.

This technique will help us decompose the polar code into

shorter subcodes in Algorithm 1.

C. Distinguishing SC-invariant automorphisms

Algorithm 1 determines whether affine automorphisms with

the block lower-triangular structure 〈s1, ..., sl〉 commute with

SCI iteratively. We claim that π = ϕ(M) commutes with

SCI if and only if DecAut(s(M), I) outputs TRUE. Let

π1, π2, π̃1, π̃2 be the permutations defined in Definition 1. Note

that s(π̃1) = 〈s1, ..., sl−1〉. We briefly describe procedures of

Algorithm 1.

First, if l = 1 (lines 5-7), π is SC-invariant if and only if the

code belongs to Rate-0, single parity check (SPC), repetition

(Rep) or Rate-1 codes [13].

If l 6= 1, we recursively determine whether π is SC-

invariant. According to sl, we consider two cases:

1) sl = 1 (lines 8-11), because π2 is the identical per-

mutation, π is SC-invariant if and only if π̃1 commutes with

C(I(A1)) and C(I(A2)), i.e., the subcodes on upper half

branch and lower half branch.

2) sl > 1 (lines 12-23), divide [0, 2m − 1] into 2sl blocks

[i2Sl , (i+ 1)2Sl − 1], 0 ≤ i ≤ 2sl − 1. In this case, π̃2 is not

identical permutation, then π is SC-invariant only if all frozen

bits belong to the first block or all information bits belong

to the last block. Furthermore, π̃1 must commute with either

the first subcode C(I(A1)) (lines 13-14) or the last subcode

C(I(A2)) (lines 16-17) respectively.

Algorithm 1 DecAut(〈s1, ..., sl〉, I)

Input: block lower-triangular structure 〈s1, ..., sl〉, informa-

tion set I
Output: a is a boolean value and a is TRUE if and only if

automorphisms with the block lower-triangular structure

〈s1, ..., sl〉 commute with SCI .

1: m←
∑l

i=1 si; Sl ←
∑l−1

i=1 si;
2: F ← {0, ..., 2m − 1}/I;

3: A1 ← Indm(aSl+1 = 1, ..., am = 1);
4: A2 ← Indm(aSl+1 = 0, ..., am = 0);
5: if l = 1 then

6: a← (F ⊆ A1) ∨ (I ⊆ A2);
7: else

8: if sl = 1 then

9: a1 ← DecAut(〈s1, ..., sl−1〉, I(A1));
10: a2 ← DecAut(〈s1, ..., sl−1〉, I(A2));
11: a← a1 ∧ a2;

12: else

13: if F ⊆ A1 then

14: a← DecAut(〈s1, ..., sl−1〉, I(A1));
15: else

16: if I ⊆ A2 then

17: a← DecAut(〈s1, ..., sl−1〉, I(A2));
18: else

19: a← FALSE;

20: end if

21: end if

22: end if

23: end if

Example 1. Assume C(I) is a polar code with length n = 16
and information set I = {3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15}.
It is clear that Aut(C(I)) = BLTA([4]). We can

determine whether ϕ(M) with s(M) = 〈3, 1〉
commutes with SCI by Algorithm 1. Since

s2 = 1, from lines 8-11, DecAut(〈3, 1〉, I) =
DecAut(〈3〉, {3, 5, 6, 7}) ∧ DecAut(〈3〉, {1, 2, 3, 4, 5, 6, 7}).
Next, DecAut(〈3〉, {3, 5, 6, 7})) = FALSE and

DecAut(〈3〉, {1, 2, 3, 4, 5, 6, 7}) = TRUE from line 6.

Therefore, we conclude that the algorithm will output FALSE

so that ϕ(M) with s(M) = 〈3, 1〉 does not commute with

SCI .

In Theorem 1 and Theorem 2, we prove the sufficiency and

necessity of Algorithm 1, respectively.

For convenience, denote by Li,t and ui,t the LLRs and hard

decisions of the i-th node at stage t before permutation, and

L′
i,t and u′

i,t the LLRs and hard decisions after permutation

(see Section II-C).

Theorem 1 (Sufficiency). Let M be a block lower-triangular

matrix with s(M) = 〈s1, ..., sl〉 and π = ϕ(M) is an

automorphism of C(I) with length n = 2m. π commutes with



SCI if DecAut(s(M), I) outputs TRUE.

Proof. From Remark 1, assume M is an upper-triangular

matrix. We prove the theorem by induction on l. If l = 1,

the theorem holds since the condition implies the code is one

of Rate-0, SPC, Rep or Rate-1 code, where SC decoding is

equivalent to ML decoding, and thus invariant under permuta-

tions, and any permutation produces the same decoding result.

Let π1, π2, π̃1, π̃2 be the permutations defined in Definition

1. For the induction step l − 1 → l, There are two cases

we need to consider. The first is sl = 1. Divide [0, 2m−1]
into upper half branch [0, 2m−1 − 1] and lower half branch

[2m−1, 2m−1]. As mentioned in Remark 2, π̃2 is the identical

permutation so bits in the upper or lower half branch remain

in the same branch after permutation. Thus, the LLRs at stage

m − 1 of the upper and lower half branches are permuted

by π̃1, respectively. Then by induction, π̃1 is SC-invariant. It

follows that π is SC-invariant.

Now let us discuss the proof in detail. First consider the

upper half branch. Note that π(i) = π̃1(i) for 0 ≤ i ≤ 2m−1−
1. (4) implies L′

i+2m−1,m
= Lπ(i+2m−1),m = Lπ̃1(i)+2m−1,m

and then

Lπ̃1(i),m−1 = f(Lπ̃1(i),m, Lπ̃1(i)+2m−1,m)

= f(Lπ(i),m, Lπ(i+2m−1),m)

= f(L′
i,m + L′

i+2m−1,m) = L′
i,m−1.

Because that DecAut(〈s1, ..., sl−1, 1〉, I) outputs TRUE im-

plies that DecAut(〈s1, s2, ..., sl−1〉, I(Indm(am = 1))) out-

puts TRUE, by inductive hypothesis,

u′
i,m−1 = uπ̃1(i),m−1 = uπ1(i),m−1. (5)

Next, we consider the lower half branch. For 0 ≤ i ≤
2m−1 − 1

Lπ̃1(i)+2m−1,m−1 = g(uπ̃1(i),m−1, Lπ̃1(i),m, Lπ̃1(i)+2m−1,m)

= g(u′
i,m−1, L

′
i,m, L′

i+2m−1,m)

= L′
i+2m−1,m−1.

Because that DecAut(〈s1, ..., sl−1, 1〉, I) outputs TRUE im-

plies that DecAut(〈s1, s2, ..., sl−1〉, I(Indm(am = 0))) out-

puts TRUE, by inductive hypothesis,

u′
i+2m−1,m−1 = uπ̃1(i)+2m−1,m−1 = uπ(i)+2m−1,m−1. (6)

It follows from (5) and (6) that uπ(i),m = u′
i,m.

Now we turn to the case sl > 1. In this case, π̃2 is not

identical permutation, additional conditions are required to

ensure SC-invariance of π. We divide [0, 2m − 1] into 2sl

blocks Indm(aSl+1 = cSl+1, ..., am = cm). By lines 6-10 of

Algorithm 1, either all frozen bits belong to the first block

A1 = Indm(aSl+1 = 1, ..., am = 1) or all information bits

belong to the last block A2 = Indm(aSl+1 = 0, ..., am = 0).
1) If F ⊆ A1, from Lemma 2, we have Lπ1(i),Sl

= L′
i,Sl

for

i ∈ A1. Notice that DecAut(〈s1, s2, ..., sl〉, I) outputs TRUE

and F ⊆ A1 imply that DecAut(〈s1, s2, ..., sl−1〉, I(A1)) out-

puts TRUE. Then by inductive hypothesis, uπ1(i),Sl
= u′

i,Sl
for

i ∈ A1. Notice that Indm(aSl+1 = cSl+1, ..., am = cm) ⊆ I

for aSl+1, ..., am are not all one, then ui,Sl
= sign(Li,Sl

) for

i /∈ A1.

Then C(I) can be viewed as 2Sl independent length-2sl

SPC codes. Define A′ = Indm(a1 = c1, ..., aSl
= cSl

) and

ỹ = (L′
i,m)i∈A′ = (Lπ(i),m)i∈A′ = π̃2(Lπ1(i),m)i∈A′ , then

(u′
i,m)i∈A′ = SCI′(ỹ) where I ′ = {1, ..., 2sl − 1} and the

first bit is frozen to u′
z1,Sl

with z1 = (a1, ..., aSl
, 1, ..., 1)T .

That is, (u′
i,m)i∈A′ can be decoded as a length-2sl SPC code

with LLR vector ỹ.

Since π̃2 commutes with I ′, we have

(u′
i,m)i∈A′ = SCI′(ỹ) = SCI′(π̃2(Lπ1(i),m)i∈A′)

= π̃2(SCI′(Lπ1(i),m)i∈A′) = π̃2(uπ1(i),m)i∈A′

= (uπ(i),m)i∈A′ ,

thus u′
i,m = uπ(i),m.

2) If I ⊆ A2 we have ui,Sl
= u′

i,Sl
= 0 for i /∈ A2. Thus,

ui,m = uj,Sl
;u′

i,m = u′
j,Sl

. (7)

for j ∈ A2 and j ≡ i mod 2Sl . From Lemma

2, Lπ1(j),Sl
= L′

j,Sl
for j ∈ A2. Notice that

DecAut(〈s1, s2, ..., sl〉, I) outputs TRUE and I ⊆ A2 imply

that DecAut(〈s1, s2, ..., sl−1〉, I(A2)) outputs TRUE. By in-

ductive hypothesis,

uπ1(j),Sl
= u′

j,Sl
. (8)

Then

u′
i,m = u′

j,Sl
= uπ1(j),Sl

= uπ(i),m,

where j ≡ i mod 2Sl and j ∈ A2. Here the first equation

is from (7), the second equation is from (8), and the last

is because of (7) and π1(j) ≡ π(j) ≡ π(i) mod 2Sl from

Lemma 2.

The next lemma allows us to claim an automorphism is not

SC-invariant by decomposing the automorphism on the upper

and lower half branches even if sl 6= 1. It will help us prove

the necessity.

Lemma 3. Let C(I) be a decreasing monomial code with

length n = 2m. π = ϕ(M) is an automorphism of C(I),
where M is an upper-triangular matrix. Let Ai = Indm(am =
i) and Ii = I(Ai), i = 0, 1, denote π′ = ϕ(M([1,m −
1], [1,m − 1])), then π commutes with SCI implies π′ com-

mutes with SCI1
and SCI0

, i.e., π′ commutes with the subcodes

on upper and lower half branches.

Proof. If π′ does not commute with SCI1
, because π′′ ,

π|A1
= (M([1,m−1], [1,m−1]),M([1,m−1],m)), π′′ does

not commute with SCI1
as well. So there exists y ∈ R

2m−1

such that π′′(SCI1
(y)) 6= SCI1

(π′′(y)).
Now we can construct an example from y to show π does

not commute with SCI . To be specific, let (Li,m)i∈A1
= y and

(Li,m)i∈A0
= +∞, then Li,m−1 = f(Li,m,+∞) = Li,m for

i ∈ A1. Therefore, (Li,m−1)i∈A1
= y and (L′

i,m−1)i∈A1
=

π′′(y). Since π′′(SCI′(y)) 6= SCI′(π′′(y)), we have for some

j
uπ′′(j),m−1 6= u′

j,m−1. (9)



For i ∈ A1, Li+2m−1,m−1 = g(ui,m−1, Li,m,+∞) = +∞.

Similarly, L′
i+2m−1,m−1 = +∞. Thus

ui+2m−1,m−1 = u′
i+2m−1,m−1 = 0. (10)

Together with (9) and (10), uπ(j),m 6= u′
j,m for some j.

π′ commutes with SCI0
can be proved similarly when

(Li,m)i∈A1
= ε and (Li,m)i∈A0

= y, where ε is positive

and small enough.

The next lemma proves two special cases of the necessity

by decomposing the permutation on the subcodes consisting

of odd and even indices.

Lemma 4. Let M be a block lower-triangular matrix with

s(M) = 〈1, 1, ..., 1, sl〉 where sl = 2 or 3. π = ϕ(M) is an

automorphism of C(I) with length n = 2m. Then π commutes

with C(I) only if F ⊆ Indm(aSl+1 = 1, ..., am = 1) or

I ⊆ Indm(aSl+1 = 0, .., am = 0).

Proof. We inducted on m, if m = 2, 3, the lemma can be

proved by exhaustive search. For the induction step m− 1→
m, assume s(M) = 〈1, 1, ..., 1, 2〉. Let I be an information

set such that F 6⊆ A1 = Indm(am−1 = 1, am = 1) and

I 6⊆ A2 = Indm(am−1 = 0, am = 0). Divide I into two

information sets I1 = I(Indm(a1 = 1)) on the even bits and

I2 = I(Indm(a1 = 0)) on the odd bits, then F1 = Indm(a1 =
1)− I1 and F2 = Indm(a1 = 0)− I2.

We are going to show that at least one of I1 and I2 does not

satisfy the condition. First, F1 6⊆ A1, since F1 ⊆ A1 implies

F2 ⊆ A1 by decreasing property, which is contradictory

against F 6⊆ A1. Similarly, I2 6⊆ A2.

We claim that one of F2 6⊆ A1 and I1 6⊆ A2 must hold,

since otherwise Indm(a1 = 0, am−1 = 1, am = 0) ⊆ I and

Indm(a1 = 1, am−1 = 1, am = 0) ⊆ F . Since m > 4,

Indm(a1 = 0, a2 = 1, am−1 = 1, am = 0) ⊆ I and

Indm(a1 = 1, a2 = 0, am−1 = 1, am = 0) ⊆ F , which are

contradictory against I is a decreasing set when m ≥ 4.

Now we are going to construct a counter-example by in-

duction. Assume I1 6⊆ A2, denote π′ = ϕ(M([2,m], [2,m])).
From inductive hypothesis, there exists some ỹ ∈ R

2m−1

such that π′(SCI1
(ỹ)) 6= SCI1

(π′(ỹ)), which implies ϕ(M)
does not commute with SCI by setting (Li,m)i∈Indm(a1=1) =
ỹ and Li,m = +∞ otherwise. If F2 6⊆ A1, denote

(Li,m)i∈Indm(a1=0) = ỹ and Li,m = ε where ε is positive

and small enough otherwise.

If s(M) = 〈1, 1, ..., 1, 3〉, the proof is similar if we take

A1 = Indm(am−2 = 1, am−1 = 1, am = 1) and A2 =
Indm(am−2 = 0, am−1 = 0, am = 0).

Now we are ready to prove Theorem 2.

Theorem 2 (Necessity). Let M be a block lower-triangular

matrix with s(M) = 〈s1, ..., sl〉 and π = ϕ(M) is an

automorphism of C(I) with length n = 2m. π commutes with

SCI only if DecAut(s(M), I) outputs TRUE.

Proof. From Remark 1, assume M is an upper-triangular

matrix. We prove the theorem by induction on m. if m ≤ 3,

it can be proved by computer search. Assume the theorem

holds for m′ ≤ m − 1. Define A1 = Indm(am = 1) and

A0 = Indm(am = 0). Cases are classified according to sl.
If sl = 1, the theorem can be proved by Lemma 3.

If sl = 2 or 3, Let π1, π2, π̃1, π̃2 be the permuta-

tions defined in Definition 1. Divide [0, 2m − 1] into 2sl

blocks Indm(aSl+1 = cSl+1, ..., am = cm). Denote I ′ =
I(Indm(aSl+1 = cSl+1, ..., am = cm)). Since π is SC-

invariant, repeatedly applying Lemma 3 reveals thatπ̃1 com-

mutes with SCI′ . By Theorem 1, π1 commutes with SCI .

Therefore, π2 = π−1
1 ◦ π commutes with SCI . Then the

theorem can be proved by Lemma 4.

If sl ≥ 4, without loss of generality, assume s(M([1,m−
1], [1,m−1])) = 〈s1, ..., sl−1, sl−1〉 and M(m, [1,m−1]) =
0. Define π′ = ϕ(M([1,m − 1], [1,m − 1])). (This can be

achieved by transformations in Lemma 1.) From Lemma 3, π
commutes with SCI only if π′ commutes with SCI(Ai) for

i = 0, 1.

From inductive hypothesis, for all i = 0, 1, one of F(Ai) ⊆
Indm(aSl+1 = 1, ..., am−1 = 1, am = i) and I(Ai) ⊆
Indm(aSl+1 = 0, ..., am−1 = 0, am = i) holds. Now we are

going to prove one of F ⊆ Indm(aSl+1 = 1, ..., am−1 =
1, am = 1) and I ⊆ Indm(aSl+1 = 0, ..., am−1 = 0, am = 0)
must hold. We consider the following three cases:

1) If I(A1) = ∅, then A1 ⊆ F . Since ϕ(M) with s(M) =
〈s1, ..., sl〉 is an automorphism of C(I), for any permutations

ρ ∈ sym(m) that permutes [Sj+1, Sj+1] to [Sj+1, Sj+1] for

1 ≤ j ≤ l, (a1, ..., am) ∈ I is equal to (aρ(1), ..., aρ(m))
T ∈ I.

Therefore, A1 ⊆ F implies [n/2, n − 2Sl − 1] ⊆ F . Thus,

I ⊆ Indm(aSl+1 = 0, ..., am−1 = 0, am = 0) must hold.

2) If F(A0) = ∅, similarly, F ⊆ Indm(aSl+1 =
1, ..., am−1 = 1, am = 1) must hold.

3) If I(A1) 6= ∅ and F(A0) 6= ∅. By properties of

affine automorphism group, I(A1) 6= ∅ implies I(A0) 6⊆
Indm(aSl+1 = 0, ..., am−1 = 0, am = 0). Thus

F(A0) ⊆ Indm(aSl+1 = 1, ..., am−1 = 1, am = 0).

Similarly,

I(A1) ⊆ Indm(aSl+1 = 0, ..., am−1 = 0, am = 1).

Then Indm(am−3 = 0, am−2 = 1, am−1 = 1, am = 0) ⊆ I
and Indm(am−3 = 1, am−2 = 0, am−1 = 0, am = 1) ⊆ F ,

which is contradictory against automorphism group.

From Algorithm 1, SC-invariance of ϕ(M) only depends

on the block lower-triangular structure of M . Thus, we can

prove the following theorem.

Theorem 3. [1]I is in the form of BLTA.

Proof. Let M be a block lower-triangular matrix with s(M) =
〈s1, ..., sl〉 satisfying π = ϕ(M) commutes with SCI and l
is as small as possible. Then BLTA([s1, ..., sl]) ⊆ [1]I . Now

assume BLTA([s′1, ..., s
′
k]) ⊂ [1]I but BLTA([s′1, ..., s

′
k]) 6⊂

BLTA([s1, ..., sl]). Then there must exist some i, j such that

S′
i < Sj < S′

i+1. Let M1 be a permutation matrix which



(n,K) Imin affine automorphism group [1]I SC-invariant permutations in [10] SC-invariant permutations in this paper

(256, 128) {31, 57} BLTA([3, 5]) BLTA([3, 1, 1, 1, 1, 1]) 3× 228 21× 228

(128, 85) {23, 25} BLTA([3, 1, 3]) BLTA([3, 1, 1, 1, 1]) 3× 221 21× 221

(64, 32) {24} BLTA([3, 3]) BLTA([3, 2, 1]) 3× 215 63× 215

Table 1: The number of SC-invariant permutations for certain codes

Algorithm 2 DecGroup(I,m)

Input: the information sets I, the code dimension m.

Output: s = [s1, ..., sl]; # BLTA([s1, ..., sl]) = [1]I
1: F ← {0, ..., 2m − 1}/I;

2: if m = 0 then

3: s = [];
4: return;

5: end if

6: for t = m; t ≥ 2; t−− do

7: A1 ← Indm(am−t+1 = 1, ..., am = 1);
8: A2 ← Indm(am−t+1 = 0, ..., am = 0);
9: if F ⊆ A1 then

10: s← [DecGroup(I(A1),m− t), t];
11: return;

12: else

13: if I ⊆ A2 then

14: s← [DecGroup(I(A2),m− t), t];
15: return;

16: end if

17: end if

18: end for

19: s′ ← [DecGroup(I(Indm(am = 1),m− 1), 1];
20: s′′ ← [DecGroup(I(Indm(am = 0),m− 1), 1];
21: s← Gro(s′, s′′); # BLTA(s) = BLTA(s′)∩ BLTA(s′′).

permutes S′
i and Sj and keeps the other positions invariable,

then ϕ(M1) ∈ BLTA([s′1, ..., s
′
k]). However, s(M1M) =

〈s1, ..., sj−2, sj−1 + sj , sj+1, ..., sl〉 and ϕ(M1M) ∈ [1]I ,

which is contradictory against that l is as small as possible.

In Algorithm 1, we determine whether an affine automor-

phism commutes with SCI . With Algorithm 2, we further de-

termine the complete SC-invariant affine automorphism group

[1]I = BLTA(DecGroup(I,m)).
Without loss of generalization, assume [1]I =

BLTA([s1, ..., sl]). We first determine sl, then [s1, ..., sl−1]
can be obtained by calling the algorithm recursively.

First, sl is determined by the loop in line 6. For 2 ≤ t ≤ m,

divide [0, 2m− 1] to 2t blocks. We have sl = t if and only if

t is the largest integer such that all frozen bits belong to the

first block A1 = [0, 2m−t − 1] (line 9) or all information bits

belong to the last block A2 = [2m − 2m−t, 2m − 1] (line 13).

If for all 2 ≤ t ≤ m, the above conditions are not satisfied,

we have sl = 1.

If sl ≥ 2, [s1, ..., sl−1] can be recursively obtained by

calling the algorithm with I(A1) (line 10) when F ⊆ A1 or

I(A2) (line 14) when I ⊆ A2. If sl = 1, BLTA[s1, ..., sl−1]
is the intersection of the SC-invariant affine automorphism

groups of subcodes on the upper and lower half branches (lines

19-21). In line 21, Gro(s′, s′′) output the array s satisfying

BLTA(s) = BLTA(s′)∩ BLTA(s′′). Such s exists and can be

found by the following lemma.

Lemma 5. The intersection of two BLTA groups is in the form

of BLTA.

Proof. We are going to find the BLTA group which is the

intersection of BLTA(s′) and BLTA(s′′). Let {St} = {S
′
t} ∪

{S′′
t }, and s is induced by {St}, that is, st = St+1−St. Next

we are going to prove BLTA(s) = BLTA(s′)∩ BLTA(s′′).
It is clear that BLTA(s) ⊆ BLTA(s′) and BLTA(s) ⊆

BLTA(s′′). Therefore, we only need to prove BLTA(s′)∩
BLTA(s′′) ⊆ BLTA(s). Assume (M, b) ∈ BLTA(s′) ∩
BLTA(s′′). Now we consider M(j, k) for Si + 1 ≤ j ≤ Si+1

and Si+1 + 1 ≤ k ≤ m. Without loss of generality, assume

Si = S′
t, By the construction of {St}, we have Si+1 ≤ S′

t+1.

Then M(j, k) = 0 since (M, b) ∈ BLTA(s′). Therefore,

(M, b) ∈ BLTA(s).

Remark 3. Algorithm 2 selects each si as its largest possible

value such that Algorithm 1 will not output FALSE, so it will

output the complete SC-invariant affine automorphism group.

Otherwise, if there exists another SC-invariant automorphism

not in the output group, from Theorem 3, there will be a

larger SC-invariant BLTA automorphism group with some

larger si, which is a contradiction. Since the time complexity

of one iteration is O(m), the complexity of Algorithm 2 is

O(m2m) = O(n log n).

Example 2. We now determine the complete SC-invariant

affine automorphism group of C(I) in Example 1 by

Algorithm 2. For all 2 ≤ t ≤ 4, the conditions in

line 9 and line 13 are not satisfied, so the last number

of s is 1. Then we call DecGroup({3, 5, 6, 7}, 3) and

DecGroup({1, 2, 3, 4, 5, 6, 7}, 3). DecGroup({3, 5, 6, 7}, 3)
will output [2, 1] and DecGroup({1, 2, 3, 4, 5, 6, 7}, 3) will

output [3]. Then s = Gro([2, 1, 1], [3, 1]) = [2, 1, 1]. Therefore,

the complete SC-invariant affine automorphism group of C(I)
is BLTA([2, 1, 1]).

IV. SIMULATION

Fig. 2 shows the block error rate (BLER) performance

of the (256,128) polar code studied in [7] and [10]. The

code is generated by Imin = {31, 57} and has affine

automorphism group BLTA([3, 5]). In this case, [1]I =
BLTA([3, 1, 1, 1, 1, 1]), and it is shown that all the automor-

phisms in BLTA([3, 1, 1, 1, 1, 1]) are futile in AE-SC decoding.
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Fig. 2: Performance of a (256,128) polar code

Since the complete SC-invariant affine automorphisms are

determined, the number of equivalent classes can be reduced

from 68355 [10] to 9765.

Table 1 compares the number of SC-invariant affine auto-

morphisms found in this paper with BLTA([2, 1..., 1]). Under

several code constructions, the SC-invariant automorphism

group can be larger than BLTA([2, 1..., 1]), which benefits

applications requiring SC-invariant automorphisms.

V. CONCLUSION

In this paper, we determine and prove the complete SC-

invariant affine automorphisms for any specific decreasing

polar code, which form a BLTA group. Compared to previous

works, more SC-invariant affine automorphisms can be found

according to our results. It helps us remove redundant permuta-

tions in AE-SC decoding and contributes to other applications

requiring SC-invariant automorphisms.
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