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Abstract— The reconstruction of a deterministic data field MSE convergence of the estimator to the actual field as the
from binary—quantized noisy observations of sensors whictare number of sensors —; oo was established.
randomly deployed over the field domain is studied. The study | the present paper we expand and complete the devel-

focuses on the extremes of lack of deterministic control inhe . . .
sensor deployment, lack of knowledge of the noise distribign, opment of results in [1]: (i) In Sectiof TIIB we expand

and lack of sensing precision and reliability. Such adverse the results of [1] to general deployment distributions. We
conditions are motivated by possible real-world scenariowhere establish a general upper bound to the integrated MSE which

a large collection of low—cost, crudely manufactured senss are  highlights the interaction of the deployment distributiand
mass-deployed in an environment where little can be assumed e orthonormal basis used for non-parametric field estimat

about the ambient noise. A simple estimator that reconstruts the . . - .
entire data field from these unreliable, binary—quantized,noisy (Theorem[311). (ii) We then derive sufficient conditions on

observations is proposed. Technical conditions for the alost the deployment distribution, the orthonormal basis, arel th

sure and integrated mean squared error (MSE) convergence dimension of the field estimate which ensure the asymptotic
of the estimate to the data field, as the number of sensors (asn — o) integrated MSE consistency of the proposed

tends to infinity, are derived and their implications are dis  agtimator. Implications for desirable deployment disttibns

cussed. For finite—dimensional, bounded—variation, and Swlev— . . .
differentiable function classes, specific integrated MSE ecay are also discussed. (iii) In Sectin Tll-C we compreherigive

rates are derived. For the first and third function classes tlese investigate the asymptotic (as — oo) almost sure consis-
rates are found to be minimax order optimal with respect to tency of the proposed estimator. The highlight of this secti

infinite precision sensing and known noise distribution. is Theoreni 32 which provides an interesting set of sufficien
Keywords: nonparametric regression; Monte-Carlo samplin pnditions on the deployment distribution, the orthondrma
dithered scalar quantization; minimax rate of convergen sis, and the dimension of the field estimate which ensures
almost sure convergence; oversampled analog-to-digita! C_asyr_npt(_)tic almost sure consistency of the es_timatior_w.e'l’ttﬁr
version; distributed source coding; sensor networks;irsgal implications of Theoreni 312 are explored in detail through
Proposition[3.1 and Corollary_3.2 and are of independent

law; .
interest.
For the finite—dimensional, bounded—variation, and
|. INTRODUCTION Sobolev—differentiable function classes, explicit achlde

) decay rates for the integrated MSEs are provided in

In a recent paper [1] we considered the problem of r&eciion[Ty. Specifically, for fields that belong to a finite—
constructing a bounded deterministic multidimensionaadagimensional function space, the integrated MSE deca@s as
field f : [0,1]7 = [a,—a], 0 < a < oo, from nOiSy ()(1/,) (Corollary[@:1). For fields of bounded-variation, the
dithered binary—quantized observations collectecdtsensors integrated MSE decays a®9(1//n) (Corollary [4:2). For
randomly deployed over the field domain. The random sefs|qs that ares—Sobolev smooth (sdeTViC), the integrated
sor deployment model was based on uniform Monte CarmSE decays aQ(n%) (Corollary[Z3)
sampling locations where. sensors are independently and e of the highlights of this work is that for multidimen-
identically distributed (iid) uniformly over the field dorind sional fields living in rich function spaces, the minimaxeraf

[0, 1]7. A simple estimator that reconstructs the entire data ﬁe&%nvergence of the integrated MSE, even with randomly de-
from these unreliable, binary—quantized, noisy obseswati \,veq sensors, unknown noise statistics, and binary mithe

was proposed in [1] and an upper bound on the integrated Mgk, |5, quantization (a highly nonlinear operation), carcina
of the estimator was derived. Using this bound, the integraty,o minimax rate of convergence with infinite—precisiori+ea

. valued samples and known noise statistics.
This material is based upon work supported by the US NatiGci#nce it ; ; iotri ;
Foundation (NSF) under award (CAREER) CCP-0546598. Anyiops, The application context of this work is distributed sensing

findings, and conclusions or recommendations expresseusmtaterial are @nd coding for field reconstruction in wireless sensor nete/o

those of the authors and do not necessarily reflect the vidwbeoNSF. as in [1]. The focus is on the extremes of lack of control in

A part of this work was presented at the 2007 Internationah{®sium on

Information Theory (ISIT). SLandau’s asymptotic  notation: f(n) = O(g(n)) &
°The field domain[0,1]P is used for clarity and ease of exposition.limsup,,_, . |f(n)/g(n)| < oo; f(n) = Q(g(n)) & g(n) = O(f(n));

However, the results can be generalized to compact subs&t8.o f(n) =0(g(n)) & f(n) =0(g(n)) andg(n) = O(f(n)).
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the sensor deployment, arbitrariness and lack of knowledgi@ary—sensing, and unknown noise distribution while giugl
of the noise distribution, and low—precision and unreligbi almost sure and integrated MSE convergence of the field
in the sensors. These adverse conditions are motivated dsyimate. The integrated MSE convergence for the bounded—
possible real-world scenarios where a large collectiomwfl variation, Sobolev—differentiable, and finite—dimensibfiunc-
cost, crudely manufactured sensors are mass—deployed irntian classes are explored in detail. Our results expose the
environment where little can be assumed about the ambieiffects of field “smoothness”, deployment randomness, and
noise. Each sensor measures a noisy sample of the fieldblservation/sensing noise on the integrated MSE scaling be
its location under iid zero—mean, bounded amplitude, addit havior.
noise. The statistical distribution of the noiseusknownto For field estimation approaches which are not con-
the sensors and the fusion center, and the results in thexr pagirained by finite sensing precision and sensing unreiigbil
hold for arbitrary distributions satisfying these assumptionsuch as those involving “uncoded” analog joint sampling—
Each noisy sensor sample is quantized to a binary value tbgnsmission, there is a growing body of literature now lavai
comparison with a random threshold—pit dithered scalar able (e.g., see [6], [7], [8], [9], [10], [11], [12] and refsrces
guantization). The binary—quantization models the ex#&rertherein). Related to the distributed field reconstructimbpem
of low—precision quantization. The random thresholds are the so-called CEO problem studied in the Information
assumed to be iid across the sensors and uniformly distidbuTheory community in which the distortion is averaged over
over the sample dynamic range, modeling the extreme unrelaultiple field snapshots over time (e.g., see [13], [14]] Arxd
bility in the quantization across sensors due to manufajur references therein). There is also a significant body of work
process variations and environmental conditions at differ on oversampled A-D conversion (e.g., see [16] and refesence
sensor locations. Such extreme modeling assumptions are dberein), which is loosely related to the results of the pn¢s
sidered to demonstrate what is still achievable under advework concerning finite—dimensional fields. However, these a
conditions. different problem formulations and are not the focus of the
The communication channel issues are abstracted awaydsgsent work.
assuming that the underlying sensor communication networkThe rest of this paper is organized as follows. The problem
is able to handle the modest payload of transmitting one Bitrmulation with detailed modeling assumptions are presin
(the binary—quantized observation) per sensor to the rusith Sectior(Il. The core technical results are then summarize
center. The focus of this work is on reconstructing a singknd discussed in Sectignllll. The core results are then wsed t
time snapshot of the field at a fusion center. The recogderived explicit expressions of the decay rate of the irztisgr
struction of multiple time snapshots of the field can also B4SE for three rich function classes in Sectiod IV. The proofs
accommodated within the framework of this work as in [2pf all the core technical results are presented in SeLfiond/ a
but is omitted for clarity. In fact, this can be achieved witltoncluding remarks are made in Section VI.
time—sharing sensors, vanishing per—sensor rate, anshiagi
sensor location “overheadfs”(see [2]). It is also assumed Il. PROBLEM FORMULATION

that the fusion center has access to the physical locatibns ogja|q Model: We model the field as a real—valued. bounded
the sensors and can correctly associate messages with tgierministic functionf : D — [—a, +a] belonging to a non—
points of origin. This may be justifiable by possible mOdelﬁarametric function clasF, that is, f € F, where F is
for the underlying wireless transmission where triangatat 5 <ot of measurable functions mappiBgto [—a, +a]. The

of sensors is inherently performed. The problem setup d3main of the fieldD is assumed to be a compact subset

illustrated in FiguréIL. o . ~ of R? the d—dimensional Euclidean space. The objective is
The available literature on distributed field estimatiorishh {5 reconstruct this function with high fidelity from binary—

simultaneously treats binargensing random sensodeploy- quantized noisy observations collected by a network of non—

ment and unknown observation noise distribution is Ilmltedcooperati\,@ sensors that are randomly deployed over the

The early works in [3], [4] consider the problem of recongomain.

structing a signal from binary—quantizgd samples a.CqU_iredRandom Sensor DeploymentWe assume that the sen-

with random thresholds, but do not consider arbitrary agtlit sors are independently and identically randomly deployeat o

noise with an unknown distribution and only consider fixeghe domaird according to a known distributigny . If X; € D

deterministic sampling locations (deployment). The wark igenotes the location of thd sensor fori € {1,...,n}, then

[5] is limited to the estimation of @onstantfield and does x . jid py captures the lack of control in sensor deployment.

not explicitly address sampling precision (sensing) a@ists. \\e assume that the supportef is D and thatpy is a non—

A recent work [2] provides pointwise MSE decay rates i@ingular distributiof.

terms of the local and global modulus of field continuity aqditive Noise: Each sensor takes a sample of the field

by building upon the techniques in [3], [4], [S]. Howeverynger additive noise. The noisy samples are giveriby=
[2] does not consider random sensor deployment and re-
quires local field continuity for pointwise MSE convergence °The number of parameters that specify a non—parametridiéunclass is
The present work incorporates random sensor deployme'I‘ng'XeOI a priori and is possibly infinite. ,
"The sensors do not exchange information or otherwise aptiaé at the
time of or before taking measurements.

4Network overheads refer to additional bits of informatidvatt must be 7A random variable with a non—singular distribution takekiga in a subset

attached to each message to identify the point of origin efrttessage. of D with Lebesgue measur@ with probability 0.
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Fig. 1. Problem Setup: The field (in a single snapshot) is sampledrbgensors at their respective locations under additive n&igeh sample is unreliably
quantized to a binary value by a comparison with a randonshtiwiel. These binary values are transmitted to the fusiotecerhich reconstructs the field.

f(X;) + Z;, fori € {1,...,n}, where the noise variablesalso be accommodated within the framework of this work as
Z; ~iid pz and are independent of the sensor locations. Vife [2] but is omitted for clarity.

assume that ead¥j; is zero—mean and is bounded in amplitude Reconstruction and Distortion Criterion: Given

by a constant > 0, that is, the support op is contained {(X;, B;)}!,, the fusion center constructs the field estimate
in [—b,+b]. However, besides these assumed conditions, tﬁgl_,___yxn_,Bh__an : D — C. For notational convenience, the
distributionp is unknownto either the sensors or the fusiorexplicit dependence ofi(X;, B;)}!, will be suppressed and
center, and the results and methods of this paper hold fbe estimator will simply be denoted bfy,. The performance
arbitrary noise distributions satisfying these conditions. Weriterion is the integrated MSE given by

let Pz denote the set of all noise distributions satisfying these . ) .

assumptions. Note that since both the field and the noise af@(f, fn) :=E [Hf - anQ} =E [/ f (@) = fu(2)Pdz |,
bounded, the noisy samples are bound&d: < ¢ := a + b. o P

We assume that the value oiis known. The values of and Where the expectation is taken with respect to the random

b can remain unknown to the sensors and the fusion centef0iSe, thresholds, and the sensor locations. The objeistice
Unreliable, Binary Quantization: We assume that in the design an estimatof,, that minimizes the integrated MSE.

sensor hardware frontend, the noisy sample is quantized byTaqaigirr?gfrTn?g;urgties dStl:/(Ij;VE' inFI(:)irgLaEbg:iI;/.en field subclass

unreliable, low—precision analog—to—digital converpecif- . .
Fsub C F, oOf interest are the corresponding upper, lower,

ically, we consider one-bit (binary), dithered, scalar rfisa - .
8f&d minimax rates of convergence of the integrated MSE. A

zation implemented as a comparison to a random threshold” . ¢ if th
that is uniformly distributed over the sample dynamic rang%os't've sequence,, Is an upper rate of convergence if there

[—¢, +c]. The binary—quantized observations are given by exists a constant’ < oo and an estimatof,; such that

limsup sup sup v, D(f,f;) <C.
B, = sguy; —-T;) forie{1,...,n} n—00 pzEPz fEFuun

{+1 Y, > T, {+1 f(X)+ Zi > T, A positive sequencs,, is a lower rate of convergence if there

Y. <T 1, (X4 Zi<T exists a constant’ > 0 such that

liminfinf sup sup 7, 'D(f, fn) > C,

whereT; ~ iid Unif[—c, 4| are the uniform random thresh- T fn pzE€PZ fEFsun
olds. The thresholds are independent of the sensor losatigvhere theinff is the infimum over all field estimators. The
and the noise. The value @; is finally the observation that upper rate represents the asymptotic worst—case perfeeman
sensor; has access to. achieved by a given estimator. The lower rate represents

Transmission: We abstract away communication channed fundamental limit on the asymptotic performance of any
issues and assume that the underlying communication nettimator. A positive sequencg, that is both a lower rate
work of the sensors is able to handle the modest payloadd an upper rate of convergence is called the minimax rate of
of transmitting one bit per sensor to the fusion center. Wmnvergence and the corresponding estimﬂl;omat achieves
also assume that the fusion center has access to the phystelupper rate is called a minimax order optimal estimator.
locations of the sensors and can correctly associate messag Note that showingD(f, f,;) = O(v,) for all f € Fau, and
with their points of origin. Thus, we assume that throughz € P for a particular estimatof, is equivalent to showing
this abstracted communications network, the sensor mtatithat f: achievesy, as an upper rate of convergence of the
and quantized observation paif$X;, B;)}?_, are reliably integrated MSE. If it can be further shown thBf(f, fn) =
made available to the fusion center. The reconstruction Qf~,,) for a particularf € Fs,, a particulapz € Pz, and for
multiple time snapshots of the field with time—sharing sessoall estimatorsfn, then~, is the minimax rate of convergence
vanishing per—sensor rate and sensor location “overhaaafs” of the integrated MSE.



[1l. M AIN RESULTS to satisfy certain conditions to ensure that the estimate is

In this section, we describe our proposed field estimator agg@ymptotically consistent. These conditions are destribe
analyze its performance. We show that under suitable teahniSectionIl-B and Section TII-C.
conditions, the field estimate is asymptotically integiad#SE
consistent, that is, as —s oo, E[|| f — f,||2] — 0. We also B- Integrated MSE upper bounds and convergence results
show that under suitable technical conditions, the fielofreste The following theorem, whose proof appears in Sec-
is asymptotically almost sure consistent, that ispas— co, tion[V-Al upper bounds the integrated MSE as the sum of two
almost surelyf, —s f pointwise almost everywhere dR. terms. The first term is due to the variance of the coefficient
We also provide an upper bound to the integrated MSE whielstimates. The second term is due to the bias caused by the
is used in Section IV to derive achievable integrated MSHnite—term series approximation.
decay rates for specific function classes. The proofs of allTheorem 3.1: (Integrated MSE Upper Bound) Let 7, P,
theorems are presented in Secfigh V. andpx be as given in Sectidnl Il. Lgfthm be given by[(#) and
Let 7 denote the set of all bounded, measurable functio), whereB = {¢;}32, is any orthonormal Schauder basis
[ :D — [—a,+d]. Note thatF C L*(D). Let B = {¢;}32,, of L*(D). Then,Yf € F andVp; € Py, the integrated MSE
with ¢; : D — C, denote an indexed orthonormal (Schaudeiy upper bounded by

basis (e.g. Fourier, wavelet, etc.) bf(D). Any f € F can 5 m—1 N2
be decomposed as D=E {Hf — fmm”?} < “ Z de+g[f’m’8]’
5 X oo n =0 D px(ZC)
FEY (Feds =) a6, (1) ™
jzz:o e jz::() " where ¢[f,m, B], given by [[B), is a non-negative, non—

wherea; := (f, ¢;) denotes the coefficients (projections Ontci)ncreasing sequence that convergesjtas m — oo.
&5 =) 9 Proj In light of Theorem 3L we now examine conditions on

the basis functions) of the expansion. Theterm approxima- m(n), B, andpx which ensure that the estimator is asymptot-

itlsogi\(/)efnfbvy\jlth respect to an orthonormal badis= {¢;}72, ically consistent in the integrated MSE sense, thaddis— 0

me1 asn —» oo. The following corollary specifies conditions that
fon = Z (f,0,)0;. 2) immediately ensures that the integrated MSE convergés to
o o Coroallary 3.1: (Integrated MSE Convergence of the Field

Estimate) Under the same setup of Theoréml 3.1pifn),

The correspondingn—term approximation error is given by B = {6}, andpy satisfy
—\Pjsj=0"

E[f’maB] = Hf_me2: Z |<fa¢j>|2: Z |aj|27 ) m(n)—)oo’ asn — oo, (8)
j=m j=m m(n)—1
! ’ 1 |6() ]
which is a non-negative, non—increasing sequence: dhat n Z b px(@) dw — 0, asn — oo, (9)
converges to zero for alf € F [17, Chapter 9]. =0
then the estimate converges in the integrated MSE sense to th
A. Proposed estimator field, that is,
Our proposed estimator first estimates the firstcoeffi- VfeFandVpy € Pz, D—0, asn— co.
cients {aj};.’:Ol of (@) with respect to a given orthonormal Condition [8) is sufficient (and often necessary) to ensure
basis3, according to that[f, m, B] converges td. Condition [9) is equivalent to
N (X the first term of the integrated MSE upper bound, given in
Gy = ‘ Z ¢;(Xs) B, (4) (@), converging ta0. For some deployment distributions,
n - px (X5) condition [9) may not be attainable for many orthonormal

bases. For example, let the domah = [0,1] with the
deployment distributiop x () = 22 over|0, 1]. Then for any

orthonormal basis in whict(z) = 1 over|0, 1], e.g., Fourier,
R el Harr wavelets, Legendre polynomials, etc., the first ternhef
fnm 1= Z a;®;; () summation in[(B) is given by

for j € {0,...,m — 1}. A general tunable field estimate is
given by them—term approximation,

I=0 2 1
wherem is the tunable design parameter which can be chosen [#o(=)] dr = id:z: = 0.
to depend om to optimize the rate of decay of the integrated p px(2) 0 27
MSE for specific function classes. The final field estimate Bhus integrated MSE upper bound becomes useless. This
given by specifyingn as a function ofz, implies that in general the deployment distributions and or
m(n)—1 thonormal bases have to be appropriateBtchedas a design
Foi= Z &, ©) c_onside_ration in order to satisfy conditidn (9)..Howeve|ndi—
" = I tion (9) is ensured for any orthonormal basis if the deployme

distributionpx has a strictly positive infimum ovép, that is,
The specification ofm(n) for specific function classes is

discussed in Section_1V. The dependencenofon n needs gggpx(fﬂ) =v>0. (10)



Sensor deployment distributions over compact domainshvhic Conditions [IR) and[:(JS) impose constraints on the basis
are useful for high-resolution field reconstruction wowdtisfy ~ functionsB = {¢,}72, and the deployment distributiopy .

such a condition. Giveri_(10), we have that Condition [14) |mpI|es that as — oo, A2, /n — 0.
me1 ) This places a constraint on how fast(n) can go to infinity.
Z ¢ ()] dz < / |¢7 In particular it requires that in relation t,,,, m(n) not grow
= Jo px(@) = too fast withn.

We now examine some special choices{df,,}>°_, for

= Z l||¢j||2 = @, which conditions[(I2) and{(13) will hold. Fen € {1,2,...},
=Y v define auxiliary functions:
andVf € F andVpz € Pz, the corresponding integrated 1 Mol 1
MSE upper bound becomes Im =1 Z bj(z m, (15)
~ 02m =
D=E|[f = faml?| < —+elf,m,B]. (1) 1=
{ } nv b () == A_ <f7 ¢J>¢J( ), (16)
The upper bound inC(11) converges@oasn — oo when j=

m(n) satisfies the following two conditions for 2,y € D. The following proposition, whose proof appears

in Sectlon[E gives two sets of conditions dn\,,, }°_,,
B = {¢;}32y, andpx, for which conditions[(12) and_(13)
— 0, asn — co. will hold.

Proposition 3.1: Let {A,,}5°_, be as in Theorem 3.2 and
Im, hm be given by[(d5) and {16) respectively.
In this subsection we establish sufficient conditions fa th 0 1t m
field estimate to be asymptotically almost sure consistent, E
that is, asn —» oo, almost surelyf, —s f pointwise
almost everywhere of®. First, we establish a key theorem

m(n) — 0o, asn — oo,
m(n)
n
C. Almost sure convergence results

— 0, asm — oo, a7

and forxz,y € D almost everywhere, the limits

tha_lt giyes sufficient condi.tions fo.r the convergence of the gool@,y) = lim  gm(z,y), (18)
pointwise errors of the estimate with respect to the truettat 00
approximation of the field. The proof of this theorem appears heo(z) = mhgloo hun () (19)

in Sectior[\V-B.

Theorem 3.2: (Almost Sure Convergence of Estimate Er-
rors) Let px be the deployment distribution described in
Section 1l satisfyingl{10)B = {¢;}32, be an orthonormal
Schauder basis dt?(D), fmm be the field estimate given by
@) and [3), andf,,, be them—term approximation to the field

given by [(R). Let | ()] < B < oo,

S (@) = frm(x) = fin(2), then conditions[{12) and (13) are satisfied oy, = m
with constantsC; = 8%/v and Cy = af3+/vol(D).

Part (i) of Propositiod_3]1 shows that if the limits of the

auxiliary functions [(01b) and[{16) as: — oo exist, then

for any A,, such that [(I7) is satisfied, e.g\,, = m"/?,

for any v > 1, conditions [(IR) and[(13) are satisfied for

exist, then the limits are zero almost everywhere and the
conditions [(IP) and (13) are satisfied for some constants
Ol, Cy > 0.

(ii) If the basis functions are uniformly amplitude bounded,
that is,vj € {0,1,...} andVz € D,

for all z € D. If there exists a non—-negative, increasing
sequence of real numbers\,,}°_,, and a non-negative,
increasing sequence of positive integrs(n)}>2; which
satisfy the following three conditions

e m—1 1 some constants. Part (i) of Proposition]3.1 shows thatéf th
Vao,y € D, bj(x < C1A,,, (12) basis functions are uniformly bounded as, for example, én th
=0 X(y) orthonormal Fourier and Legendre bases, then conditid®s (1
1 and [13B) are satisfied fak,, = m and given constants.
V€ F,Va ‘e p, (f, 6,005 ()| < Calm, (13) We now examine conditions an\,,, }°_; under which[(14)
= will be satisfied. According to Ermakoff’s series convergen
2 test [18], if for some non—negative, non—increasing, raatt
Ve> 0,5 exp [ 2 | < oo, 14y tionq(t), t>1,
nzl ’ (Amm)) o e'q(e)

whereC1, Cy > 0 are some constants, thetf € 7 andvz € = q(t)

D except on a set of Lebesgue measure zerap as—» oo, Wheree is the base of the natural logarithm, then
almost surely,



Let ¢(t) = exp (%ﬁt) t > 1, wherey € (0,1) ande > 0. IV. ACHIEVABLE INTEGRATED MSE DECAY RATES
Then In this section, we use the integrated MSE upper bound

g . s . ;

etq(e’)  elexp(=5E) 2 tte 210 (A derive explicit expressions for the achievable uppeesa

ab oxp(=<2L) = €xp (t—6 € —et )—>07 of convergence of the integrated MSE for three specific
t

function classes, namely, finite—dimensiofa,, bounded-
ast — oo. By Ermakoff’s test, for allyy € (0,1) and all variation gy, and s—Sobolev differentiableF,. Throughout
€>0, this section, we assume th&t{10) holds.

- (—62n) The general approach for deriving such rates of convergence

Z exp ey < oQ.

n=1

for functions living in a function clasg,,;, C F is select an
- . S appropriate basi = {#;}52, in which them—term approxi-

Thus condition[(TH) will be satisfied i}, = n* for any mation error given by|[f,m, B] in @) can be upper bounded

Y € (0,1). by an explicit function ofm for all f € Fuu,. Thenm in ()

Combining the above result with Proposition]3.1 yieldsan be chosen to depend oo optimize the convergence rate.
possible forms of the design parametdis:(n)}72; and Thus given the appropriate function approximation théoret
{Am}5i—1 such that the conditions for almost sure convefesults that upper boundf, m, B], this approach establishes
gence [(IP), [(I3), and_(IL4) are all simultaneously satisfiegchievable upper rates of convergence of the integrated MSE
Choosingn(n) = ©(n*), wherey € (0,1), andA,, = m?/2,  for the corresponding function class.
for some~ € (1,1/v), yields Afn(n) = n¥, wherey’ =
v € (¥,1), which satisfies[(14) and{L7) simultaneouslys  Functions in a finite—dimensional subspacefof
With these choices, Propositidn_B.1 shows that conditions
(I2) and [IB) will be satisfied as well if the Iimit:tle)fu
and [19) of the auxiliary function§ (IL5) and {16) respedyive
can be assumed to exist. Thus, for amyfn) of the form
m(n) = ©(n¥), wherey € (0,1), we can chooséA,, }>°_,
such that conditiond (12)[ (IL3), and [14) are simultangou
satisfied, if the limits[(18) and_(19) exist.

Due to the properties of an orthonormal basisyas— oo,
the m—term approximationf,,, given by [2), converges ih2—
norm to f for any f € F. Although, it is not guaranteed VfeFgp, elfk Bk =0. (20)
that for general orthonormal basgés will converge pointwise
almost everywhere to a specific function. However,if does
converge almost everywhere to soryfig, then f,, must be
equal tof almost everywhere. This can be seen by writing

The first function class represents the scenario where the

sion center has an exact prior knowledge of the finite—

dimensional space in which the function lives. 17, denote

the subset ofF that is composed of functions that are linear
ombinations of a given set @f orthonormal function#3;, =
¢;}5=;. Note that for anyf € Fg,, f = Zf;é (f, dj)b;

Thus the function approximation at the truncation peint %

is exact, that isf,, = f for m = k so that,

Combining [T) with [2D) yields the following corollary.
Corollary 4.1: (Decay rate of integrated MSE for Fp, ) Let
Br, and F, be as given above an@; and px be as given
in Sectior ]l Letfmm be given by[(4) and{5) witl;, as the
0 < / f(z) — foo(:v)lzdx !oasis. Ifpx satisfieAs[ﬂD),. thel'f € Fp, _andeZ € Py, the
D integrated MSE off,, ,,, with the truncation pointn set tok
is upper bounded as follows

D=E [Ilf - fn,mﬂ = C;_f =0 (1) '

n

= / liminf |f(x) — fm(z)|*dz
D

m—>00

< liminf/ |f(z) = fm(x)|?dz =0,
) m_ﬂoo P Therefore,Vf € Fp, andVpz € Pz, an achievable upper
where the inequality follows due to Fatou’s lemma [19]. Thugte of convergence of the integrated MSE for fields in a finite
Jp 1 (@) = foo(@)[?dz = 0, sO|f(2) — foo(x)| =0 fOr 2 € D gimensional subspace is given by

almost everywhere. For example, it is well known that for any

f € F c L*([0,1]) the m—term Fourier series approximation, D=E {Hf - fmm”?} =0 1 .

fm converges tof almost everywhere [20]. n

Corollary 3.2: (Almost Sure Convergence of the Field It should be noted that for this function class, the field

; -~ . .. __estimation problem for integrated MSE is equivalent to a
Estimate) Within the context of Theorefn 8.2, if Cond'tlon%nite—dimensional parameter estimation problem with é¢ond

@2). @s). gnd @4) hold and if as» — oo, the m- tionally independent noisy observations. Under the choice
term approximationf,,, converges almost everywhere to some :

. a.e. oo ) an appropriate, well-behaved noise distriblﬁim € Pz,
function foo, thenva & D, the pointwise error of the field yhe cramer—Rao lower bound for the integrated MSE decay
estimate satisfies

rate for finite—dimensional parameter estimation from iisg
[Fne) = F@] < 1Fa(@) = Fonn (@] + | frngy () = f ()| OPSErvations asymptotically behaves Bs = (1/n) for
1S (2)] + |f (@) — f(2)| all asymptotically integrated MSE consistent estimat@H].[
e m(n) Hence the estimator is minimax order optimal t6i, and
— 0, asn — oo. achieves the minimax rate of convergenge= (1/n).

Thus, [Ora: € D almost everywhere, a8 — oo, almost s noise distribution is chosen such that the observationahsatisfies the
surely f(z) — f(z). Cramér—Rao regularity conditions [21].



B. Functions of bounded—variation on Domah= [0, 1] whereo > 0 is a constant [17, Chapter 9]. Combinirid (7)

Let Fpy denote the subset of which is composed of With (24) yields the following corollary.
functions onD = [0, 1] of bounded-variation. Formally, Corollary 4.3: (Decay rate of integrated MSE for F;) Let
Fs be as given above arfdl; andpx be as given in Sectidnl Il.
/1 |f(z) = f(z = §)|d:v < 400 Let f,.. be given by[4) and(5) WitBrouric: @S given in
0 6] " @2D). If px satisfies[(I0), theiwf € F, andVpz € Pz, the
integrated MSE mfmm is upper bounded as follows

lim
6—0

Fpy = {fEJ:

A function in Fgy has a derivative (at points for which
it exists) which is uniformly bounded and the sum of the

A 9 c’m o
amplitudes of its discontinuous jumps is finite. The bounded D=E {Hf — frmll } St
variation condition represents a minimal “smoothness” as- )
sumption since a restriction is placed on the amount of totshere ¢ > 0 is a constant. Settingn(n) = n?+1 to
discontinuous jumps. optimize the decay rate of the upper bound yields the fofigwi
It is well known that for the Fourier basis, achievable upper rate of convergence of the integrated MSE
5 e+ﬂ'jm\/*_1’ j even 00 Vf e F, and Vpz € Pz.
powier G grl 0T odd [ D =E[|f - fuml?] = O (n¥¥)

(21) It is well known that the exact minimax rate of convergence
the m—term approximation errorl(3) is upper bounded asf the integrated MSE for non—parametric regression, based
follows, on full-resolution, real-valued, noisy observations in san

_ g Sobolev space is given by, = n=1 [22], [23]. In non—
VS € Fpy,  elfym Browia] < m’ (22) parametric regression, the field estimate is based directly
wheres > 0 is a constant [17, Chapter 9]. Combinirid (7}he full-resolution real-valued noisy observatiofis;}?_,,
with (22) yields the following corollary. whereas in our problem the field estimate is based on only

Corollary 4.2: (Decay rate of integrated MSE for Fzy) the binary—quantized observatiof®;}" ;. In both setups,
Let Fpy be as given above anB; and px be as given in the corresponding sensor locations are known. Thus, it is
Section[dl. Let fmm be given by[4) and(5) wittBrouier iNterested to observe that our proposed estimator is miima
as given in [(2l). Ifpx satisfies [(I0), thevf € Fpy and order optimal even with respect to the case in which the
Vpz € Pz, the integrated MSE ofn,m is upper bounded as observations have not been quantized.

follows )
~ c'm g
D:]E{Hf—fn.,mHQ] < —+ —, V. PROOFS
nv m

wheres > 0 is a constant. Setting.(n) = /n to optimize the A. Proof of Theorerh 311

decay rate of the upper bound yields the following achiewabl \ye first establish some results regarding the estimated
upper rate of convergence of the integrated M&EE€ Fpv  gefficients of ).

andVpz € Pz: Lemma 5.1: The expected value of an approximated coef-
A 1 ficient is given b
D=/~ fnl?] =0 (). gven by
() Ela;] = a; = (f, ¢;), (25)

C. Sobolev differentiable functions on Domain= (0, 1] and the integrated MSE of the coefficient estimates satisfies
This function class includes functions which are differen-

tiable in a generalized sense to a degree of differentigbili - N 2 | ()

: : - (i) Ella; — oy < =
parameterized by which can take non—integer values. The n Jp px(x )
value of s can be considered as a measure of smoothness.
s > 1/2, let F5 denote the subset of which is composed of
functions onD = [0, 1] that ares—times Sobolev differentiable.
Formally,

|2
LZAS2ANS (26)

lFRe approximated coefficients also have the following aenve
gence property

(i) &; == o, n — o0 (27)
o s Proof: (i) The expectation of the coefficient estimates
Foi=feF / |w|*[f(w)["dw < +o0 ¢, (23)  can be evaluated as follows

where f(w) denotes the Fourier transform ¢t Note that El&;] = [E Z (XZ) ]
the condition in[(2B) (for integer values j corresponds to ni3p Xi)
the stI' derivative of f belonging toL?([0, 1]). Thus, this set e i
includes functions that arks|—times differentiable. = - > [px(X )58 n(f(Xi) + Z; — Ti)]
It is well known that fors > 1/2, i=1 ’
¢7(X1)

Vf € ]:sa E[famaBFourier] < #, (24) = cE |:px(X1)Sgn(f(Xl) + 271 — Tl):| ) (28)



where the last equality follows since the terms are iid. Thighere the last inequality follows from the Cauchy-Schwartz

last expectation can be evaluated as follows inequality. Combining[(29) and (B2), we obtain{27), comklu
“(x ing the proof of the Lemm@a®g.1. [ |
[(bj( D) sen(f(X1)+ Z1 — Tl)] For any qrthonormal basi8 = {¢; 720 and for any f_ield
px(X1) f € F, the integrated MSE of the estimate can be written as
+b +c *
1 ¢j(x) follows
/px( )/pz( )/ oo rsen(f(e) + = — t)dtdzda )
e 2epx (@) D = E[f = faml?
+b 1 flz)+= +c 9
/ / pz(z / dt — / dt | dzdx m—1
—c f(a)+z = i — Z G0,
+b j=0 j=0
—2 [ pae @@ + 2o
e 3 el - ) Z oy
1 = Ella; — o4]7] + Qi
— 2 [ i@t = :
¢cJp
1 Qi 2 ~ |¢
=-{f,d5) =2, (29) < —Z A d +Z| a’, (33)
where the second to last line follows from the assumptioh tha hv—/
pz is a zero—mean distribution. Combinirig{28) ahd (29), we =elfsm.B]
have [(25). (i) Thus, where in the last step we used the bound giveri i (26). Thus

. ) R o R we have[(¥), concluding the proof of Theorém] 3.
Ella; — 4[] = E[|a; — E[4;]|"] = Var[a;].  (30)

Using standard properties of variance and the fact that tBe Proof of Theorerq 312
terms{¢;(X;)B;/px(X;)}{_, are iid, we obtain the follow-  The pointwise errors of the field estimate with respect to

ing the m—term approximation can be written as
~ Xz Sn = An _fmn
Var[d;] = n2 ZV [ X)) ] ) 7{1(7(3?1 (n)(x)
" ' - Z EZM_Q. e
- o { Bl] = \nio px(X) )
n pX Xl ; ) 1 n m(n)—1 C¢*(X)B
o 9% (X1) 2 ¢ (X1) = _Z (#_a.)(ﬁ(@
- EE[ ) ]_Z E{piwl)&] nE S N
c ¢ (X1) |2 - ! Ui(z),
= EEl ;((X1 1 ”;
here for: NN
¢ |¢J(x)|2px(x)dx’ where fori € {1,...,n}
n o ) MO e (X0)B,
_ e, o = Y (L ) el
n Jp px(z) =0

Combining [3D) and{31), we arrive &L{26). (iii) The coeféia Note thatU;(z) is iid and that it is zero—mean due 10 ]25)
of Lemmal5.l. However, almost sure convergencespfz)

estimates
cannot be directly deduced from the standard strong law of
. ¢ z": ¢}‘(Xz) large numbers since the distribution &% (z) itself depends
“oT < px( Xz on n because it is the summation af(n) terms. Instead,
Zn “(X;) we leverage a more fundamental condition for almost sure
C z .
- =c f(X)+Z; —T; convergence [24, p. 206]: if for al > 0,
nZ;p () eV X 2= )
a.s P S > 6 oo,
=[S )bgn<f(xl> vz-m)|, @2 Z 1S
pX(Xl)

then S, (z) =25 0 asn — oco.

asn — oo by Kolmogorov’'s strong law of large numbers ; ) 7 i . ]
since each term in the summation is iid and has a first momenf \Ssociated withS,, (z), is a martingale{V.(z)};_, given

bounded by, /vol(D): by V :=0, and fork € {1,...,n},

E[‘i’-f(?”:u@ul VVol(D)g52 = V/¥oI(D), >

=1

Ui(z

S|




Vo(x), ..., Vu(z) is a martingale sincéU;(x)}?, is iid with  some constant§’, Cy > 0. For g,,,, we can write
zero—mean. Note thaV,(z) = S,(z) and that|Vy(z) —

Vi—1(x)] < |%Uk(:c)| For eachi € {1,...,n}, // % ()| goo (2, y) |*dady =
DxD
m(n)—1 N m(n)—1 = liminf p% (y)|gm (z, y)|>dzdy
@1 g x| e //me 3 W) lgm (. 3)]
Ui(@)| <c| Y T (X + > ()|, (@)
3=0 ! §=0 < liminf // Y)|gm (z,y)|*dxdy
m—r0o0 DXD
m—1m—1
by the triangle inequality. Under the assumptions that the . . _ X
conditions given by[(12) an@(1L3) hold and that the deployimen },ﬁfﬂf;ﬁ Dxp gn —~ ;0 95 ()95 (v)
distribution px is non-singular, there exists some constant = 1
C > 0 such that for alk € {1,...,n}, o1 (2)pr (y) 5 dady
rx ()
1 m—1m—1
Ui@)] < Chpni, = liminf o | si@i(a)da
mg=0 k=02
with probability 1 for € D almost everywhere. Thus =05k
on A o (y)9; (y)dy
m(n N—————
Vi) = Vi ()] < =2 (34) e
1= m
According to the Azuma-Hoeffding inequality (see [25, = liminf-=- Az di= lim inf Az
p. 303]), if for all k € {1,...,n}, |[Vk(z) — Vi—1(z)| < C, 3=0
then for alle > 0, where the inequality (a) is due to Fatou’s lemma [19] dpd
is the Kronecker delta function. Thus fdr,, such that[{TI7)
iy ) -
PVa(z)| > e < 2exp ( ne 2) is satisfied we have that
2% -1 G5

// PX W)|g00 (2, y)|*dwdy = 0,
DxD
Applying this inequality withCy, = CA,,,(,,y/n for all k €

1 v, — S, btain the Which implies that|ge(z,y)| = 0 for 2,y € D almost
%{ol’lowiﬁg}uézee? E%ﬂ?])d andra() (z) we obtain the everywhere due td (10). Fdr,,, we can write

/ |hoo () |2dx = / liminf |h,, (z)|>dz
_e2 e
PlISn(z)| = ¢] < 2exp —m(n) < liminf |h z)|2dx
—6271 m—1m—1
= 2exp <272> , = 1iminf/ Z Z a;ar¢;(x)dr(z)dx
2C Am(n) m—>00 7_) m =0 k=0
1 m—1m—1
for z € D almost everywhere. Therefore, = liminf - > /D ¢ (z)dp (x)d
m =0 k=0 R ,

=8;_
2n _
Z]P’|S |>€ Z2QXP<02A2 )a L. 1 el .

m(n) = %Hﬂgg A_2 |aJ |2

moj—0
which is less than infinity¥e > 0 and x € D almost < liminf [Fils
everywhere, due to condition{|14). Thus,7as— oo, almost T om0 A2

2
surely S, () — 0, for z € D almost everywheras < liminf a Vol(D)7 VfeF

m—soo Agn
where the first inequality follows from Fatou’s lemma [19Han

C. Proof of Propositiofi 311 the last inequality is due t¢ being amplitude—bounded hy

over the supporD. Thus for A, such that[(1l7) is satisfied,

Part (i): Note that if|g..(z,y)| = 0 for z,y € D almost W€ have that
everywhere andh..(x)| = 0 for all f € F and forz € D vrer e ()P = 0
almost everywhere, then conditiois§(12) ahd] (13) hold with fe | z)°dz =



10

which implies that|h..(z)| = 0 for all f € F and forz € D
almost everywhere.
Part (ii): Applying the triangle inequality, we can write

(1]

(2]

165165 W) .

px(y)

— 2 2

—m = ClAm7
v

(4]

3

< =
v

J

(5]

Il
=)

which shows that conditioi (12) is satisfied fy, = m and  [6]
C, = B?/v. Again, applying the triangle inequality, we can

write 7

m—1
(F,05) 5 () e

=0

m—1 [0
< [(fs @il ()]

7=0 [10]

m—1
< [ £118 =ml[lflIB

7=0 [11]
< mafB+/vol(D) = CoA,,,

12
which shows that conditioh (13) is satisfied fay, = m and (2

Cy = af/vol(D). m

[13]

VI. CONCLUDING REMARKS [14]

The principal contribution of this work is a systemati¢15]
treatment of (i) binarysensing(ii) random sensodeployment
and (i) unknown observation noise distribution for high+g
resolution distributed sensing and estimation of multielim
sional fields using dense sensor networks. A key finding sf t '57]
work is that the rate of convergence of the integrated MSE fgg)
field estimation is extremely robust to the apparent lirota
of ultra—poor sensing precision, random sensor deploy,meﬁég}
and lack of knowledge of observation noise statistics. imeo
cases, the convergence rate exactly matches the minimax (2t
of convergence with infinite—precision real-valued sample
and known noise statistics. Interesting directions foufet [
work include (i) establishing the exact rate of convergence
of the integrated MSE and a central limit theorem for thig3!
estimate, (i) analysis of the sensitivity of the integthte 24
MSE to sensor location uncertainty, (iii) unbounded—atogk [25]
signal and noise models, and (iv) general dither distrimsti
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