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Abstract— The reconstruction of a deterministic data field
from binary–quantized noisy observations of sensors whichare
randomly deployed over the field domain is studied. The study
focuses on the extremes of lack of deterministic control in the
sensor deployment, lack of knowledge of the noise distribution,
and lack of sensing precision and reliability. Such adverse
conditions are motivated by possible real–world scenarioswhere
a large collection of low–cost, crudely manufactured sensors are
mass–deployed in an environment where little can be assumed
about the ambient noise. A simple estimator that reconstructs the
entire data field from these unreliable, binary–quantized,noisy
observations is proposed. Technical conditions for the almost
sure and integrated mean squared error (MSE) convergence
of the estimate to the data field, as the number of sensors
tends to infinity, are derived and their implications are dis-
cussed. For finite–dimensional, bounded–variation, and Sobolev–
differentiable function classes, specific integrated MSE decay
rates are derived. For the first and third function classes these
rates are found to be minimax order optimal with respect to
infinite precision sensing and known noise distribution.

Keywords: nonparametric regression; Monte-Carlo sampling;
dithered scalar quantization; minimax rate of convergence;
almost sure convergence; oversampled analog-to-digital con-
version; distributed source coding; sensor networks; scaling
law;

I. I NTRODUCTION

In a recent paper [1] we considered the problem of re-
constructing a bounded deterministic multidimensional data
field f : [0, 1]p → [a,−a], 0 < a < ∞, from noisy
dithered binary–quantized observations collected byn sensors
randomly deployed over the field domain. The random sen-
sor deployment model was based on uniform Monte Carlo
sampling locations wheren sensors are independently and
identically distributed (iid) uniformly over the field domain2

[0, 1]p. A simple estimator that reconstructs the entire data field
from these unreliable, binary–quantized, noisy observations
was proposed in [1] and an upper bound on the integrated MSE
of the estimator was derived. Using this bound, the integrated

1This material is based upon work supported by the US NationalScience
Foundation (NSF) under award (CAREER) CCF–0546598. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.
A part of this work was presented at the 2007 International Symposium on
Information Theory (ISIT).

2The field domain [0, 1]p is used for clarity and ease of exposition.
However, the results can be generalized to compact subsets of Rp.

MSE convergence of the estimator to the actual field as the
number of sensorsn −→ ∞ was established.

In the present paper we expand and complete the devel-
opment of results in [1]: (i) In Section III-B we expand
the results of [1] to general deployment distributions. We
establish a general upper bound to the integrated MSE which
highlights the interaction of the deployment distributionand
the orthonormal basis used for non-parametric field estimation
(Theorem 3.1). (ii) We then derive sufficient conditions on
the deployment distribution, the orthonormal basis, and the
dimension of the field estimate which ensure the asymptotic
(as n −→ ∞) integrated MSE consistency of the proposed
estimator. Implications for desirable deployment distributions
are also discussed. (iii) In Section III-C we comprehensively
investigate the asymptotic (asn −→ ∞) almost sure consis-
tency of the proposed estimator. The highlight of this section
is Theorem 3.2 which provides an interesting set of sufficient
conditions on the deployment distribution, the orthonormal
basis, and the dimension of the field estimate which ensures
asymptotic almost sure consistency of the estimation error. The
implications of Theorem 3.2 are explored in detail through
Proposition 3.1 and Corollary 3.2 and are of independent
interest.

For the finite–dimensional, bounded–variation, and
Sobolev–differentiable function classes, explicit achievable
decay rates for the integrated MSEs are provided in
Section IV. Specifically, for fields that belong to a finite–
dimensional function space, the integrated MSE decays as3

O(1/n) (Corollary 4.1). For fields of bounded–variation, the
integrated MSE decays asO(1/

√
n) (Corollary 4.2). For

fields that ares–Sobolev smooth (see IV-C), the integrated
MSE decays asO(n

−2s
2s+1 ) (Corollary 4.3).

One of the highlights of this work is that for multidimen-
sional fields living in rich function spaces, the minimax rate of
convergence, of the integrated MSE, even with randomly de-
ployed sensors, unknown noise statistics, and binary dithered
scalar quantization (a highly nonlinear operation), can match
the minimax rate of convergence with infinite–precision real–
valued samples and known noise statistics.

The application context of this work is distributed sensing
and coding for field reconstruction in wireless sensor networks
as in [1]. The focus is on the extremes of lack of control in

3Landau’s asymptotic notation: f(n) = O(g(n)) ⇔
lim sup

n→∞
|f(n)/g(n)| < ∞; f(n) = Ω(g(n)) ⇔ g(n) = O(f(n));

f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) andg(n) = O(f(n)).
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the sensor deployment, arbitrariness and lack of knowledge
of the noise distribution, and low–precision and unreliability
in the sensors. These adverse conditions are motivated by
possible real–world scenarios where a large collection of low–
cost, crudely manufactured sensors are mass–deployed in an
environment where little can be assumed about the ambient
noise. Each sensor measures a noisy sample of the field at
its location under iid zero–mean, bounded amplitude, additive
noise. The statistical distribution of the noise isunknownto
the sensors and the fusion center, and the results in this paper
hold for arbitrary distributions satisfying these assumptions.
Each noisy sensor sample is quantized to a binary value by
comparison with a random threshold (1–bit dithered scalar
quantization). The binary–quantization models the extreme
of low–precision quantization. The random thresholds are
assumed to be iid across the sensors and uniformly distributed
over the sample dynamic range, modeling the extreme unrelia-
bility in the quantization across sensors due to manufacturing
process variations and environmental conditions at different
sensor locations. Such extreme modeling assumptions are con-
sidered to demonstrate what is still achievable under adverse
conditions.

The communication channel issues are abstracted away by
assuming that the underlying sensor communication network
is able to handle the modest payload of transmitting one bit
(the binary–quantized observation) per sensor to the fusion
center. The focus of this work is on reconstructing a single
time snapshot of the field at a fusion center. The recon-
struction of multiple time snapshots of the field can also be
accommodated within the framework of this work as in [2]
but is omitted for clarity. In fact, this can be achieved with
time–sharing sensors, vanishing per–sensor rate, and vanishing
sensor location “overheads”4 (see [2]). It is also assumed
that the fusion center has access to the physical locations of
the sensors and can correctly associate messages with their
points of origin. This may be justifiable by possible models
for the underlying wireless transmission where triangulation
of sensors is inherently performed. The problem setup is
illustrated in Figure 1.

The available literature on distributed field estimation which
simultaneously treats binary–sensing, random sensordeploy-
ment, and unknown observation noise distribution is limited.
The early works in [3], [4] consider the problem of recon-
structing a signal from binary–quantized samples acquired
with random thresholds, but do not consider arbitrary additive
noise with an unknown distribution and only consider fixed
deterministic sampling locations (deployment). The work in
[5] is limited to the estimation of aconstantfield and does
not explicitly address sampling precision (sensing) constraints.
A recent work [2] provides pointwise MSE decay rates in
terms of the local and global modulus of field continuity
by building upon the techniques in [3], [4], [5]. However,
[2] does not consider random sensor deployment and re-
quires local field continuity for pointwise MSE convergence.
The present work incorporates random sensor deployment,

4Network overheads refer to additional bits of information that must be
attached to each message to identify the point of origin of the message.

binary–sensing, and unknown noise distribution while studying
almost sure and integrated MSE convergence of the field
estimate. The integrated MSE convergence for the bounded–
variation, Sobolev–differentiable, and finite–dimensional func-
tion classes are explored in detail. Our results expose the
effects of field “smoothness”, deployment randomness, and
observation/sensing noise on the integrated MSE scaling be-
havior.

For field estimation approaches which are not con-
strained by finite sensing precision and sensing unreliability,
such as those involving “uncoded” analog joint sampling–
transmission, there is a growing body of literature now avail-
able (e.g., see [6], [7], [8], [9], [10], [11], [12] and references
therein). Related to the distributed field reconstruction problem
is the so–called CEO problem studied in the Information
Theory community in which the distortion is averaged over
multiple field snapshots over time (e.g., see [13], [14], [15] and
references therein). There is also a significant body of work
on oversampled A–D conversion (e.g., see [16] and references
therein), which is loosely related to the results of the present
work concerning finite–dimensional fields. However, these are
different problem formulations and are not the focus of the
present work.

The rest of this paper is organized as follows. The problem
formulation with detailed modeling assumptions are presented
in Section II. The core technical results are then summarized
and discussed in Section III. The core results are then used to
derived explicit expressions of the decay rate of the integrated
MSE for three rich function classes in Section IV. The proofs
of all the core technical results are presented in Section V and
concluding remarks are made in Section VI.

II. PROBLEM FORMULATION

Field Model: We model the field as a real–valued, bounded,
deterministic functionf : D → [−a,+a] belonging to a non–
parametric function class5 F , that is, f ∈ F , whereF is
a set of measurable functions mappingD to [−a,+a]. The
domain of the fieldD is assumed to be a compact subset
of Rd, the d–dimensional Euclidean space. The objective is
to reconstruct this function with high fidelity from binary–
quantized noisy observations collected by a network of non–
cooperative6 sensors that are randomly deployed over the
domainD.

Random Sensor Deployment:We assume that then sen-
sors are independently and identically randomly deployed over
the domainD according to a known distributionpX . If Xi ∈ D
denotes the location of theith sensor fori ∈ {1, . . . , n}, then
Xi ∼ iid pX captures the lack of control in sensor deployment.
We assume that the support ofpX is D and thatpX is a non–
singular distribution7.

Additive Noise: Each sensor takes a sample of the field
under additive noise. The noisy samples are given byYi =

5The number of parameters that specify a non–parametric function class is
not fixed a priori and is possibly infinite.

6The sensors do not exchange information or otherwise collaborate at the
time of or before taking measurements.

7A random variable with a non–singular distribution takes values in a subset
of D with Lebesgue measure0 with probability 0.
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Fig. 1. Problem Setup: The field (in a single snapshot) is sampled byn sensors at their respective locations under additive noise. Each sample is unreliably
quantized to a binary value by a comparison with a random threshold. These binary values are transmitted to the fusion center which reconstructs the field.

f(Xi) + Zi, for i ∈ {1, . . . , n}, where the noise variables
Zi ∼ iid pZ and are independent of the sensor locations. We
assume that eachZi is zero–mean and is bounded in amplitude
by a constantb > 0, that is, the support ofpZ is contained
in [−b,+b]. However, besides these assumed conditions, the
distributionpZ is unknownto either the sensors or the fusion
center, and the results and methods of this paper hold for
arbitrary noise distributions satisfying these conditions. We
let PZ denote the set of all noise distributions satisfying these
assumptions. Note that since both the field and the noise are
bounded, the noisy samples are bounded:|Yi| ≤ c := a + b.
We assume that the value ofc is known. The values ofa and
b can remain unknown to the sensors and the fusion center.

Unreliable, Binary Quantization: We assume that in the
sensor hardware frontend, the noisy sample is quantized by an
unreliable, low–precision analog–to–digital converter.Specif-
ically, we consider one–bit (binary), dithered, scalar quanti-
zation implemented as a comparison to a random threshold
that is uniformly distributed over the sample dynamic range
[−c,+c]. The binary–quantized observations are given by

Bi = sgn(Yi − Ti) for i ∈ {1, . . . , n}

:=

{

+1 Yi > Ti,

−1, Yi ≤ Ti,
=

{

+1 f(Xi) + Zi > Ti,

−1, f(Xi) + Zi ≤ Ti,

whereTi ∼ iid Unif [−c,+c] are the uniform random thresh-
olds. The thresholds are independent of the sensor locations
and the noise. The value ofBi is finally the observation that
sensori has access to.

Transmission: We abstract away communication channel
issues and assume that the underlying communication net-
work of the sensors is able to handle the modest payload
of transmitting one bit per sensor to the fusion center. We
also assume that the fusion center has access to the physical
locations of the sensors and can correctly associate messages
with their points of origin. Thus, we assume that through
this abstracted communications network, the sensor location
and quantized observation pairs{(Xi, Bi)}ni=1 are reliably
made available to the fusion center. The reconstruction of
multiple time snapshots of the field with time–sharing sensors,
vanishing per–sensor rate and sensor location “overheads”can

also be accommodated within the framework of this work as
in [2] but is omitted for clarity.

Reconstruction and Distortion Criterion: Given
{(Xi, Bi)}ni=1, the fusion center constructs the field estimate
f̂X1,...,Xn,B1,...,Bn : D → C. For notational convenience, the
explicit dependence on{(Xi, Bi)}ni=1 will be suppressed and
the estimator will simply be denoted bŷfn. The performance
criterion is the integrated MSE given by

D(f, f̂n) := E

[

‖f − f̂n‖2
]

= E

[∫

D
|f(x)− f̂n(x)|2dx

]

,

where the expectation is taken with respect to the random
noise, thresholds, and the sensor locations. The objectiveis to
design an estimator̂fn that minimizes the integrated MSED.
The problem setup is shown in Figure 1.

Minimax Integrated MSE: For a given field subclass
Fsub ⊂ F , of interest are the corresponding upper, lower,
and minimax rates of convergence of the integrated MSE. A
positive sequenceγn is an upper rate of convergence if there
exists a constantC <∞ and an estimator̂f∗

n such that

lim sup
n−→∞

sup
pZ∈PZ

sup
f∈Fsub

γ−1
n D(f, f̂∗

n) ≤ C.

A positive sequenceγn is a lower rate of convergence if there
exists a constantC > 0 such that

lim inf
n−→∞

inf
f̂n

sup
pZ∈PZ

sup
f∈Fsub

γ−1
n D(f, f̂n) ≥ C,

where theinf f̂n is the infimum over all field estimators. The
upper rate represents the asymptotic worst–case performance
achieved by a given estimator. The lower rate represents
a fundamental limit on the asymptotic performance of any
estimator. A positive sequenceγn that is both a lower rate
and an upper rate of convergence is called the minimax rate of
convergence and the corresponding estimatorf̂∗

n that achieves
the upper rate is called a minimax order optimal estimator.

Note that showingD(f, f̂∗
n) = O(γn) for all f ∈ Fsub and

pZ ∈ PZ for a particular estimator̂f∗
n is equivalent to showing

that f̂∗
n achievesγn as an upper rate of convergence of the

integrated MSE. If it can be further shown thatD(f, f̂n) =
Ω(γn) for a particularf ∈ Fsub, a particularpZ ∈ PZ , and for
all estimatorsf̂n, thenγn is the minimax rate of convergence
of the integrated MSE.
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III. M AIN RESULTS

In this section, we describe our proposed field estimator and
analyze its performance. We show that under suitable technical
conditions, the field estimate is asymptotically integrated MSE
consistent, that is, asn −→ ∞, E[‖f − f̂n‖2] −→ 0. We also
show that under suitable technical conditions, the field estimate
is asymptotically almost sure consistent, that is, asn −→ ∞,
almost surelyf̂n −→ f pointwise almost everywhere onD.
We also provide an upper bound to the integrated MSE which
is used in Section IV to derive achievable integrated MSE
decay rates for specific function classes. The proofs of all
theorems are presented in Section V.

Let F denote the set of all bounded, measurable functions
f : D → [−a,+a]. Note thatF ⊆ L

2(D). Let B = {φj}∞j=0,
with φj : D → C, denote an indexed orthonormal (Schauder)
basis (e.g. Fourier, wavelet, etc.) ofL2(D). Any f ∈ F can
be decomposed as

f
L

2

=

∞∑

j=0

〈f, φj〉φj =:

∞∑

j=0

αjφj , (1)

whereαj := 〈f, φj〉 denotes the coefficients (projections onto
the basis functions) of the expansion. Them–term approxima-
tion of f with respect to an orthonormal basisB = {φj}∞j=0

is given by

fm :=
m−1∑

j=0

〈f, φj〉φj . (2)

The correspondingm–term approximation error is given by

ε[f,m,B] := ‖f − fm‖2 =

∞∑

j=m

|〈f, φj〉|2 =

∞∑

j=m

|αj |2, (3)

which is a non–negative, non–increasing sequence ofm that
converges to zero for allf ∈ F [17, Chapter 9].

A. Proposed estimator

Our proposed estimator first estimates the firstm coeffi-
cients {αj}m−1

j=0 of (1) with respect to a given orthonormal
basisB, according to

α̂j :=
c

n

n∑

i=1

φ∗j (Xi)

pX(Xi)
Bi, (4)

for j ∈ {0, . . . ,m − 1}. A general tunable field estimate is
given by them–term approximation,

f̂n,m :=

m−1∑

j=0

α̂jφj , (5)

wherem is the tunable design parameter which can be chosen
to depend onn to optimize the rate of decay of the integrated
MSE for specific function classes. The final field estimate is
given by specifyingm as a function ofn,

f̂n :=

m(n)−1
∑

j=0

α̂jφj . (6)

The specification ofm(n) for specific function classes is
discussed in Section IV. The dependence ofm on n needs

to satisfy certain conditions to ensure that the estimate is
asymptotically consistent. These conditions are described in
Section III-B and Section III-C.

B. Integrated MSE upper bounds and convergence results

The following theorem, whose proof appears in Sec-
tion V-A, upper bounds the integrated MSE as the sum of two
terms. The first term is due to the variance of the coefficient
estimates. The second term is due to the bias caused by the
finite–term series approximation.

Theorem 3.1: (Integrated MSE Upper Bound) LetF , PZ ,
andpX be as given in Section II. Let̂fn,m be given by (4) and
(5), whereB = {φj}∞j=0 is any orthonormal Schauder basis
of L2(D). Then,∀f ∈ F and∀pZ ∈ PZ , the integrated MSE
is upper bounded by

D = E

[

‖f − f̂n,m‖2
]

≤ c2

n

m−1∑

j=0

∫

D

|φj(x)|2
pX(x)

dx+ε[f,m,B],

(7)
where ε[f,m,B], given by (3), is a non–negative, non–
increasing sequence that converges to0 asm −→ ∞.

In light of Theorem 3.1 we now examine conditions on
m(n), B, andpX which ensure that the estimator is asymptot-
ically consistent in the integrated MSE sense, that isD −→ 0
asn −→ ∞. The following corollary specifies conditions that
immediately ensures that the integrated MSE converges to0.

Corollary 3.1: (Integrated MSE Convergence of the Field
Estimate) Under the same setup of Theorem 3.1, ifm(n),
B = {φj}∞j=0, andpX satisfy

m(n) −→ ∞, asn −→ ∞, (8)

1

n

m(n)−1
∑

j=0

∫

D

|φj(x)|2
pX(x)

dx −→ 0, asn −→ ∞, (9)

then the estimate converges in the integrated MSE sense to the
field, that is,

∀f ∈ F and∀pZ ∈ PZ , D −→ 0, asn −→ ∞.
Condition (8) is sufficient (and often necessary) to ensure

that ε[f,m,B] converges to0. Condition (9) is equivalent to
the first term of the integrated MSE upper bound, given in
(7), converging to0. For some deployment distributionspX ,
condition (9) may not be attainable for many orthonormal
bases. For example, let the domainD = [0, 1] with the
deployment distributionpX(x) = 2x over [0, 1]. Then for any
orthonormal basis in whichφ0(x) = 1 over[0, 1], e.g., Fourier,
Harr wavelets, Legendre polynomials, etc., the first term ofthe
summation in (9) is given by

∫

D

|φ0(x)|2
pX(x)

dx =

∫ 1

0

1

2x
dx = ∞.

Thus integrated MSE upper bound becomes useless. This
implies that in general the deployment distributions and or-
thonormal bases have to be appropriatelymatchedas a design
consideration in order to satisfy condition (9). However, condi-
tion (9) is ensured for any orthonormal basis if the deployment
distributionpX has a strictly positive infimum overD, that is,

inf
x∈D

pX(x) = ν > 0. (10)
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Sensor deployment distributions over compact domains which
are useful for high-resolution field reconstruction would satisfy
such a condition. Given (10), we have that

m−1∑

j=0

∫

D

|φj(x)|2
pX(x)

dx ≤
m−1∑

j=0

∫

D

|φj(x)|2
ν

dx

=

m−1∑

j=0

1

ν
‖φj‖2 =

m

ν
,

and ∀f ∈ F and ∀pZ ∈ PZ , the corresponding integrated
MSE upper bound becomes

D = E

[

‖f − f̂n,m‖2
]

≤ c2m

nν
+ ε[f,m,B]. (11)

The upper bound in (11) converges to0 as n −→ ∞ when
m(n) satisfies the following two conditions

m(n) −→ ∞, asn −→ ∞,

m(n)

n
−→ 0, asn −→ ∞.

C. Almost sure convergence results

In this subsection we establish sufficient conditions for the
field estimate to be asymptotically almost sure consistent,
that is, asn −→ ∞, almost surelyf̂n −→ f pointwise
almost everywhere onD. First, we establish a key theorem
that gives sufficient conditions for the convergence of the
pointwise errors of the estimate with respect to the truncated
approximation of the field. The proof of this theorem appears
in Section V-B.

Theorem 3.2: (Almost Sure Convergence of Estimate Er-
rors) Let pX be the deployment distribution described in
Section II satisfying (10),B = {φj}∞j=0 be an orthonormal
Schauder basis ofL2(D), f̂n,m be the field estimate given by
(4) and (5), andfm be them–term approximation to the field
given by (2). Let

Sn,m(x) := f̂n,m(x) − fm(x),

for all x ∈ D. If there exists a non–negative, increasing
sequence of real numbers{Λm}∞m=1, and a non–negative,
increasing sequence of positive integers{m(n)}∞n=1 which
satisfy the following three conditions

∀x, y a.e.∈ D,

∣
∣
∣
∣
∣
∣

m−1∑

j=0

φj(x)φ
∗
j (y)

1

pX(y)

∣
∣
∣
∣
∣
∣

≤ C1Λm, (12)

∀f ∈ F , ∀x a.e.∈ D,

∣
∣
∣
∣
∣
∣

m−1∑

j=0

〈f, φj〉φj(x)

∣
∣
∣
∣
∣
∣

≤ C2Λm, (13)

∀ǫ > 0,

∞∑

n=1

exp

(

−ǫ2n
Λ2
m(n)

)

<∞, (14)

whereC1, C2 > 0 are some constants, then∀f ∈ F and∀x ∈
D except on a set of Lebesgue measure zero, asn −→ ∞,
almost surely,

Sn(x) := Sn,m(n) −→ 0.

Conditions (12) and (13) impose constraints on the basis
functionsB = {φj}∞j=0 and the deployment distributionpX .
Condition (14) implies that asn −→ ∞, Λ2

m(n)/n −→ 0.
This places a constraint on how fastm(n) can go to infinity.
In particular it requires that in relation toΛm, m(n) not grow
too fast withn.

We now examine some special choices of{Λm}∞m=1 for
which conditions (12) and (13) will hold. Form ∈ {1, 2, . . .},
define auxiliary functions:

gm(x, y) :=
1

Λm

m−1∑

j=0

φj(x)φ
∗
j (y)

1

pX(y)
, (15)

hm(x) :=
1

Λm

m−1∑

j=0

〈f, φj〉φj(x), (16)

for x, y ∈ D. The following proposition, whose proof appears
in Section V-C, gives two sets of conditions on{Λm}∞m=1,
B = {φj}∞j=0, and pX , for which conditions (12) and (13)
will hold.

Proposition 3.1: Let {Λm}∞m=1 be as in Theorem 3.2 and
gm, hm be given by (15) and (16) respectively.

(i) If
m

Λ2
m

−→ 0, asm −→ ∞, (17)

and for x, y ∈ D almost everywhere, the limits

g∞(x, y) := lim
m−→∞

gm(x, y), (18)

h∞(x) := lim
m−→∞

hm(x) (19)

exist, then the limits are zero almost everywhere and the
conditions (12) and (13) are satisfied for some constants
C1, C2 > 0.

(ii) If the basis functions are uniformly amplitude bounded,
that is,∀j ∈ {0, 1, . . .} and ∀x ∈ D,

|φj(x)| ≤ β <∞,

then conditions (12) and (13) are satisfied forΛm = m
with constantsC1 = β2/ν andC2 = aβ

√

vol(D).
Part (i) of Proposition 3.1 shows that if the limits of the

auxiliary functions (15) and (16) asm −→ ∞ exist, then
for any Λm such that (17) is satisfied, e.g.,Λm = mγ/2,
for any γ > 1, conditions (12) and (13) are satisfied for
some constants. Part (ii) of Proposition 3.1 shows that if the
basis functions are uniformly bounded as, for example, in the
orthonormal Fourier and Legendre bases, then conditions (12)
and (13) are satisfied forΛm = m and given constants.

We now examine conditions on{Λm}∞m=1 under which (14)
will be satisfied. According to Ermakoff’s series convergence
test [18], if for some non–negative, non–increasing, real func-
tion q(t), t ≥ 1,

lim
t−→∞

etq(et)

q(t)
< 1,

wheree is the base of the natural logarithm, then

∞∑

n=1

q(n) <∞.
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Let q(t) = exp
(−ǫ2t
tψ

)
, t ≥ 1, whereψ ∈ (0, 1) and ǫ > 0.

Then

etq(et)

q(t)
=
et exp(−ǫ

2et

etψ )

exp(−ǫ
2t

tψ
)

= exp
(
t− ǫ2et−tψ − ǫ2t1−ψ

)
−→ 0,

as t −→ ∞. By Ermakoff’s test, for allψ ∈ (0, 1) and all
ǫ > 0,

∞∑

n=1

exp

(−ǫ2n
nψ

)

<∞.

Thus condition (14) will be satisfied ifΛ2
m(n) = nψ for any

ψ ∈ (0, 1).
Combining the above result with Proposition 3.1 yields

possible forms of the design parameters{m(n)}∞n=1 and
{Λm}∞m=1 such that the conditions for almost sure conver-
gence (12), (13), and (14) are all simultaneously satisfied.
Choosingm(n) = Θ(nψ), whereψ ∈ (0, 1), andΛm = mγ/2,
for someγ ∈ (1, 1/ψ), yields Λ2

m(n) = nψ
′

, whereψ′ =
γψ ∈ (ψ, 1), which satisfies (14) and (17) simultaneously.
With these choices, Proposition 3.1 shows that conditions
(12) and (13) will be satisfied as well if the limits (18)
and (19) of the auxiliary functions (15) and (16) respectively
can be assumed to exist. Thus, for anym(n) of the form
m(n) = Θ(nψ), whereψ ∈ (0, 1), we can choose{Λm}∞m=1

such that conditions (12), (13), and (14) are simultaneously
satisfied, if the limits (18) and (19) exist.

Due to the properties of an orthonormal basis, asm −→ ∞,
them–term approximation,fm given by (2), converges inL2–
norm to f for any f ∈ F . Although, it is not guaranteed
that for general orthonormal basesfm will converge pointwise
almost everywhere to a specific function. However, iffm does
converge almost everywhere to somef∞, then f∞ must be
equal tof almost everywhere. This can be seen by writing

0 ≤
∫

D
|f(x)− f∞(x)|2dx

=

∫

D
lim inf
m−→∞

|f(x)− fm(x)|2dx

≤ lim inf
m−→∞

∫

D
|f(x)− fm(x)|2dx = 0,

where the inequality follows due to Fatou’s lemma [19]. Thus
∫

D |f(x)− f∞(x)|2dx = 0, so |f(x)− f∞(x)| = 0 for x ∈ D
almost everywhere. For example, it is well known that for any
f ∈ F ⊂ L

2([0, 1]) them–term Fourier series approximation,
fm converges tof almost everywhere [20].

Corollary 3.2: (Almost Sure Convergence of the Field
Estimate) Within the context of Theorem 3.2, if conditions
(12), (13), and (14) hold and if asm −→ ∞, the m–
term approximationfm converges almost everywhere to some
function f∞, then∀x a.e.∈ D, the pointwise error of the field
estimate satisfies

|f̂n(x)− f(x)| ≤ |f̂n(x)− fm(n)(x)|+ |fm(n)(x)− f(x)|
= |Sn(x)|+ |fm(n)(x) − f(x)|

a.s.−−→ 0, asn −→ ∞.

Thus, forx ∈ D almost everywhere, asn −→ ∞, almost
surely f̂n(x) −→ f(x).

IV. A CHIEVABLE INTEGRATED MSE DECAY RATES

In this section, we use the integrated MSE upper bound
(7) derive explicit expressions for the achievable upper rates
of convergence of the integrated MSE for three specific
function classes, namely, finite–dimensionalFBk , bounded–
variationFBV , ands–Sobolev differentiableFs. Throughout
this section, we assume that (10) holds.

The general approach for deriving such rates of convergence
for functions living in a function classFsub ⊆ F is select an
appropriate basisB = {φj}∞j=0 in which them–term approxi-
mation error given byε[f,m,B] in (3) can be upper bounded
by an explicit function ofm for all f ∈ Fsub. Thenm in (7)
can be chosen to depend onn to optimize the convergence rate.
Thus given the appropriate function approximation theoretic
results that upper boundε[f,m,B], this approach establishes
achievable upper rates of convergence of the integrated MSE
for the corresponding function class.

A. Functions in a finite–dimensional subspace ofF
The first function class represents the scenario where the

fusion center has an exact prior knowledge of the finite–
dimensional space in which the function lives. LetFBk denote
the subset ofF that is composed of functions that are linear
combinations of a given set ofk orthonormal functionsBk =
{φj}k−1

j=0 . Note that for anyf ∈ FBk , f =
∑k−1

j=0 〈f, φj〉φj .
Thus the function approximation at the truncation pointm = k
is exact, that is,fm = f for m = k so that,

∀f ∈ FBk , ε[f, k,Bk] = 0. (20)

Combining (7) with (20) yields the following corollary.
Corollary 4.1: (Decay rate of integrated MSE for FBk ) Let

Bk andFBk be as given above andPZ and pX be as given
in Section II. Letf̂n,m be given by (4) and (5) withBk as the
basis. IfpX satisfies (10), then∀f ∈ FBk and∀pZ ∈ PZ , the
integrated MSE of̂fn,m with the truncation pointm set tok
is upper bounded as follows

D = E

[

‖f − f̂n,m‖2
]

≤ c2k

nν
= O

(
1

n

)

.

Therefore,∀f ∈ FBk and ∀pZ ∈ PZ , an achievable upper
rate of convergence of the integrated MSE for fields in a finite–
dimensional subspace is given by

D = E

[

‖f − f̂n,m‖2
]

= O

(
1

n

)

.

It should be noted that for this function class, the field
estimation problem for integrated MSE is equivalent to a
finite–dimensional parameter estimation problem with condi-
tionally independent noisy observations. Under the choiceof
an appropriate, well–behaved noise distribution8 pZ ∈ PZ ,
the Cramér–Rao lower bound for the integrated MSE decay
rate for finite–dimensional parameter estimation from iid noisy
observations asymptotically behaves asD = Ω(1/n) for
all asymptotically integrated MSE consistent estimators [21].
Hence the estimator is minimax order optimal forFBk and
achieves the minimax rate of convergenceγn = (1/n).

8A noise distribution is chosen such that the observation model satisfies the
Cramér–Rao regularity conditions [21].
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B. Functions of bounded–variation on DomainD = [0, 1]

Let FBV denote the subset ofF which is composed of
functions onD = [0, 1] of bounded–variation. Formally,

FBV :=

{

f ∈ F
∣
∣
∣
∣
∣
lim
δ→0

∫ 1

0

|f(x)− f(x− δ)|
|δ| dx < +∞

}

.

A function in FBV has a derivative (at points for which
it exists) which is uniformly bounded and the sum of the
amplitudes of its discontinuous jumps is finite. The bounded–
variation condition represents a minimal “smoothness” as-
sumption since a restriction is placed on the amount of total
discontinuous jumps.

It is well known that for the Fourier basis,

BFourier =

{

φj(x) =

{

e+πjx
√
−1, j even,

e−π(j+1)x
√
−1, j odd

}∞

j=0

,

(21)
the m–term approximation error (3) is upper bounded as
follows,

∀f ∈ FBV , ε[f,m,BFourier] ≤
σ

m
, (22)

whereσ > 0 is a constant [17, Chapter 9]. Combining (7)
with (22) yields the following corollary.

Corollary 4.2: (Decay rate of integrated MSE for FBV )
Let FBV be as given above andPZ and pX be as given in
Section II. Letf̂n,m be given by (4) and (5) withBFourier

as given in (21). IfpX satisfies (10), then∀f ∈ FBV and
∀pZ ∈ PZ , the integrated MSE of̂fn,m is upper bounded as
follows

D = E

[

‖f − f̂n,m‖2
]

≤ c2m

nν
+
σ

m
,

whereσ > 0 is a constant. Settingm(n) =
√
n to optimize the

decay rate of the upper bound yields the following achievable
upper rate of convergence of the integrated MSE∀f ∈ FBV
and ∀pZ ∈ PZ :

D = E

[

‖f − f̂n,m‖2
]

= O

(
1√
n

)

.

C. Sobolev differentiable functions on DomainD = [0, 1]

This function class includes functions which are differen-
tiable in a generalized sense to a degree of differentiability
parameterized bys which can take non–integer values. The
value ofs can be considered as a measure of smoothness. For
s > 1/2, let Fs denote the subset ofF which is composed of
functions onD = [0, 1] that ares–times Sobolev differentiable.
Formally,

Fs :=
{

f ∈ F
∣
∣
∣
∣
∣

∫ +∞

−∞
|ω|2s|f̃(ω)|2dω < +∞

}

, (23)

where f̃(ω) denotes the Fourier transform off . Note that
the condition in (23) (for integer values ofs) corresponds to
the sth derivative off belonging toL2([0, 1]). Thus, this set
includes functions that are⌊s⌋–times differentiable.

It is well known that fors > 1/2,

∀f ∈ Fs, ε[f,m,BFourier] ≤
σ

m2s
, (24)

whereσ > 0 is a constant [17, Chapter 9]. Combining (7)
with (24) yields the following corollary.

Corollary 4.3: (Decay rate of integrated MSE for Fs) Let
Fs be as given above andPZ andpX be as given in Section II.
Let f̂n,m be given by (4) and (5) withBFourier as given in
(21). If pX satisfies (10), then∀f ∈ Fs and ∀pZ ∈ PZ , the
integrated MSE of̂fn,m is upper bounded as follows

D = E

[

‖f − f̂n,m‖2
]

≤ c2m

nν
+

σ

m2s
,

where σ > 0 is a constant. Settingm(n) = n
1

2s+1 to
optimize the decay rate of the upper bound yields the following
achievable upper rate of convergence of the integrated MSE
∀f ∈ Fs and ∀pZ ∈ PZ :

D = E

[

‖f − f̂n,m‖2
]

= O
(

n
−2s
2s+1

)

.

It is well known that the exact minimax rate of convergence
of the integrated MSE for non–parametric regression, based
on full–resolution, real–valued, noisy observations in ans–
Sobolev space is given byγn = n

−2s
2s+1 [22], [23]. In non–

parametric regression, the field estimate is based directlyon
the full–resolution real–valued noisy observations{Yi}ni=1,
whereas in our problem the field estimate is based on only
the binary–quantized observations{Bi}ni=1. In both setups,
the corresponding sensor locations are known. Thus, it is
interested to observe that our proposed estimator is minimax
order optimal even with respect to the case in which the
observations have not been quantized.

V. PROOFS

A. Proof of Theorem 3.1

We first establish some results regarding the estimated
coefficients of (4).

Lemma 5.1: The expected value of an approximated coef-
ficient is given by

(i) E[α̂j ] = αj = 〈f, φj〉, (25)

and the integrated MSE of the coefficient estimates satisfies

(ii) E[|α̂j − αj |2] ≤
c2

n

∫

D

|φj(x)|2
pX(x)

dx. (26)

The approximated coefficients also have the following conver-
gence property

(iii) α̂j
a.s.−−→ αj , n −→ ∞. (27)

Proof: (i) The expectation of the coefficient estimates
can be evaluated as follows

E[α̂j ] = E

[

c

n

n∑

i=1

φ∗j (Xi)

pX(Xi)
Bi

]

=
c

n

n∑

i=1

E

[
φ∗j (Xi)

pX(Xi)
sgn(f(Xi) + Zi − Ti)

]

= cE

[
φ∗j (X1)

pX(X1)
sgn(f(X1) + Z1 − T1)

]

, (28)
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where the last equality follows since the terms are iid. This
last expectation can be evaluated as follows

E

[
φ∗j (X1)

pX(X1)
sgn(f(X1) + Z1 − T1)

]

=

∫

D
pX(x)

∫ +b

−b
pZ(z)

∫ +c

−c

1

2c

φ∗j (x)

pX(x)
sgn(f(x) + z − t)dtdzdx

=

∫

D

∫ +b

−b
pZ(z)φ

∗
j (x)

1

2c

(
∫ f(x)+z

−c
dt−

∫ +c

f(x)+z

dt

)

dzdx

=
1

c

∫

D

∫ +b

−b
pZ(z)φ

∗
j (x)(f(x) + z)dzdx

=
1

c

∫

D
φ∗j (x)f(x)dx

=
1

c
〈f, φj〉 =

αj
c
, (29)

where the second to last line follows from the assumption that
pZ is a zero–mean distribution. Combining (28) and (29), we
have (25). (ii) Thus,

E[|α̂j − αj |2] = E[|α̂j − E[α̂j ]|2] = Var[α̂j ]. (30)

Using standard properties of variance and the fact that the
terms{φ∗j (Xi)Bi/pX(Xi)}ni=1 are iid, we obtain the follow-
ing

Var[α̂j ] =
c2

n2

n∑

i=1

Var

[
φ∗j (Xi)

pX(Xi)
Bi

]

=
c2

n
Var

[
φ∗j (X1)

pX(X1)
B1

]

=
c2

n
E

[∣
∣
∣
∣

φ∗j (X1)

pX(X1)
B1

∣
∣
∣
∣

2
]

− c2

n

∣
∣
∣
∣
E

[
φ∗j (X1)

pX(X1)
B1

]∣
∣
∣
∣

2

≤ c2

n
E

[∣
∣
∣
∣

φ∗j (X1)

pX(X1)

∣
∣
∣
∣

2
]

,

=
c2

n

∫

D

|φj(x)|2
p2X(x)

pX(x)dx,

=
c2

n

∫

D

|φj(x)|2
pX(x)

dx. (31)

Combining (30) and (31), we arrive at (26). (iii) The coefficient
estimates

α̂j =
c

n

n∑

i=1

φ∗j (Xi)

pX(Xi)
Bi

=
c

n

n∑

i=1

φ∗j (Xi)

pX(Xi)
sgn(f(Xi) + Zi − Ti)

a.s.−−→ cE

[
φ∗j (X1)

pX(X1)
sgn(f(X1) + Z1 − T1)

]

, (32)

as n −→ ∞ by Kolmogorov’s strong law of large numbers
since each term in the summation is iid and has a first moment
bounded by

√

vol(D):

E

[∣
∣
∣
∣

φj(X1)

pX(X1)

∣
∣
∣
∣

]

= ‖φj‖1 ≤
√

vol(D)‖φj‖2 =
√

vol(D),

where the last inequality follows from the Cauchy-Schwartz
inequality. Combining (29) and (32), we obtain (27), conclud-
ing the proof of the Lemma 5.1.

For any orthonormal basisB = {φj}∞j=0 and for any field
f ∈ F , the integrated MSE of the estimate can be written as
follows

D = E[‖f − f̂n,m‖2]

= E






∥
∥
∥
∥
∥
∥

∞∑

j=0

αjφj −
m−1∑

j=0

α̂jφj

∥
∥
∥
∥
∥
∥

2





=

m−1∑

j=0

E[|α̂j − αj |2] +
∞∑

j=m

|αj |2

≤ c2

n

m−1∑

j=0

∫

D

|φj(x)|2
pX(x)

dx+

∞∑

j=m

|αj |2

︸ ︷︷ ︸

=ε[f,m,B]

, (33)

where in the last step we used the bound given in (26). Thus
we have (7), concluding the proof of Theorem 3.1.

B. Proof of Theorem 3.2

The pointwise errors of the field estimate with respect to
them–term approximation can be written as

Sn(x) := f̂n(x) − fm(n)(x)

=

m(n)−1
∑

j=0

(

1

n

n∑

i=1

cφ∗j (Xi)Bi

pX(Xi)
− αj

)

φj(x)

=
1

n

n∑

i=1

m(n)−1
∑

j=0

(
cφ∗j (Xi)Bi

pX(Xi)
− αj

)

φj(x)

=
1

n

n∑

i=1

Ui(x),

where fori ∈ {1, . . . , n},

Ui(x) :=

m(n)−1
∑

j=0

(
cφ∗j (Xi)Bi

pX(Xi)
− αj

)

φj(x).

Note thatUi(x) is iid and that it is zero–mean due to (25)
of Lemma 5.1. However, almost sure convergence ofSn(x)
cannot be directly deduced from the standard strong law of
large numbers since the distribution ofUi(x) itself depends
on n because it is the summation ofm(n) terms. Instead,
we leverage a more fundamental condition for almost sure
convergence [24, p. 206]: if for allǫ > 0,

∞∑

n=1

P[|Sn(x)| ≥ ǫ] <∞,

thenSn(x)
a.s.−−→ 0 asn −→ ∞.

Associated withSn(x), is a martingale{Vk(x)}nk=0 given
by V0 := 0, and fork ∈ {1, . . . , n},

Vk(x) :=

k∑

i=1

1

n
Ui(x).
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V0(x), . . . , Vn(x) is a martingale since{Ui(x)}ni=1 is iid with
zero–mean. Note thatVn(x) = Sn(x) and that |Vk(x) −
Vk−1(x)| ≤ | 1nUk(x)|. For eachi ∈ {1, . . . , n},

|Ui(x)| ≤ c

∣
∣
∣
∣
∣
∣

m(n)−1
∑

j=0

φj(x)φ
∗
j (Xi)

pX(Xi)

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

m(n)−1
∑

j=0

αjφj(x)

∣
∣
∣
∣
∣
∣

,

by the triangle inequality. Under the assumptions that the
conditions given by (12) and (13) hold and that the deployment
distribution pX is non–singular, there exists some constant
C > 0 such that for alli ∈ {1, . . . , n},

|Ui(x)| ≤ CΛm(n),

with probability1 for x ∈ D almost everywhere. Thus

|Vk(x)− Vk−1(x)| ≤
CΛm(n)

n
. (34)

According to the Azuma–Hoeffding inequality (see [25,
p. 303]), if for all k ∈ {1, . . . , n}, |Vk(x) − Vk−1(x)| ≤ Ck,
then for all ǫ > 0,

P[|Vn(x)| ≥ ǫ] ≤ 2 exp

( −ǫ2
2
∑n
k=1 C

2
k

)

.

Applying this inequality withCk = CΛm(n)/n for all k ∈
{1, . . . , n} (see (34)) andVn(x) = Sn(x) we obtain the
following upper bound

P[|Sn(x)| ≥ ǫ] ≤ 2 exp




−ǫ2

2
∑n
k=1

C2Λ2
m(n)

n2





= 2 exp

(

−ǫ2n
2C2Λ2

m(n)

)

,

for x ∈ D almost everywhere. Therefore,

∞∑

n=1

P[|Sn(x)| ≥ ǫ] ≤
∞∑

n=1

2 exp

(

−ǫ2n
2C2Λ2

m(n)

)

,

which is less than infinity∀ǫ > 0 and x ∈ D almost
everywhere, due to condition (14). Thus, asn −→ ∞, almost
surelySn(x) −→ 0, for x ∈ D almost everywhere.

C. Proof of Proposition 3.1

Part (i): Note that if|g∞(x, y)| = 0 for x, y ∈ D almost
everywhere and|h∞(x)| = 0 for all f ∈ F and for x ∈ D
almost everywhere, then conditions (12) and (13) hold with

some constantsC1, C2 > 0. For gm, we can write
∫∫

D×D
p2X(y)|g∞(x, y)|2dxdy =

=

∫∫

D×D
lim inf
m−→∞

p2X(y)|gm(x, y)|2dxdy

(a)

≤ lim inf
m−→∞

∫∫

D×D
p2X(y)|gm(x, y)|2dxdy

= lim inf
m−→∞

∫∫

D×D
p2X(y)

1

Λ2
m

m−1∑

j=0

m−1∑

k=0

φj(x)φ
∗
j (y) ·

φ∗k(x)φk(y)
1

p2X(y)
dxdy

= lim inf
m−→∞

1

Λ2
m

m−1∑

j=0

m−1∑

k=0

∫

D
φj(x)φ

∗
k(x)dx

︸ ︷︷ ︸

=δj−k

·

∫

D
φk(y)φ

∗
j (y)dy

︸ ︷︷ ︸

=δj−k

= lim inf
m−→∞

1

Λ2
m

m−1∑

j=0

1 = lim inf
m−→∞

m

Λ2
m

,

where the inequality (a) is due to Fatou’s lemma [19] andδk
is the Kronecker delta function. Thus forΛm such that (17)
is satisfied we have that

∫∫

D×D
p2X(y)|g∞(x, y)|2dxdy = 0,

which implies that |g∞(x, y)| = 0 for x, y ∈ D almost
everywhere due to (10). Forhm, we can write

∫

D
|h∞(x)|2dx =

∫

D
lim inf
m−→∞

|hm(x)|2dx

≤ lim inf
m−→∞

∫

D
|hm(x)|2dx

= lim inf
m−→∞

∫

D

1

Λ2
m

m−1∑

j=0

m−1∑

k=0

αjα
∗
kφj(x)φ

∗
k(x)dx

= lim inf
m−→∞

1

Λ2
m

m−1∑

j=0

m−1∑

k=0

αjα
∗
k

∫

D
φj(x)φ

∗
k(x)dx

︸ ︷︷ ︸

=δj−k

= lim inf
m−→∞

1

Λ2
m

m−1∑

j=0

|αj |2

≤ lim inf
m−→∞

‖f‖2
Λ2
m

≤ lim inf
m−→∞

a2vol(D)

Λ2
m

, ∀f ∈ F ,

where the first inequality follows from Fatou’s lemma [19] and
the last inequality is due tof being amplitude–bounded bya
over the supportD. Thus forΛm such that (17) is satisfied,
we have that

∀f ∈ F ,
∫

D
|h∞(x)|2dx = 0,
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which implies that|h∞(x)| = 0 for all f ∈ F and forx ∈ D
almost everywhere.

Part (ii): Applying the triangle inequality, we can write
∣
∣
∣
∣
∣
∣

m−1∑

j=0

φj(x)φ
∗
j (y)

1

pX(y)

∣
∣
∣
∣
∣
∣

≤
m−1∑

j=0

|φj(x)||φ∗j (y)|
pX(y)

≤
m−1∑

j=0

β2

ν
=
β2

ν
m = C1Λm,

which shows that condition (12) is satisfied forΛm = m and
C1 = β2/ν. Again, applying the triangle inequality, we can
write

∣
∣
∣
∣
∣
∣

m−1∑

j=0

〈f, φj〉φj(x)

∣
∣
∣
∣
∣
∣

≤
m−1∑

j=0

|〈f, φj〉||φj(x)|

≤
m−1∑

j=0

‖f‖β = m‖f‖β

≤ maβ
√

vol(D) = C2Λm,

which shows that condition (13) is satisfied forΛm = m and
C2 = aβ

√

vol(D).

VI. CONCLUDING REMARKS

The principal contribution of this work is a systematic
treatment of (i) binary–sensing, (ii) random sensordeployment,
and (iii) unknown observation noise distribution for high–
resolution distributed sensing and estimation of multidimen-
sional fields using dense sensor networks. A key finding of this
work is that the rate of convergence of the integrated MSE for
field estimation is extremely robust to the apparent limitations
of ultra–poor sensing precision, random sensor deployment,
and lack of knowledge of observation noise statistics. In some
cases, the convergence rate exactly matches the minimax rate
of convergence with infinite–precision real–valued samples
and known noise statistics. Interesting directions for future
work include (i) establishing the exact rate of convergence
of the integrated MSE and a central limit theorem for the
estimate, (ii) analysis of the sensitivity of the integrated–
MSE to sensor location uncertainty, (iii) unbounded–amplitude
signal and noise models, and (iv) general dither distributions.
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