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Abstract—Let C = {xi1,...,xn} C {0,1}" be an [n, N]
binary error correcting code (not necessarily linear). Lete €
{0,1}" be an error vector. A codeword x € C is said to be
disturbed by the error e if the closest codeword tox @ e is
no longer x. Let A. be the subset of codewords inC' that
are disturbed by e. In this work we study the size of Ae in
random codesC (i.e. codes in which each codeword; is chosen
uniformly and independently at random from {0,1}"). Using
recent results of Vu [Random Structures and Algorithms 20(3]
on the concentration of non-Lipschitz functions, we show tht
|Ae| is strongly concentrated for a wide range of values ofNV
and |le||.

We apply this result in the study of communication channels &
refer to as oblivious. Roughly speaking, a channel (y|x) is said
to be oblivious if the error distribution imposed by the channel
is independent of the transmitted codewordx. For example, the
well studied Binary Symmetric Channel is an oblivious chanel.

In this work, we define oblivious and partially oblivious
channels and present lower bounds on their capacity. The
oblivious channels we define have connections to Arbitranl
Varying Channels with state constraints.

I. INTRODUCTION

which allow communication under the uncertainty of which
channellW is actually used from the familyV. Intuitively,

this corresponds to the design of codes which allow com-
munication in anadversarial jamming model in which an
entity Z controlling the channel is assumed to act maliciously
within the limits of W. We will adapt this interpretation in the
discussions throughout this work.

A. This work

Several families of channels have been studied over the
last few decades (for a nice survey on communication under
channel uncertainty see [10]). For a constant (0,1/2)

a p-channell is a channel for whichV (y|x) = 0 if the
Hamming distance betweer andy is greater tharpn. In
words, ap-channel can only change at mgst entries of

x. The parametep may be viewed as the amount pbwer
that can be used by the channel when imposing an error. In
this work we study the capacity of various families of binary
p-channels.

For a parameten, a general (not necessarily memoryless) A natural starting point is the extensively studied fany,

binary communication channél for block lengthn is a
probability distribution over{0,1}" x {0,1}". Namely W
is defined by the conditional probabilitié¥ (y|x) thaty €
{0,1}" is received wherx € {0,1}" is transmitted.

of all binaryp-channels. The capacity &%, is a long standing
open problem. There is a strong connection between c6des
that allow communication overV,, and the minimal distance
of C. Namely,C(W),) equals the maximum (asymptotic) rate

An [n, N| binary block code is defined by a codebook of of [, V] block codes with minimum distance greater ti2an

N codewordsC' = {x1,...xy} in {0,1}" corresponding to
messages$l,..., N} = [N] and a decodep : {0,1}" — [N].
The probability of error for message when(C is used on a
channelW is e(i) = >_ . ;)2 Wy [xi)-

An [n, N] codeC is said to allow communication at rafe
over the channelV with (average) erroe > 0 if N > 2fn»
ande = + Zfil e(i) < e. An [n, N] codeC is said to allow
communication at raté? over afamily of channelsWW with
errore if for every W € W the codeC allows communication

(a detailed proof appears in the Appendix). The latter rate i
not known. It is known that this rate is bounded away from
1—H(p) (e.g.[2], [13], [15]), while the currently best known
lower bound stands on — H(2p) (Gilbert-Varshamov [7],
[16]).

We will not study the capacity o¥V,, rather we turn to
study certain subfamiliegy C W,. Consider the adversarial
model discussed above, in which an adversarial enfity
may choose which channél’ € W to use based on the

at rate R over W with errore. Rate R is an achievable rate code C shared by the sender and receiver. In the case of

for the family W if for every ¢ > 0, § > 0 and every
sufficiently largen there exists arjn, N] codeC such that
C allows communication at rate R — § over the familyyy

communication ovenV, this adversarial entityZ is very
powerful as it can choose anychannellW and tailor the
error it imposes to fit not only the code in use but also

with error at most?. The maximum achievable rate is calledhe codewordx transmitted. IndeedZ can use a channel

the capacity of the familyV, and is denoted bg (W).

W(ylx) € W, in which the error distribution imposed by

When considering the capacity of a family of channelthe channel strongly depends on the transmitted codeword
W, one must address the design of error correcting codedn this work we study scenarios in which is limited in its

1In the study of communication over families of channels lso common
to address themaximumerror e = max; e(i) instead ofe; and the rate
achievable when using a distribution over codes (randoningpdnstead of

dependence or. Specifically, we study the scenario in which
the error imposed by is obliviousor partly oblivious of the

a deterministic cod&€ as above. These models are briefly addressed in the’Let x = x1x2 ...z, be an element if0, 1}™. The Hamming weight

Appendix.

||x|| is defined to be the number of positioh$n which z; # 0.
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codewordx transmitted. For example, if always imposes that1l— H(2p) may be above the bound of Theorem 1 only for
exactly the same distribution over errors, no matter whiGfery smallp < 0.07 and~ € %@7 1—H(2p)+ H(p)).

codewordx is sgnt, the_r_Z is said to bg complletely oinviou; The study ofC(W,, ) arises when considering communica-

of x. AweII_stud|ed oblivious chza_nnel is the Bmary_Symmetru{.iOn in an adversarial jamming model in which the jamnier

Channel with cross over probabilify We denote this channelis |imited in resources. Primarily, we restrict the jammeflip

by Wgsc, . Indeed, no matter which codewaxds transmitted  5¢ st gp-fraction of the bits transmitted, which corresponds

the error imposed byVzsc, follows the same distribution. 1 5 hower constraint imposed ch In addition, we limit the

In this work we define and study families of channels with, ,mer's view of the transmitted codeword. This is obtained

varying degrees of obliviousness. by forcing the jammer to use a channiél which can not

properly differentiate between different codewosddNamely,

by restricting¥ to impose its error based on only a small
We start by giving a slightly different (but equivalentyhumber of possible error distributions, it must be the case

definition of a binary channelV. Instead of definingiV’ that the exact same distribution is used on large portions of

in terms of the conditional probabilitied’(y|x), one may codewords.

defineW in terms of the conditional probabilitieB’ (e|x); An alternative (but problematic) definition te-oblivious

wheree € {0,1}" is the error imposed by the chanriél. channeldV that may come in mind is one in which we restrict

Specifically, in this settingy = x ® e. For example, by our maxx I(X; Z) to be at most(1 — v)n. Here X represents

definitions, ap-channel¥ is a channel for whichiV' (e|x) =0 any distribution over codewords transmitted aAdddenotes

for everye of Hamming weight aboven. Let I be the set of the error imposed by the channel. The random variables

distributions over errore € {0, 1}™. In this setting, a channeland Z are jointly distributed according téV (e|x). There

W may be viewed as a function from € {0,1}" to the are various connections between the suggested definitidn an

setIl. Now we are ready to defing-oblivious channels for the original one given in Definition 1.1. However, they are

~v €10,1]. not equivalent, and roughly speaking, the suggested definit
Roughly speaking, a chann& : {0,1}" — II is said implies a discontinuous capacity function at the pojnt 1.

to be oblivious if it is a constant function. In this case wé detailed discussion appears in the Appendix.

yvill say th_atW is 1-obli\_/ious. 'I_'he_obliviousness of a channeb Previous results and connection to AVC's

is determined by the size of its image. Namely, chanmEls .

with image size at mosz™ will be referred to a®-oblivious 10 the best of our knowledge;-oblivious p-channels for

channels (thus any channel @soblivious). Fory € [0, 1] generah_ € [0,1] have not been addressed in the past. For

channels with image size at mo2t'~")" will be referred the spe<_:|al case = 1, as we state shortly, there is a strong

to as~y-oblivious. con_nec_tlon be_tweeri oblivious p—channels and so_called
Definition 1.1: A channel W with block lengthn is - arbltrarlly varying channels (AVQ) vy|th staFe constraints

oblivious if there is a2(!=")" sized family of distributions =~ (discrete memoryless) arbitrarily varying channel [3] of

7= {m,..., T .} C II, such that for everx € {0,1}" block lengthn is a family of channel$V defined by a set of

the marginal distributioriV’(-|x) over e is in the setr. A StatesS and a set of channels = {W,(y|z)|s € 5} of block

family of channels) is ~-oblivious if for eachi € W, W Iength1.(|n the binary case andy are m{Q, 1}). Specifically,

is ~-oblivious. the family W ¢ thgt corresponds t§ consists of the channels
For example, the Binary Symmetric Channelisblivious, {Wsls € 57} deﬁned. byWs(ylx) = FIZI:lWSi (yila:). In the

as Wgsc, (e|x) is completely independent of; and the abovex = 1,...,%n; ¥ = Y1,.. ., Yn; ANAS = 51, ., 5. I

family W, is 0-oblivious (and noty-oblivious for anyy > 0). we associate with _eac_h stales 5 a costé(s), an AVC family

Let W, be the family of allp-channels that arg-oblivious. with state constrainp is the family of channelsvs € Wg

: : : for which L S°"  /(s;) < p.
In this work we study the capacity &%, ., for various values U Lai=15\%1) = ,
of p and~y. The main result of this work can be summarize Consider the binarg-block channeldVy and W, defined

) 24 H(p) s € {0,1}. Let W* denote the AVC family defined by,
Theorem 1:For anyp € [0,1/2) and anyy € ( 3 ’1} and W with state constrainp. The families\V, ; and W*

COV, ) >~ — H(p) are closely related and it holds théfWw, 1) = COWV™).
L , . The capacity of AVC with state (and also input) constraints
A few remarks are in place. It is not hard to verify (detailed . . . o

) . . was studied extensively in the works of Csiszar and Narayan
proof appears in the Appendix) that for= 1, Theorem 1 is : . :
. . [4], [5]- Using proof techniques that build strongly upon
tight. Namely,C(Wp.1) =1 — H(p) (the capacity ofVssc, e method of typesCsiszar and Narayan show that the
[14]), this follows from the fact thaWzsc, is al-oblivious

channel which iressencgis also gy-channel. It also holds that capacity ofC(W") is 1 — H(p). Thus, proving Theorem 1

: . for the casey = 1. The proof presented in this work differs
C(Wsy) 2 C(Wp) 21— H(2p). A simple calculation shows substantially from the proofs of Csiszar and Narayan. Ngme

3Notice thatWpsc, is not ap-channel, however the error it imposes isour pr(_)Of technique is Combmaton_al "_1 nature_ and is bas_md 0
expected to be of Hamming weigpt. a relatively new “strong concentration inequality” of [1This

B. Oblivious channels



inequality and its application in the context of coding theo a recent result of Vu [17] on the concentration of random
may be of independent interest. variables with largaevorst casd.ipschitz coefficients but small

For v+ < 1, ~-oblivious channels were not defined omveragecase coefficients. The application of the framework
discussed in [4], [5]. However, a careful examination ofithesuggested in [17] to our random variabld.| is somewhat
proof techniques yields an implicit bound on the capacity @fivolved and can be viewed as the main technical contributio
C(W, ~) for large values ofy. Namely, it can be shown usingof this paper.

the proof techniques that appear in [4] tligtV, ,) > 1 — There are other proof techniques which are common in the
H(p)—30(1—+~). For comparison using our proof techniquestudy of probabilistic combinatorics. For example, so exhll
we show thaC(W, ;) >1— H(p) — (1 — 7). “correlation inequalities” €.g.[1]) are often used to analyze

. . the probability of the intersection of many events. We would

D. Proof Techniques, random codes, and list decodable coq&% to note that such inequalities may aiso be used to study

To prove the lower bound of Theorem 1 we need to show thige problem phrased above, however they only yield results
existence of high rate codeswhich enable communicationfor small values ofp that satisfyH (p) < 3, as in this case
over y-oblivious p-channels. We first note that no linear codéhe number of events considered is relatively small.
will suffice. Roughly speaking, this follows from the fact Definition 1.2: Let Q[n, N] be the distribution ovefn, N]
that each codeword; in a linear codeC has exactly the codebooks” = {xi,...,xx} in which each codeword id’
same “neighborhood structure”. Thus, when a linear codechosen uniformly and independently froff, 1}™.
is used, the problem of communicating over the oblivious Definition 1.3: For x € {0,1}™ and integerr, let B(r,x)
or partially oblivious families)V, ., is equivalent to that of pe the Hamming ball of radius centered ak.
communication ovenV, (a detailed proof appears in the Definition 1.4: For a given codebook’ = {x1,....,xn}
Appendix). We thus turn to study codes which are not lineaind errore < {0,117, let Ao(C) = {xi|3j # i st.x; €
A natural candidate is a codé in which the codewords B(|le|l,x; ®e)}. When the reference codebodkis clear we
C = {x1,...,xn} are chosen completely at randomg( will denote A.(C) by Ae.
a code in which each codeword_ is chosen umfor.mly and theorem 2:Letp € [0,1/2). Lety € 2+1;I(p)71 Let
independently from{0,1}™), and ¢ is the Nearest Neighbor
decoder. Lete € {0,1}™ be an error vector of Hamming
weight at mostpn. A codewordx is said to bedisturbed
by the errore if the closest codeword t& & e is no longerx.
Let Ac = A(C) be the subset of codewordsin C' that
are disturbed bye. In Section Il we show thatC enables
communication over alk-oblivious p-channels if for every S
error e of Hamming weight at mospn the size of A, is
relatively small

Hence, it suffices to analyze the size 4f over random
codebooks”. Specifically we are interested in showing that I
with positive probability A, is small for every errore of
weight at mospn. Let R = v — H(p). It is straightforward ~ For any integeri, let [i] denote the se{l1,2,...,i}. Let
to verify that for a fixed errore, the expected size ofl, H(z) = —zlogyx — (1 — x)logy(1 — z) be the standard
taken over randont’ = {x1,...,Xzrn |} is relatively small. (binary) entropy function. For a codeboOk= {x1,...,xn},
Hence it is left to show that with high probabilityl.| does the correspondinglearest Neighbodecoder is the decoder
not deviate significantly from its expectation. Indeed istts  Which on inputy € {0, 1}", returns the index of the closest
the case, a simple union bound will imply our assertion. ~codewordx; in C'to y. For uniqueness, we will assume ties

Strong concentration (or large deviation) inequalitiegehaare broken by the natural lexicographic ordering {on1}".
been extensively studied. The usual way to prove such ife simplify notation, for anyR € [0,1] and integern, we
equalities is via the Azuma or Talagrand inequaliteg(1]). assume throughout that™ is integer.
These inequalities work very well when the random variable Definition 2.1 (List decodability)An [n, N] binary code-
at hand has a smallipschitz coefficientln our case the bookC is said to b€/, p] list decodable iff CNB(pn,y)| < £
Lipschitz coefficient of|A.| is defined by the maximum of for anyy € {0,1}".
[|[Ae(C)| — |Ae(C")|| where C and C’ are two codebooks We first analyze the list decoding properties of random
which differ only in a single codeword. It is not hard tocodes. The lemma that follows has appeared in various forms
verify that the Lipschitz coefficient dfd.| may be very large. in the past €.9.[6], [18]). Full proof is given in the Appendix.
However, we show that for most paifs and C’ as above, Lemma 2.1:Let R <1— H(p). Letn be sufficiently large.
the difference||Ae(C)| — |Ae(C”)|| is relatively small and Let C bg a random codebook if1[n, 27"]. With probability
is bounded by thdist decodingquality of C' (the maximal 1—27"", C is [12n?,p] list decodable.
number of codewords i’ which are included in a Hamming Lete be an error in{0, 1}". Recall the definition ofd¢(C')
ball of radiuspn). With this in mind, we are able to usefrom Definition 1.4. We now define an alternative sufficient

d > 0 be any sufficiently small constant. LBt= v—H (p)—4.

Let n be sufficiently large. Lete be any error vector in
{0,1}™ of Hamming weight at mospn. Then Pr[|A4e| —
E(|Ae]) > 2H@)T2R-1)n) < 9=2n Here the probability is
over Q[n, [287]].

The remainder of this work is organized as follows. In
ection Il we present some preliminaries on the distriloutio
Q[n, N] and on oblivious channels. In Section Il we present
the proof of Theorem 2 (which will imply Theorem 1).

. PRELIMINARIES



condition for a codeC to allow communication overy-

The expectation above is ov&in, N]. Given a small global

oblivious p-channels. We will use this sufficient conditionupper bound on the value oA one can prove the tight

throughout our work.

Lemma 2.2:An [n,27"] codebookC with the Nearest
Neighbor decodep allows communication oveyV,, , within
errore if for every errore € B(pn, 0) it is the case thatA|
is at moste2(F= (=),

Proof: Let C = {xi,...,x9r-} be a codebook in
which for every errore € B(pn,0) it is the case thatAe|

is at moste2(i-(1=7)n et ¢ be the Nearest Neighbor

decoder. LetN = 2f" Let W be a channel inW, ..

By Definition 1.1 and the fact thall’ is a p-channel there
exists a family of distributionsr = {my,..., mya-~n} Over

B(pn,0) of size 2= such that for everyx € {0,1}"

the marginal distributiori? (-|x) over e is in the setr. For

i € 20-77] let X, be the subset of codeworasin C' for

whichW (-|x) = m;(-). We show that”' allows communication
over W with error at most.

1 N
NZ > Wielx)

i=1 e:p(edx;)#i

<X
- N

S Wiex)

eEB(pn,O) x€Ae

o(1=")n
-7 X Y ¥ e
i=1 eEB(pn,O)xeAemXi
12(1*7)71'
< % Z Y mie)|Ael =¢

=1 eEB(pn,O)

IIl. PROOF OFTHEOREM?2

In what follows we prove Theorem 2. We use the notatiof)

outlined in the statement of Theorem 2. Lt = 27", and
M = 2™. We occasionally identify codewords @ with their
corresponding messages [iN] and elements i{0, 1}"™ with
integers in[M]. We first analyze the expected size Af
over random codebook€2(n, 27*"]). For technical reasons,
throughout this section we treat codebooksas ordered
sets (xi,...,xy) (instead of unordered sets). Accordingl
we change the definition of2[n,2%"] to be the uniform
distribution over ordered codebooks.
Lemma 3.1:E[|A.|] < 2(H(P)+2E-1)n

Proof: Fori € [N] let AL be the indicator of the event

“x; € As". Hence,E[|Ae|] = Y, E[AL]. We turn to analyze
E[AL] for any giveni. This value is exactly the probability
that the ball centered at; @ e of radius |le|| includes an
additional codewordk;. For a fixedj # i, this probability

concentration of|4.| using Azuma’s inequality. However,
it is not hard to verify thatA does not have a small global
bound in the case under stud& ¢an be as large as a constant
fraction of N). Nevertheless, as we will show, the value/of
is smallon averageand lends itself to the framework outlined
in [17], implying the desired concentration. Details fallo

Let /¢ 12n2? be the list decoding parameter from
Lemma 2.1. Using a slight change of notation which fits our

needs, in Lemma 3.1 of [17] it is shown that:
Lemma 3.2llemma 3.1[17]): Let

N
p1=> Prx e {0,1}" st A>i,x,C) > £ +3],

i=1

N
p=pr|3 %A(i,x,C)zN(ug)

=1 xe{0,1}"
For any\ < 4N
Pr ['Ael —E(|4e]) = VAN(L + 3)2] < 2e7 M4 + p1 + p2.

All probabilities and expectation are ov@nr[n, N].

Thus, to use the concentration results of [17] we must bound
p1 andps defined above. We start by computing the value of
A(i,x,C) for a given[n, N] codebookC' = (x1,...,xn).

We use the following definitions. For a codebo6kand an
indexi € [N] let C|; be the set of orderefh, N] codebooks
that agree withtC' on the firsti codewords, namely a codebook
C'=(x},...,xly) € C); iff Vj <iitholds thatx; = x’,. For

an [n, N] codebookC = (x1,...,xx), an indexi € [NT, and

€ {0,1}" let C(i,x) be the codebook that agrees with

on all but thei'th codeword, and on théth codeword equals
x. Recall that? = 12n?%. An [n, N| codebookC is said to be
typical if it is [¢, p] list decodable (the rest are referred to as
codebooks which are not typical). Denote the set of typical
[n, N] codebooks byl” and codebooks which are not typical

by 7¢. By Lemma 2.1, at most a fraction af* (ordered)
codebooks are not typical.€. |7¢| < MN2-""). Notice that

Ythe size ofC|;_ is MN=+1, Our definitions now imply that

[[Ae(C7 (i, x))| = [Ae(C)|
MN—i+1

A, x,C)

>

C'eCli—1

We now analyze the value ¢fA.(C(i,x))| — |Ae(C)|| and
show its connection to the list decoding propertiesoof

Lemma 3.3:If an [n,N] codebook C' is typical then
|46 (C(i,x))| — |4e(C)|| < £+ 2. If C is not typical then

is at most2/(®)” /27 Here we use the fact that the size of|A.(C(i,x))| — |Ac(C)|| < N.

a Hamming ball of radiugn is bounded by2”®" [12]. Proof: For the first part of the lemma notice thatdf
Thus, using the union bound on gl ¢ € [N], the value of is [/, p] list decodable thel (s, x) is [¢ + 1, p] list decodable.
E[AL] is bounded by (P)n+Fn /9n This in turn implies that Recall that a codewors; of C'is said to be disturbed by the

E[|Ae|] < 2(H@)+2R-1)n B erroreif x; € Ae(C). The value 0f A (C(i,x))|—|Ae(C)| is
We now turn to show that the size ofd. is bounded by the maximum number of codewoxgsdisturbed

strongly concentrated. The Lipschitz coefficients dby the errore exclusivelydue to the change af;. Namely,

Ae can be described by the following functiod\. this value is bounded b¥{j | ||x; ® x; @ e| < |le||}| +1

For any [n,N] codebook C = (xi,...,xx), any (an additional value of 1 is added for the case thamay be

i € [N], and anyx € {0,1}" let A(i,x,C) = disturbed bye). This in turn is at most{j|x; € B(pn,x; &

| E(JAe| : x1,...,%i—1,%; =X) —E(|4e| : x1,...,%-1) |. €)}|+1 < £+ 2. An analogous analysis can be done for



|Ae(C)|—|Ae(C(i,x))|. The second part of the lemma followsassertion stated in Theorem 2. In the above, by our setting

from the fact that A.| is bounded byN. B of parameters, notice thay/ AN (£ +3)2 < 2H)+2R-1)n
Corollary 3.1: Let " be the size o|;_1\ 7. A(i,x,C) < (here we use the fact that € (2@ 1]). The lower
M=(NTOT 4 £+2. bound of Theorem 1 now follows easily from Theorem 2 and
We now analyze andp, of Lemma 3.2. Lemma 2.2, full proof is given in the Appendix.
Lemma 3.4:p; <27 MN.
Proof: Leti € [N]. We first note that Corollary 3.1 IV. CONCLUSION

implies thatA (i, x, C) > £+ 3 only if the size ofC|;_1 \ T is In this work we define and study the capacitylof, ., (the

at leastV ™ ~*. Moreover, by our definitions7 | < MN2-""  family of all binary ~-oblivious p-channels). Such families

(recall that7 is the set of codebooks which are not typical)of channels arise when considering communication in an

We now use these facts to prove our assertion. adversarial jamming model in which the jamnm&iis limited
Notice that for two codebook€ and C’ the setsC|,—; in resources. We limit the jammer by both a power constraint

and C’|;_, are either equal or disjoint. We partition the seand by the restriction to impose its errors based only on a

of codebooks inQ2[n, N] to M‘~! disjoint subsets of the small number of possible error distributions. Fpe= 1 such

form C|;_;. Denote these subsets Wy,...,Q;i-1. Let families are closely related to AVC's with state constrajnt

a denote the number of these subsets that safi§fy \ and it has been shown in [4], [5] th&t(WV, 1) =1 — H(p).

Tl = M"~'. As these sets are disjoint and™| < e show forp < 1/2 and~y € (%@ 1} that C(W,.~)

No—n2. . o i i -
M7Y27" 5 o is at mostM2=". Finally, for a giveni, g ot jeasty — H(p). For v = 1 our contribution is in

Pr[ﬂ?‘ 16 {Q’ 1}Z S.L. ASZ’X’ C) 2 £+3] < M~ Da < our new proof technique. Roughly speaking, our proof is of
MO <27 M2 B ombinatorial nature, is based on a relatively new “strong
Lemma 3.5ipy < M27". concentration inequality” of [17], and differs substatiyia
proof. Con15|der a codebookl, and the event from the proof presented in [4], [5]. For € (0,1) this work

"Dt 2oxefone arA(E,x,C) = N(€ 4 3)". This event jpitiates the study ofy-oblivious channels.

is included in the evenf. Y max.c(o1jn A(i,x,C0) >
N(¢ + 3). The above event holds only if the size of the set
{i| maxyeqo,13» Ai,x,C) > £+ 3} is greater tharl. We call I would like to thank Sidharth Jaggi for several helpful
a codebook’ badif {i| maxyeco,13» A(i,x,C) > (43} # ¢. discussions and comments on the oblivious channel model.
For each bad” let d(C) = i — 1 wherei is the minimum Research supported in part by NSF grant CCF-0346991.
integer in{i| maxyeo,13» A(i,x,C) > £+ 3}. REFERENCES

AN137%, ubich Gonciuces our asserton. Consider the sdf) NAenand 3 Spencer. Th probaiistc methods, 2. Wi

B = B, of bad codebookg’ (the indexing ofB will be clear [2] L.A.Bassalygo. New upper bounds for error-correctigles.Problems
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APPENDIX
A. Maximum error and Random coding

For a channelW and a codeC define the maximum error
e = ¢(C,W) = max;e(i). For a family of channelsV,
let C"™(W) be the capacity ol with respect toe. In this
work we did not addres€™ (W, ) for v € [0,1] as it
holds thatC™ (W, ) = C™(W,,). This follows directly by
our definitions.

Let C* be a distribution ovefn, N] codes.C* is said to
allow communication oveyV,, , with maximum erro if for
each € W, , the expected erroE[e(C,W)] is at most
e (here the expectation is ovél*). The random capacity

C"(W,.~) is now defined analogously to the deterministi
capacity used throughout the paper. In [9], [11] it is shown.

that C"(Wp,0) = 1 — H(p). Let = be the distribution over
errorse € {0,1}" in which Pr[r = €] = pllell(1 — p)n—lell,
Let ' be 7 restricted to errore with Hamming weight less
than or equal topn. Let W.» € W, be the channel in
which W/ (-|x) = #’ for all x € {0,1}". It now holds
that C"Wp1) < C"(Wr) = C" (W) < 1 — H(p) (the

when used with the Nearest Neighbor decogleon W,, will
have errore = 0. It is left to show that|I,| is large. Let
W (y|x) be the following channel: 1) for codewords with a
corresponding codeword; s.t. the edgéx;,x;) is in M, set
W (y|x;) = 1 wherey is the center of the minimum radius
ball in {0,1}" includingx; andx;; 2) for the remainingk €
{0,1}" setW (x|x) = 1. Notice thatiV € W,. It now follows
that the average decoding error@®@fwhen communicating on
W is Sl < o This implies thati /| > (1 — 2¢)[C| >
2Rn71_ [

C. Upper bound o€ (W, 1)

Let = be the distribution over errors € {0,1}" in which
Prir = e] = plell(1 — p)»~lell. Let 7/ be n restricted to
errorse with Hamming weight less than or equal pa. Let
W, be the channel in which/, (-|x) = = for all x € {0,1}".
Let W, be the channel in whichV,. (-|x) = =’ for all x €
{0,1}™. Notice thatW,, € W, and thatW, = Wgsc,.
We now show that(W,.) < 1 — H(p) (this will suffice to
prove our assertion). Assume otherwise, namely thatfor
1—H(p), e < 1/4 and sufficiently large: there existsgn, 257
codesC which allow communication ovel/.; within errore.
(‘This implies thaC allows communication oveiV, = Wxsc,
within constant error bounded away from 1. This contradicts
a fundamental result on thecapacity ofWgsc, [14].

D. Attempt for an alternative definition for obliviousness

An alternative definition toy-oblivious channel$V is I =
maxx I(X; Z) < (1—v)n. Here X represents any distribution

last inequality is proven in Section C of this Appendix). Wé@Vver codewords transmitted, atidenotes the error imposed

conclude, that” (W, ) = 1 — H(p), for v € [0,1].

B. Average vs. maximum error iV,

As above, for a channelW and a codeC define the
maximum errore = max; e(i). For a family of channel3V,
letC™ (W) be the capacity oFV with respect ta, andC* (W)
be the capacity o¥V with respect tce.

Lemma 1.1:C*(W)) = C"(W,).

Proof: It is clear thatC*(W,) > C™(W,) thus we
prove the missing inequality. For a givedh < ¢ < 1/4
assume the existence of an N| codeC = (C, ¢) that allows
communication oveiV, with e <e. LetC = {x31,...,Xn}.
Let N = 2B We will show the existence of a subsét of
C of size at lease®"~! s.t. usingC’ = (C’,¢') on W,, we

by the channel. The random variablés and Z are jointly
distributed according t®Pr[X = x,Z = €] W (e|x).
There are various connections between the suggested idefinit
and the original one given in Definition 1.1. Namely, it is
not hard to verify that if a channéll is ~-oblivious by
Definition 1.1 then it isy-oblivious by the above definition.
The other direction holds foy = 0 or 1 but is not necessarily
true for~ € (0,1). For example, consider a chanri&l(e|x)
defined by a set of error§ex} (each of Hamming weight
at mostpn) indexed byx € {0,1}": W(ex|x) = € + a,
otherwise, fore # ex of weight at mostpn, W(e|x) = a.
Here o is (1 — €)/Vol(pn) whereVol(pn) is the size of a
Hamming ball of radiugn in {0, 1}". Consider the family of
channelsV consisting of all such channelg. This family is

obtaine = 0 (here¢’ is the Nearest Neighbor decoder). Thid —¢ oblivious by the suggested definition and ofily- 1 (p))

is enough to prove our assertion.

Consider the following graplé: with vertex setC and an
edge betweerx; andx; iff ||x; @ x| < 2pn. Let M be a
maximal matching inG, namely a maximal set of edged

such that every vertex i&¥ is adjacent to at most a single edge

in M. Consider the subgrapfi; of G in which we include
only edges in the matchingy/. Let I, be the set of vertices

- oblivious by Definition 1.1. It is not hard to verify that the
capacity ofV is that of W,,. This implies a discontinuity in the
capacity of~y-oblivious p-channels when using the suggested
definition at the pointy = 1.

E. Linear Codes

Lemma 1.2:Let C be any|[n,2%"] linear codebook. Let

in G with no adjacent edged,, is an independent set iny € [0,1]. There exists a decodef such thatC, ¢ allow
G (and also inG ). In other words, the codebook consistingommunication overy-oblivious p-channels within error less

of codewords inl;; has minimum distancepn + 1 and thus

thanl/2 iff C has minimum distance of value at le@gt+ 1.



Proof: Let C be any codebook with minimum distance okrrore € B(pn, 0) is at most2=2"Vol(pn) < 1. This implies
value at leaspn + 1. Let ¢ be the Nearest Neighbor decoderthe existence of afn, 2%7] code as asserted in Theorem 1.
Then for everyp-channellV it holds thate = < Zfil e(i) =
0, implying that C' allows communication ovefy-oblivious
p-channels with error 0.

Let C = {xi,...,Xorn} be an[n,2F"] linear codebook
with minimum distance less thafpn + 1. Let ¢ be any
decoder. By the linearity of” this implies the existence of
a codewordx* of weight at most2pn (wherex* # 0). Let
e; be any error in{0,1}™ of Hamming weight at mospn
such thatx* € B(pn,e;). Let e; be x* © e;. Notice thate,
is of Hamming weight at mospn. Notice also that for any
codewordx it holds thatx @ e; = (x & x*) B ex = x' P eg
(herex’ = x ® x* is a codeword ofC)). Consider the set
Al = {x1|¢(xz D el) = ’L} and A2 = {Xi|xi b x* =
x; and ¢((x; ® x*) @ e2) = j}. The sets4; and A, are
disjoint. Thus at least one of the sets is of size nd¥t/2,
say A; (a similar proof can be given fads). Let W be the
deterministicl-oblivious p-channel for whichvx W (e1|x) =
1. We conclude that = + SV e(i) > 1/2, implying that
C does not allow communication ovéroblivious p-channels
within error less thari /2. As W is also ay-oblivious channel
for any v € [0, 1] we conclude our assumption. |

F. List decodability of random codes

Lemma 1.3:Let R € (0,1). Let ¢ be a sufficiently large
universal constant. Let = max(Vol(pn)2-"Hintl cn?).
Let C be a random codebook if1[n, 27]. With probability
at leastl — e=*/%2", C'is [¢, p] list decodable.

Proof: Let B be any ball of radiuspn in {0,1}".
The expected number of points in the intersectionCoind
Bis E = Vol(pn)2~"+f" Let ¢ = max(2FE,cn?). The
probability, for a specific balB of radiuspn, that|C N B| is
less thard (which is at least twice its expectation) is at least
1 — e~ %5, For¢ = 2F this follows by applying the Chernoff
bound [8]. For/ = cn? > 2F this follows by studying the
probability that|C' N B’| < ¢ for a larger subseB’ including
B. Thus the probability that this holds for every ball of ragliu
pn in {0,1}" is at leastl — e~*/62", [ |

G. Proof of Theorem 1

Letp € [0,1/2). Lety € (252, 1]. Lete > 0 ands > 0
be any sufficiently small constants. LBt= v — H(p) — 6. We
show that for sufficiently large there existin, 2%"| codesC
which allow communication ovey-oblivious p-channels with
errore. The decoden used is the Nearest Neighbor decoder.
By Lemma 2.2 it suffices to show the existence of codebooks
C for which |A.(C)| is smaller thare2(fi=(1=")" for every
e € B(pn,0). Let C be a random codebook i[n, 21]. The
probability that|A.(C)| is greater tharp(# (P)+2E=1)n+1 for
a specific errore € B(pn,0) is at most2—2". This follows
by Theorem 2 and Lemma 3.1. By our setting of parameters
2H(p)+2R-1)n+1 < o(R=(1=7)n  Now, applying the union
bound over all errores € B(pn,0) we conclude that the
probability that| A.(C)| is greater tham2(i=(1=7)" for any



