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Abstract— Let C = {x1, . . . ,xN} ⊂ {0, 1}n be an [n,N ]
binary error correcting code (not necessarily linear). Let e ∈
{0, 1}n be an error vector. A codeword x ∈ C is said to be
disturbed by the error e if the closest codeword tox ⊕ e is
no longer x. Let Ae be the subset of codewords inC that
are disturbed by e. In this work we study the size of Ae in
random codesC (i.e. codes in which each codewordxi is chosen
uniformly and independently at random from {0, 1}n). Using
recent results of Vu [Random Structures and Algorithms 20(3)]
on the concentration of non-Lipschitz functions, we show that
|Ae| is strongly concentrated for a wide range of values ofN
and ‖e‖.

We apply this result in the study of communication channels we
refer to as oblivious. Roughly speaking, a channelW (y|x) is said
to be oblivious if the error distribution imposed by the channel
is independent of the transmitted codewordx. For example, the
well studied Binary Symmetric Channel is an oblivious channel.

In this work, we define oblivious and partially oblivious
channels and present lower bounds on their capacity. The
oblivious channels we define have connections to Arbitrarily
Varying Channels with state constraints.

I. I NTRODUCTION

For a parametern, a general (not necessarily memoryless)
binary communication channelW for block lengthn is a
probability distribution over{0, 1}n × {0, 1}n. Namely W
is defined by the conditional probabilitiesW (y|x) that y ∈
{0, 1}n is received whenx ∈ {0, 1}n is transmitted.

An [n,N ] binary block codeC is defined by a codebook of
N codewordsC = {x1, . . .xN} in {0, 1}n corresponding to
messages{1, . . . , N} = [N ] and a decoderφ : {0, 1}n → [N ].
The probability of error for messagei, whenC is used on a
channelW is e(i) =

∑

y:φ(y) 6=iW (y|xi).
An [n,N ] codeC is said to allow communication at rateR

over the channelW with (average) errorε > 0 if N ≥ 2Rn

and ē = 1
N

∑N
i=1 e(i) < ε. An [n,N ] codeC is said to allow

communication at rateR over a family of channelsW with
errorε if for everyW ∈ W the codeC allows communication
at rateR over W with error ε. RateR is an achievable rate
for the family W if for every ε > 0, δ > 0 and every
sufficiently largen there exists an[n,N ] code C such that
C allows communication at rate≥ R − δ over the familyW
with error at mostε1. The maximum achievable rate is called
the capacity of the familyW , and is denoted byC(W).

When considering the capacity of a family of channels
W , one must address the design of error correcting codes

1In the study of communication over families of channels it isalso common
to address themaximumerror e = maxi e(i) instead of ē; and the rate
achievable when using a distribution over codes (random coding) instead of
a deterministic codeC as above. These models are briefly addressed in the
Appendix.

which allow communication under the uncertainty of which
channelW is actually used from the familyW . Intuitively,
this corresponds to the design of codes which allow com-
munication in anadversarial jamming model in which an
entityZ controlling the channel is assumed to act maliciously
within the limits ofW . We will adapt this interpretation in the
discussions throughout this work.

A. This work

Several families of channels have been studied over the
last few decades (for a nice survey on communication under
channel uncertainty see [10]). For a constantp ∈ (0, 1/2)
a p-channelW is a channel for whichW (y|x) = 0 if the
Hamming2 distance betweenx and y is greater thanpn. In
words, ap-channel can only change at mostpn entries of
x. The parameterp may be viewed as the amount ofpower
that can be used by the channel when imposing an error. In
this work we study the capacity of various families of binary
p-channels.

A natural starting point is the extensively studied familyWp

of all binaryp-channels. The capacity ofWp is a long standing
open problem. There is a strong connection between codesC
that allow communication overWp and the minimal distance
of C. Namely,C(Wp) equals the maximum (asymptotic) rate
of [n,N ] block codes with minimum distance greater than2pn
(a detailed proof appears in the Appendix). The latter rate is
not known. It is known that this rate is bounded away from
1−H(p) (e.g.[2], [13], [15]), while the currently best known
lower bound stands on1 − H(2p) (Gilbert-Varshamov [7],
[16]).

We will not study the capacity ofWp, rather we turn to
study certain subfamiliesW ⊆ Wp. Consider the adversarial
model discussed above, in which an adversarial entityZ
may choose which channelW ∈ W to use based on the
code C shared by the sender and receiver. In the case of
communication overWp this adversarial entityZ is very
powerful as it can choose anyp-channelW and tailor the
error it imposes to fit not only the codeC in use but also
the codewordx transmitted. Indeed,Z can use a channel
W (y|x) ∈ Wp in which the error distribution imposed by
the channel strongly depends on the transmitted codewordx.

In this work we study scenarios in whichZ is limited in its
dependence onx. Specifically, we study the scenario in which
the error imposed byZ is obliviousor partly oblivious of the

2Let x = x1x2 . . . xn be an element in{0, 1}n. The Hamming weight
‖x‖ is defined to be the number of positionsi in which xi 6= 0.
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codewordx transmitted. For example, ifZ always imposes
exactly the same distribution over errors, no matter which
codewordx is sent, thenZ is said to be completely oblivious
of x. A well studied oblivious channel is the Binary Symmetric
Channel with cross over probabilityp. We denote this channel
byWBSCp

. Indeed, no matter which codewordx is transmitted
the error imposed byWBSCp

follows the same distribution.
In this work we define and study families of channels with
varying degrees of obliviousness.

B. Oblivious channels

We start by giving a slightly different (but equivalent)
definition of a binary channelW . Instead of definingW
in terms of the conditional probabilitiesW (y|x), one may
defineW in terms of the conditional probabilitiesW (e|x);
wheree ∈ {0, 1}n is the error imposed by the channelW .
Specifically, in this settingy = x ⊕ e. For example, by our
definitions, ap-channelW is a channel for whichW (e|x) = 0
for everye of Hamming weight abovepn. Let Π be the set of
distributions over errorse ∈ {0, 1}n. In this setting, a channel
W may be viewed as a function fromx ∈ {0, 1}n to the
setΠ. Now we are ready to defineγ-oblivious channels for
γ ∈ [0, 1].

Roughly speaking, a channelW : {0, 1}n → Π is said
to be oblivious if it is a constant function. In this case we
will say thatW is 1-oblivious. The obliviousness of a channel
is determined by the size of its image. Namely, channelsW
with image size at most2n will be referred to as0-oblivious
channels (thus any channel is0-oblivious). For γ ∈ [0, 1]
channels with image size at most2(1−γ)n will be referred
to asγ-oblivious.

Definition 1.1: A channelW with block lengthn is γ-
oblivious if there is a2(1−γ)n sized family of distributions
π = {π1, . . . , π2(1−γ)n} ⊂ Π, such that for everyx ∈ {0, 1}n

the marginal distributionW (·|x) over e is in the setπ. A
family of channelsW is γ-oblivious if for eachW ∈ W , W
is γ-oblivious.

For example, the Binary Symmetric Channel is1-oblivious,
as WBSCp

(e|x) is completely independent ofx; and the
family Wp is 0-oblivious (and notγ-oblivious for anyγ > 0).
Let Wp,γ be the family of allp-channels that areγ-oblivious.
In this work we study the capacity ofWp,γ for various values
of p andγ. The main result of this work can be summarized
in the following Theorem.

Theorem 1:For anyp ∈ [0, 1/2) and anyγ ∈
(

2+H(p)
3 , 1

]

C(Wp,γ) ≥ γ −H(p).
A few remarks are in place. It is not hard to verify (detailed

proof appears in the Appendix) that forγ = 1, Theorem 1 is
tight. Namely,C(Wp,1) = 1−H(p) (the capacity ofWBSCp

[14]), this follows from the fact thatWBSCp
is a 1-oblivious

channel which inessence3 is also ap-channel. It also holds that
C(Wp,γ) ≥ C(Wp) ≥ 1−H(2p). A simple calculation shows

3Notice thatWBSCp
is not ap-channel, however the error it imposes is

expected to be of Hamming weightpn.

that1−H(2p) may be above the bound of Theorem 1 only for

very smallp ≤ 0.07 andγ ∈
[

2+H(p)
3 , 1−H(2p) +H(p)

)

.
The study ofC(Wp,γ) arises when considering communica-

tion in an adversarial jamming model in which the jammerZ
is limited in resources. Primarily, we restrict the jammer to flip
at most ap-fraction of the bits transmitted, which corresponds
to a power constraint imposed onZ. In addition, we limit the
jammer’s view of the transmitted codeword. This is obtained
by forcing the jammer to use a channelW which can not
properly differentiate between different codewordsx. Namely,
by restrictingW to impose its error based on only a small
number of possible error distributions, it must be the case
that the exact same distribution is used on large portions of
codewords.

An alternative (but problematic) definition toγ-oblivious
channelsW that may come in mind is one in which we restrict
maxX I(X ;Z) to be at most(1 − γ)n. Here X represents
any distribution over codewords transmitted andZ denotes
the error imposed by the channel. The random variablesX
and Z are jointly distributed according toW (e|x). There
are various connections between the suggested definition and
the original one given in Definition 1.1. However, they are
not equivalent, and roughly speaking, the suggested definition
implies a discontinuous capacity function at the pointγ = 1.
A detailed discussion appears in the Appendix.

C. Previous results and connection to AVC’s

To the best of our knowledge,γ-oblivious p-channels for
generalγ ∈ [0, 1] have not been addressed in the past. For
the special caseγ = 1, as we state shortly, there is a strong
connection between1 oblivious p-channels and so called
arbitrarily varying channels (AVC) with state constraints.

A (discrete memoryless) arbitrarily varying channel [3] of
block lengthn is a family of channelsW defined by a set of
statesS and a set of channelsS = {Ws(y|x)|s ∈ S} of block
length1 (in the binary casex andy are in{0, 1}). Specifically,
the familyWS that corresponds toS consists of the channels
{Ws|s ∈ Sn} defined byWs(y|x) = Πn

i=1Wsi (yi|xi). In the
above,x = x1, . . . , xn; y = y1, . . . , yn; ands = s1, . . . , sn. If
we associate with each states ∈ S a costℓ(s), an AVC family
with state constraintp is the family of channelsWs ∈ WS
for which 1

n

∑n
i=1 ℓ(si) ≤ p.

Consider the binary1-block channelsW0 andW1 defined
by Ws(y|x) = 1 iff (x + s = y) modulo2. Let ℓ(s) = s for
s ∈ {0, 1}. Let W∗ denote the AVC family defined byW0

andW1 with state constraintp. The familiesWp,1 andW∗

are closely related and it holds thatC(Wp,1) = C(W∗).
The capacity of AVC with state (and also input) constraints

was studied extensively in the works of Csiszár and Narayan
[4], [5]. Using proof techniques that build strongly upon
the method of types, Csiszár and Narayan show that the
capacity ofC(W∗) is 1 − H(p). Thus, proving Theorem 1
for the caseγ = 1. The proof presented in this work differs
substantially from the proofs of Csiszár and Narayan. Namely,
our proof technique is combinatorial in nature and is based on
a relatively new “strong concentration inequality” of [17]. This



inequality and its application in the context of coding theory
may be of independent interest.

For γ < 1, γ-oblivious channels were not defined or
discussed in [4], [5]. However, a careful examination of their
proof techniques yields an implicit bound on the capacity of
C(Wp,γ) for large values ofγ. Namely, it can be shown using
the proof techniques that appear in [4] thatC(Wp,γ) ≥ 1 −
H(p)−30(1−γ). For comparison using our proof techniques
we show thatC(Wp,γ) ≥ 1−H(p)− (1 − γ).

D. Proof Techniques, random codes, and list decodable codes

To prove the lower bound of Theorem 1 we need to show the
existence of high rate codesC which enable communication
overγ-obliviousp-channels. We first note that no linear code
will suffice. Roughly speaking, this follows from the fact
that each codewordxi in a linear codeC has exactly the
same “neighborhood structure”. Thus, when a linear code
is used, the problem of communicating over the oblivious
or partially oblivious familiesWp,γ is equivalent to that of
communication overWp (a detailed proof appears in the
Appendix). We thus turn to study codes which are not linear.
A natural candidate is a codeC in which the codewords
C = {x1, . . . ,xN} are chosen completely at random, (i.e.
a code in which each codeword is chosen uniformly and
independently from{0, 1}n), andφ is the Nearest Neighbor
decoder. Lete ∈ {0, 1}n be an error vector of Hamming
weight at mostpn. A codewordx is said to bedisturbed
by the errore if the closest codeword tox⊕e is no longerx.
Let Ae = Ae(C) be the subset of codewordsx in C that
are disturbed bye. In Section II we show thatC enables
communication over allγ-oblivious p-channels if for every
error e of Hamming weight at mostpn the size ofAe is
relatively small.

Hence, it suffices to analyze the size ofAe over random
codebooksC. Specifically we are interested in showing that
with positive probabilityAe is small for every errore of
weight at mostpn. Let R = γ − H(p). It is straightforward
to verify that for a fixed errore, the expected size ofAe

taken over randomC = {x1, . . . ,x⌊2Rn⌋} is relatively small.
Hence it is left to show that with high probability|Ae| does
not deviate significantly from its expectation. Indeed if this is
the case, a simple union bound will imply our assertion.

Strong concentration (or large deviation) inequalities have
been extensively studied. The usual way to prove such in-
equalities is via the Azuma or Talagrand inequalities (e.g.[1]).
These inequalities work very well when the random variable
at hand has a smallLipschitz coefficient. In our case the
Lipschitz coefficient of|Ae| is defined by the maximum of
||Ae(C)| − |Ae(C

′)|| where C and C′ are two codebooks
which differ only in a single codeword. It is not hard to
verify that the Lipschitz coefficient of|Ae| may be very large.
However, we show that for most pairsC and C′ as above,
the difference||Ae(C)| − |Ae(C

′)|| is relatively small and
is bounded by thelist decodingquality of C (the maximal
number of codewords inC which are included in a Hamming
ball of radius pn). With this in mind, we are able to use

a recent result of Vu [17] on the concentration of random
variables with largeworst caseLipschitz coefficients but small
averagecase coefficients. The application of the framework
suggested in [17] to our random variable|Ae| is somewhat
involved and can be viewed as the main technical contribution
of this paper.

There are other proof techniques which are common in the
study of probabilistic combinatorics. For example, so called
“correlation inequalities” (e.g. [1]) are often used to analyze
the probability of the intersection of many events. We would
like to note that such inequalities may also be used to study
the problem phrased above, however they only yield results
for small values ofp that satisfyH(p) ≤ 1

2 , as in this case
the number of events considered is relatively small.

Definition 1.2: Let Ω[n,N ] be the distribution over[n,N ]
codebooksC = {x1, . . . ,xN} in which each codeword inC
is chosen uniformly and independently from{0, 1}n.

Definition 1.3: For x ∈ {0, 1}n and integerr, let B(r,x)
be the Hamming ball of radiusr centered atx.

Definition 1.4: For a given codebookC = {x1, . . . ,xN},
and errore ∈ {0, 1}n, let Ae(C) = {xi|∃j 6= i s.t. xj ∈
B(‖e‖,xi ⊕ e)}. When the reference codebookC is clear we
will denoteAe(C) by Ae.

Theorem 2:Let p ∈ [0, 1/2). Let γ ∈
(

2+H(p)
3 , 1

]

. Let

δ > 0 be any sufficiently small constant. LetR = γ−H(p)−δ.
Let n be sufficiently large. Lete be any error vector in
{0, 1}n of Hamming weight at mostpn. Then Pr[|Ae| −
E(|Ae|) > 2(H(p)+2R−1)n] ≤ 2−2n. Here the probability is
overΩ[n, ⌊2Rn⌋].

The remainder of this work is organized as follows. In
Section II we present some preliminaries on the distribution
Ω[n,N ] and on oblivious channels. In Section III we present
the proof of Theorem 2 (which will imply Theorem 1).

II. PRELIMINARIES

For any integeri, let [i] denote the set{1, 2, . . . , i}. Let
H(x) = −x log2 x − (1 − x) log2(1 − x) be the standard
(binary) entropy function. For a codebookC = {x1, . . . ,xN},
the correspondingNearest Neighbordecoder is the decoderφ
which on inputy ∈ {0, 1}n, returns the index of the closest
codewordxi in C to y. For uniqueness, we will assume ties
are broken by the natural lexicographic ordering on{0, 1}n.
To simplify notation, for anyR ∈ [0, 1] and integern, we
assume throughout that2Rn is integer.

Definition 2.1 (List decodability):An [n,N ] binary code-
bookC is said to be[ℓ, p] list decodable iff|C∩B(pn,y)| ≤ ℓ
for anyy ∈ {0, 1}n.

We first analyze the list decoding properties of random
codes. The lemma that follows has appeared in various forms
in the past (e.g.[6], [18]). Full proof is given in the Appendix.

Lemma 2.1:Let R ≤ 1−H(p). Let n be sufficiently large.
Let C be a random codebook inΩ[n, 2Rn]. With probability
1− 2−n2

, C is [12n2, p] list decodable.
Let e be an error in{0, 1}n. Recall the definition ofAe(C)

from Definition 1.4. We now define an alternative sufficient



condition for a codeC to allow communication overγ-
oblivious p-channels. We will use this sufficient condition
throughout our work.

Lemma 2.2:An [n, 2Rn] codebookC with the Nearest
Neighbor decoderφ allows communication overWp,γ within
error ε if for every errore ∈ B(pn,0) it is the case that|Ae|
is at mostε2(R−(1−γ))n.

Proof: Let C = {x1, . . . ,x2Rn} be a codebook in
which for every errore ∈ B(pn,0) it is the case that|Ae|
is at most ε2(R−(1−γ))n. Let φ be the Nearest Neighbor
decoder. LetN = 2Rn. Let W be a channel inWp,γ .
By Definition 1.1 and the fact thatW is a p-channel there
exists a family of distributionsπ = {π1, . . . , π2(1−γ)n} over
B(pn,0) of size 2(1−γ)n such that for everyx ∈ {0, 1}n

the marginal distributionW (·|x) over e is in the setπ. For
i ∈ [2(1−γ)n] let Xi be the subset of codewordsx in C for
whichW (·|x) = πi(·). We show thatC allows communication
overW with error at mostε.

ē =
1

N

N
∑

i=1

∑

e:φ(e⊕xi) 6=i

W (e|xi) ≤
1

N

∑

e∈B(pn,0)

∑

x∈Ae

W (e|x)

=
1

N

2(1−γ)n
∑

i=1

∑

e∈B(pn,0)

∑

x∈Ae∩Xi

πi(e)

≤
1

N

2(1−γ)n
∑

i=1

∑

e∈B(pn,0)

πi(e)|Ae| = ε

III. PROOF OFTHEOREM 2

In what follows we prove Theorem 2. We use the notation
outlined in the statement of Theorem 2. LetN = 2Rn, and
M = 2n. We occasionally identify codewords inC with their
corresponding messages in[N ] and elements in{0, 1}n with
integers in [M ]. We first analyze the expected size ofAe

over random codebooks (Ω[n, 2Rn]). For technical reasons,
throughout this section we treat codebooksC as ordered
sets 〈x1, . . . ,xN 〉 (instead of unordered sets). Accordingly,
we change the definition ofΩ[n, 2Rn] to be the uniform
distribution over ordered codebooks.

Lemma 3.1:E[|Ae|] ≤ 2(H(p)+2R−1)n.
Proof: For i ∈ [N ] let Ai

e
be the indicator of the event

“xi ∈ Ae”. Hence,E[|Ae|] =
∑

i E[A
i
e
]. We turn to analyze

E[Ai
e
] for any giveni. This value is exactly the probability

that the ball centered atxi ⊕ e of radius ‖e‖ includes an
additional codewordxj . For a fixedj 6= i, this probability
is at most2H(p)n/2n. Here we use the fact that the size of
a Hamming ball of radiuspn is bounded by2H(p)n [12].
Thus, using the union bound on allj 6= i ∈ [N ], the value of
E[Ai

e
] is bounded by2H(p)n+Rn/2n. This in turn implies that

E[|Ae|] ≤ 2(H(p)+2R−1)n.
We now turn to show that the size ofAe is

strongly concentrated. The Lipschitz coefficients of
Ae can be described by the following function∆.
For any [n,N ] codebook C = 〈x1, . . . ,xN 〉, any
i ∈ [N ], and any x ∈ {0, 1}n let ∆(i,x, C) =
| E(|Ae| : x1, . . . ,xi−1,xi = x)− E(|Ae| : x1, . . . ,xi−1) | .

The expectation above is overΩ[n,N ]. Given a small global
upper bound on the value of∆ one can prove the tight
concentration of|Ae| using Azuma’s inequality. However,
it is not hard to verify that∆ does not have a small global
bound in the case under study (∆ can be as large as a constant
fraction ofN ). Nevertheless, as we will show, the value of∆
is smallon averageand lends itself to the framework outlined
in [17], implying the desired concentration. Details follow.

Let ℓ = 12n2 be the list decoding parameter from
Lemma 2.1. Using a slight change of notation which fits our
needs, in Lemma 3.1 of [17] it is shown that:

Lemma 3.2 (Lemma 3.1 [17]): Let

p1 =
N
∑

i=1

Pr[∃x ∈ {0, 1}n s.t.∆(i,x, C) ≥ ℓ+ 3],

p2 = Pr





N
∑

i=1

∑

x∈{0,1}n

1

M
∆(i,x, C) ≥ N(ℓ+ 3)





For anyλ ≤ 4N

Pr
[

|Ae| − E(|Ae|) ≥
√

λN(ℓ+ 3)2
]

≤ 2e−λ/4 + p1 + p2.

All probabilities and expectation are overΩ[n,N ].
Thus, to use the concentration results of [17] we must bound

p1 andp2 defined above. We start by computing the value of
∆(i,x, C) for a given [n,N ] codebookC = 〈x1, . . . ,xN 〉.
We use the following definitions. For a codebookC and an
index i ∈ [N ] let C|i be the set of ordered[n,N ] codebooks
that agree withC on the firsti codewords, namely a codebook
C′ = 〈x′

1, . . . ,x
′
N 〉 ∈ C|i iff ∀j ≤ i it holds thatxj = x′

j . For
an [n,N ] codebookC = 〈x1, . . . ,xN 〉, an indexi ∈ [N ], and
x ∈ {0, 1}n let C(i,x) be the codebook that agrees withC
on all but thei’th codeword, and on thei’th codeword equals
x. Recall thatℓ = 12n2. An [n,N ] codebookC is said to be
typical if it is [ℓ, p] list decodable (the rest are referred to as
codebooks which are not typical). Denote the set of typical
[n,N ] codebooks byT and codebooks which are not typical
by T c. By Lemma 2.1, at most a fraction of2−n2

(ordered)
codebooks are not typical (i.e. |T c| ≤ MN2−n2

). Notice that
the size ofC|i−1 is MN−i+1. Our definitions now imply that

∆(i,x, C) =
∑

C′∈C|i−1

||Ae(C
′(i,x))| − |Ae(C

′)||

MN−i+1

We now analyze the value of||Ae(C(i,x))| − |Ae(C)|| and
show its connection to the list decoding properties ofC.

Lemma 3.3:If an [n,N ] codebook C is typical then
||Ae(C(i,x))| − |Ae(C)|| ≤ ℓ + 2. If C is not typical then
||Ae(C(i,x))| − |Ae(C)|| ≤ N .

Proof: For the first part of the lemma notice that ifC
is [ℓ, p] list decodable thenC(i,x) is [ℓ+1, p] list decodable.
Recall that a codewordxj of C is said to be disturbed by the
errore if xj ∈ Ae(C). The value of|Ae(C(i,x))|−|Ae(C)| is
bounded by the maximum number of codewordsxj disturbed
by the errore exclusivelydue to the change ofxi. Namely,
this value is bounded by|{j | ‖xi ⊕ xj ⊕ e‖ ≤ ‖e‖}| + 1
(an additional value of 1 is added for the case thatxi may be
disturbed bye). This in turn is at most|{j|xj ∈ B(pn,xi ⊕
e)}| + 1 ≤ ℓ + 2. An analogous analysis can be done for



|Ae(C)|−|Ae(C(i,x))|. The second part of the lemma follows
from the fact that|Ae| is bounded byN .

Corollary 3.1: Let Γ be the size ofC|i−1\T . ∆(i,x, C) ≤
M−(N−i)Γ + ℓ+ 2.

We now analyzep1 andp2 of Lemma 3.2.
Lemma 3.4:p1 ≤ 2−n2

MN.

Proof: Let i ∈ [N ]. We first note that Corollary 3.1
implies that∆(i,x, C) ≥ ℓ+3 only if the size ofC|i−1 \T is
at leastMN−i. Moreover, by our definitions|T c| ≤ MN2−n2

(recall thatT c is the set of codebooks which are not typical).
We now use these facts to prove our assertion.

Notice that for two codebooksC and C′ the setsC|i−1

andC′|i−1 are either equal or disjoint. We partition the set
of codebooks inΩ[n,N ] to M i−1 disjoint subsets of the
form C|i−1. Denote these subsets byΩ1, . . . ,ΩMi−1 . Let
α denote the number of these subsets that satisfy|Ωj \
T | ≥ MN−i. As these sets are disjoint and|T c| ≤
MN2−n2

; α is at most M i2−n2

. Finally, for a given i,
Pr[∃x ∈ {0, 1}n s.t. ∆(i,x, C) ≥ ℓ + 3] ≤ M−(i−1)α ≤
M−(i−1)M i2−n2

≤ 2−n2

M.

Lemma 3.5:p2 ≤ M2−n2

.
Proof: Consider a codebookC, and the event

“
∑N

i=1

∑

x∈{0,1}n
1
M∆(i,x, C) ≥ N(ℓ + 3)”. This event

is included in the event
∑N

i=1 maxx∈{0,1}n ∆(i,x, C) ≥
N(ℓ + 3). The above event holds only if the size of the set
{i|maxx∈{0,1}n ∆(i,x, C) ≥ ℓ+3} is greater than1. We call
a codebookC badif {i|maxx∈{0,1}n ∆(i,x, C) ≥ ℓ+3} 6= φ.
For each badC let d(C) = i − 1 where i is the minimum
integer in{i|maxx∈{0,1}n ∆(i,x, C) ≥ ℓ+ 3}.

We now show that the number of badC ’s is less than
MN+12−n2

, which concludes our assertion. Consider the set
B = B1 of bad codebooksC (the indexing ofB will be clear
shortly). LetC1 be any bad codebook, and leti1−1 = d(C1).
By Corollary 3.1, the size ofC1|i1−1 \ T is at leastMN−i1 .
Moreover, the size ofC1|i1−1 is exactlyMN−i1+1. Let B2 be
B1 \C1|i1−1. Let C2 be any codebook inB2 and letd(C2) =
i2 − 1. We now claim that the setC2|i2−1 is disjoint from
C1|i1−1. Assume otherwise, thenC1|i1−1 is strictly included
in C2|i2−1 (recallC2 6∈ C1|i1−1). This implies thati2 < i1 and
∆(i2,x, C1) = ∆(i2,x, C2); which contradicts the minimality
of i1−1 = d(C1). Now as before, by Corollary 3.1, the size of
C2|i2−1 \T is at leastMN−i2 and the sizeC2|i2−1 is exactly
MN−i2+1.

We continue this process iteratively, namely at stepk, we
chose a codebookCk ∈ Bk, and setik − 1 = d(Ck). As
above we have thatCk|ik−1 is disjoint from Ck′ |ik′−1 for
any k′ 6= k, the size ofCk|ik−1 \ T is at leastMN−ik , and
the sizeCk|ik−1 is exactly MN−ik+1. We defineBk+1 to
beBk \ Ck|ik−1. We continue this process untilB is entirely
covered. Letk∗ be the last step of our procedure (i.e.Bk∗+1 =

φ). It is not hard to verify that|B| ≤
∑k∗

k=1 M
N−ik+1 =

M
∑k∗

k=1 M
N−ik ≤ M

∣

∣∪k∗

k=1Ck|ik−1 \ T
∣

∣ ≤ M |T c|, which
concludes our assertion.

Now combining the results of Lemma 3.2, 3.4 and 3.5; and
setting λ of Lemma 3.2 to be equal ton2 we obtain the

assertion stated in Theorem 2. In the above, by our setting
of parameters, notice that

√

λN(ℓ + 3)2 ≤ 2(H(p)+2R−1)n

(here we use the fact thatγ ∈
(

2+H(p)
3 , 1

]

). The lower
bound of Theorem 1 now follows easily from Theorem 2 and
Lemma 2.2, full proof is given in the Appendix.

IV. CONCLUSION

In this work we define and study the capacity ofWp,γ (the
family of all binary γ-oblivious p-channels). Such families
of channels arise when considering communication in an
adversarial jamming model in which the jammerZ is limited
in resources. We limit the jammer by both a power constraint
and by the restriction to impose its errors based only on a
small number of possible error distributions. Forγ = 1 such
families are closely related to AVC’s with state constraints,
and it has been shown in [4], [5] thatC(Wp,1) = 1−H(p).

We show forp < 1/2 andγ ∈
(

2+H(p)
3 , 1

]

that C(Wp,γ)

is at leastγ − H(p). For γ = 1 our contribution is in
our new proof technique. Roughly speaking, our proof is of
combinatorial nature, is based on a relatively new “strong
concentration inequality” of [17], and differs substantially
from the proof presented in [4], [5]. Forγ ∈ (0, 1) this work
initiates the study ofγ-oblivious channels.
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APPENDIX

A. Maximum error and Random coding

For a channelW and a codeC define the maximum error
e = e(C,W ) = maxi e(i). For a family of channelsW,
let Cm(W) be the capacity ofW with respect toe. In this
work we did not addressCm(Wp,γ) for γ ∈ [0, 1] as it
holds thatCm(Wp,γ) = Cm(Wp). This follows directly by
our definitions.

Let C∗ be a distribution over[n,N ] codes.C∗ is said to
allow communication overWp,γ with maximum errorε if for
eachW ∈ Wp,γ the expected errorE[e(C,W )] is at most
ε (here the expectation is overC∗). The random capacity
Cr(Wp,γ) is now defined analogously to the deterministic
capacity used throughout the paper. In [9], [11] it is shown
that Cr(Wp,0) = 1 − H(p). Let π be the distribution over
errorse ∈ {0, 1}n in which Pr[π = e] = p‖e‖(1 − p)n−‖e‖.
Let π′ be π restricted to errorse with Hamming weight less
than or equal topn. Let Wπ′ ∈ Wp,1 be the channel in
which Wπ′(·|x) = π′ for all x ∈ {0, 1}n. It now holds
that Cr(Wp,1) ≤ Cr(Wπ′) = Cm(Wπ′ ) ≤ 1 − H(p) (the
last inequality is proven in Section C of this Appendix). We
conclude, thatCr(Wp,γ) = 1−H(p), for γ ∈ [0, 1].

B. Average vs. maximum error inWp

As above, for a channelW and a codeC define the
maximum errore = maxi e(i). For a family of channelsW,
let Cm(W) be the capacity ofW with respect toe, andCa(W)
be the capacity ofW with respect tōe.

Lemma 1.1:Ca(Wp) = Cm(Wp).
Proof: It is clear thatCa(Wp) ≥ Cm(Wp) thus we

prove the missing inequality. For a given0 < ε < 1/4
assume the existence of an[n,N ] codeC = (C, φ) that allows
communication overWp with ē ≤ ε. Let C = {x1, . . . ,xN}.
Let N = 2Rn. We will show the existence of a subsetC′ of
C of size at least2Rn−1 s.t. usingC′ = (C′, φ′) on Wp we
obtaine = 0 (hereφ′ is the Nearest Neighbor decoder). This
is enough to prove our assertion.

Consider the following graphG with vertex setC and an
edge betweenxi andxj iff ‖xi ⊕ xj‖ ≤ 2pn. Let M be a
maximal matching inG, namely a maximal set of edgesM
such that every vertex inG is adjacent to at most a single edge
in M . Consider the subgraphGM of G in which we include
only edges in the matchingM . Let IM be the set of vertices
in GM with no adjacent edges.IM is an independent set in
G (and also inGM ). In other words, the codebook consisting
of codewords inIM has minimum distance2pn+ 1 and thus

when used with the Nearest Neighbor decoderφ′ on Wp will
have errore = 0. It is left to show that|IM | is large. Let
W (y|x) be the following channel: 1) for codewordsxi with a
corresponding codewordxj s.t. the edge(xi,xj) is in M , set
W (y|xi) = 1 wherey is the center of the minimum radius
ball in {0, 1}n includingxi andxj ; 2) for the remainingx ∈
{0, 1}n setW (x|x) = 1. Notice thatW ∈ Wp. It now follows
that the average decoding error ofC when communicating on
W is |C|−|Im|

2|C| ≤ ε. This implies that|IM | ≥ (1 − 2ε)|C| ≥

2Rn−1.

C. Upper bound onC(Wp,1)

Let π be the distribution over errorse ∈ {0, 1}n in which
Pr[π = e] = p‖e‖(1 − p)n−‖e‖. Let π′ be π restricted to
errorse with Hamming weight less than or equal topn. Let
Wπ be the channel in whichWπ(·|x) = π for all x ∈ {0, 1}n.
Let Wπ′ be the channel in whichWπ′(·|x) = π′ for all x ∈
{0, 1}n. Notice thatWπ′ ∈ Wp,1 and thatWπ = WBSCp

.
We now show thatC(Wπ′) ≤ 1 − H(p) (this will suffice to
prove our assertion). Assume otherwise, namely that forR >
1−H(p), ε < 1/4 and sufficiently largen there exists[n, 2Rn]
codesC which allow communication overWπ′ within errorε.
This implies thatC allows communication overWπ = WBSCp

within constant error bounded away from 1. This contradicts
a fundamental result on theε-capacity ofWBSCp

[14].

D. Attempt for an alternative definition for obliviousness

An alternative definition toγ-oblivious channelsW is I =
maxX I(X ;Z) ≤ (1−γ)n. HereX represents any distribution
over codewords transmitted, andZ denotes the error imposed
by the channel. The random variablesX and Z are jointly
distributed according toPr[X = x, Z = e] = W (e|x).
There are various connections between the suggested definition
and the original one given in Definition 1.1. Namely, it is
not hard to verify that if a channelW is γ-oblivious by
Definition 1.1 then it isγ-oblivious by the above definition.
The other direction holds forγ = 0 or 1 but is not necessarily
true for γ ∈ (0, 1). For example, consider a channelW (e|x)
defined by a set of errors{ex} (each of Hamming weight
at mostpn) indexed byx ∈ {0, 1}n: W (ex|x) = ε + α,
otherwise, fore 6= ex of weight at mostpn, W (e|x) = α.
Hereα is (1 − ε)/V ol(pn) whereV ol(pn) is the size of a
Hamming ball of radiuspn in {0, 1}n. Consider the family of
channelsW consisting of all such channelsW . This family is
1−ε oblivious by the suggested definition and only(1−H(p))
- oblivious by Definition 1.1. It is not hard to verify that the
capacity ofW is that ofWp. This implies a discontinuity in the
capacity ofγ-oblivious p-channels when using the suggested
definition at the pointγ = 1.

E. Linear Codes

Lemma 1.2:Let C be any [n, 2Rn] linear codebook. Let
γ ∈ [0, 1]. There exists a decoderφ such thatC, φ allow
communication overγ-oblivious p-channels within error less
than1/2 iff C has minimum distance of value at least2pn+1.



Proof: LetC be any codebook with minimum distance of
value at least2pn+1. Let φ be the Nearest Neighbor decoder.
Then for everyp-channelW it holds thatē = 1

N

∑N
i=1 e(i) =

0, implying that C allows communication overγ-oblivious
p-channels with error 0.

Let C = {x1, . . . ,x2Rn} be an [n, 2Rn] linear codebook
with minimum distance less than2pn + 1. Let φ be any
decoder. By the linearity ofC this implies the existence of
a codewordx∗ of weight at most2pn (wherex∗ 6= 0). Let
e1 be any error in{0, 1}n of Hamming weight at mostpn
such thatx∗ ∈ B(pn, e1). Let e2 be x∗ ⊕ e1. Notice thate2
is of Hamming weight at mostpn. Notice also that for any
codewordx it holds thatx ⊕ e1 = (x ⊕ x∗) ⊕ e2 = x′ ⊕ e2
(herex′ = x ⊕ x∗ is a codeword ofC). Consider the set
A1 = {xi|φ(xi ⊕ e1) = i} and A2 = {xi|xi ⊕ x∗ =
xj and φ((xi ⊕ x∗) ⊕ e2) = j}. The setsA1 and A2 are
disjoint. Thus at least one of the sets is of size most2Rn/2,
sayA1 (a similar proof can be given forA2). Let W be the
deterministic1-obliviousp-channel for which∀x W (e1|x) =
1. We conclude that̄e = 1

N

∑N
i=1 e(i) ≥ 1/2, implying that

C does not allow communication over1-obliviousp-channels
within error less than1/2. As W is also aγ-oblivious channel
for any γ ∈ [0, 1] we conclude our assumption.

F. List decodability of random codes

Lemma 1.3:Let R ∈ (0, 1). Let c be a sufficiently large
universal constant. Letℓ = max(V ol(pn)2−n+Rn+1, cn2).
Let C be a random codebook inΩ[n, 2Rn]. With probability
at least1− e−ℓ/62n, C is [ℓ, p] list decodable.

Proof: Let B be any ball of radiuspn in {0, 1}n.
The expected number of points in the intersection ofC and
B is E = V ol(pn)2−n+Rn. Let ℓ = max(2E, cn2). The
probability, for a specific ballB of radiuspn, that |C ∩ B| is
less thanℓ (which is at least twice its expectation) is at least
1− e−ℓ/6. For ℓ = 2E this follows by applying the Chernoff
bound [8]. Forℓ = cn2 > 2E this follows by studying the
probability that|C ∩ B′| ≤ ℓ for a larger subsetB′ including
B. Thus the probability that this holds for every ball of radius
pn in {0, 1}n is at least1− e−ℓ/62n.

G. Proof of Theorem 1

Let p ∈ [0, 1/2). Let γ ∈
(

2+H(p)
3 , 1

]

. Let ε > 0 andδ > 0

be any sufficiently small constants. LetR = γ−H(p)−δ. We
show that for sufficiently largen there exist[n, 2Rn] codesC
which allow communication overγ-obliviousp-channels with
error ε. The decoderφ used is the Nearest Neighbor decoder.
By Lemma 2.2 it suffices to show the existence of codebooks
C for which |Ae(C)| is smaller thanε2(R−(1−γ))n for every
e ∈ B(pn,0). Let C be a random codebook inΩ[n, 2Rn]. The
probability that|Ae(C)| is greater than2(H(p)+2R−1)n+1 for
a specific errore ∈ B(pn,0) is at most2−2n. This follows
by Theorem 2 and Lemma 3.1. By our setting of parameters
2(H(p)+2R−1)n+1 ≤ ε2(R−(1−γ))n. Now, applying the union
bound over all errorse ∈ B(pn,0) we conclude that the
probability that|Ae(C)| is greater thanε2(R−(1−γ))n for any

errore ∈ B(pn,0) is at most2−2nV ol(pn) < 1. This implies
the existence of an[n, 2Rn] code as asserted in Theorem 1.


