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Abstract—We present network flow buffering, which is the use 
of a remote flow-regulating buffer that is deployed between a 
Web client and server to improve performance of HTTP-based 
playback of video. We show that HTTP enhanced with 
network flow buffering significantly improves performance, 
especially under high packet loss and highly variable 
bandwidth conditions, when compared with using either 
straight HTTP or streaming. The benefits of network flow 
buffering are numerous, and include reducing interruptions to 
playback, maintaining high video-image quality, and 
decreasing client-buffering requirements. Network flow 
buffering is easily implemented with existing Web mechanisms. 
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I.  INTRODUCTION 
Video is an increasingly larger fraction of Internet traffic 

[4], with HTTP-based video streaming being very popular 
and supported by most video players for various reasons.  
One is the use of HTTP proxies from behind firewalls that 
allow access to the outside world. Another is that it is easier 
for Internet users to place video clips on Web sites provided 
by their ISPs as they may not have direct access to a video 
server, or they may lack the expertise to administer their own 
server.  In the former case, the video can be streamed 
directly via HTTP, or a streaming protocol can be tunneled 
through HTTP.  However, in the latter case, the server 
dictates that HTTP be used directly.  When direct HTTP is 
used, the client cannot take advantage of specialized 
streaming protocols designed to optimize performance. 

Network flow buffering (NFB) is a simple client-oriented 
approach to improving video streaming over HTTP. With 
NFB, an application-layer flow-regulating buffer is 
dynamically deployed between a Web client and server. 
These buffers act on a per-session basis. For example, 
multiple buffers can be simultaneously deployed to different 
locations to handle video sessions originating at different 
servers. Furthermore, these buffers do not need to store video 
data beyond the duration of a session (although they can if so 
desired), and in many usage scenarios will store only a small 
portion of the video data at any time. Dynamic deployment 
does require a suitable host for NFB between the client and 
server; however, the assumption that such a location exists is 
not unreasonable, considering that the location need not 
belong to a third party. For example, the user's own PC can 
be used (as in the common scenario of the user with a thin 
wireless client that is close to their PC at home or work). 

In this paper, we compare NFB-enhanced HTTP to 
“direct” (standard) HTTP and to streaming in two specific 
scenarios. We show that the performance of NFB-enhanced 
HTTP is superior to both direct HTTP and streaming when 
there is a high rate of packet loss in a portion of the network 
closest to the user (e.g., a wireless access network), or when 
the bandwidths of that portion and the rest of the network 
exhibit a high degree of variation relative to each other. 

The remainder of the paper is organized as follows. In 
Section 2, we introduce two common usage scenarios that 
are the focus of our investigation.  In Section 3, we analyze 
the performance of NFB-enhanced HTTP by comparing it to 
direct HTTP and streaming. We review related work in 
Section 4, and present conclusions in Section 5. 

II. USAGE SCENARIOS 
The optimal location for NFB depends on network 

conditions.  Ideally, NFB is located just beyond a “problem 
hop,” generally a boundary point where there is a significant 
change in network performance or reliability characteristics.   
This location will often be at a LAN/WAN gateway, such as 
when the client accesses the Internet via a low-bandwidth 
wireless connection.  Or, it may be more practically located 
beyond this point; perhaps the user’s home or office PC may 
provide such a convenient location. 

A. Smoothing 
During a video session, the effective network bandwidth 

seen by the user may change as the result of changing 
network or server conditions.  Reasons for this include 
changes in packet loss rate in, say, a wireless connection as 
the user roams, router congestion, or the server becoming 
overloaded and being forced to reduce the transmission rate.   
In this paper, smoothing refers to using NFB to mask (from 
the client) dynamic changes in relative bandwidth between 
the WAN and LAN that can cause the effective bandwidth 
seen by the user to be lower than the video playback rate.  
Thus, smoothing occurs when the WAN and LAN 
bandwidths are highly variable relative to each other. 

Figure 1 shows a scenario of LAN and WAN bandwidths 
during a video session.  Each line shows the potential 
amount of data transferred over time, and hence the slope 
represents the bandwidth. Although the LAN and WAN have 
the same average bandwidth, the WAN bandwidth is bursty 
while that of the LAN is constant.  As shown, the effective 
bandwidth (i.e., minimum slope) seen by the client has a 
lower average. 



TIME

AMOUNT
OF

DATA

LAN BANDWIDTH

WAN BANDWIDTH

COMBINED BANDWIDTH (SERVER TO CLIENT)

 
Figure 1.  WAN and LAN bandwidths for smoothing scenario. 
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Figure 2.  Failure when data rate drops below playback rate. 
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Figure 3.  Benefits of smoothing with network flow buffering. 

In Figures 2 and 3, video playback is depicted with and 
without NFB, respectively. A specialized video streaming 
protocol is expected to perform poorly under these 
conditions of high relative variability for two reasons. The 
effective bandwidth is considerably below the video 

playback rate, so the video application will be forced to 
either delay the video start time to buffer a large amount at 
the client, reduce video quality, or interrupt playback in 
order to buffer. Furthermore, the unpredictable nature of the 
bandwidth will make it more difficult for the video 
application to make correct protocol and buffering decisions 
on the fly. 

When NFB is used, a smoothing effect allows the video 
to play smoothly.  When the WAN bandwidth is higher than 
the LAN bandwidth, the buffer will fill up.  At a later time, 
when the LAN bandwidth is higher than the WAN 
bandwidth, data will be available at the buffer in order to 
maintain higher throughput.  In the scenario depicted in 
Figure 3, the client will see the bandwidth as higher than the 
video playback rate, and will therefore be able to maintain 
uninterrupted, full-quality playback.  Even if the smoothed 
playback rate is less than the video playback rate, the 
frequency and duration of interruptions will still be reduced. 

B. Reduced Retransmission Path 
One of the primary motivations for using a specialized 

UDP-based video protocol is that it can selectively drop 
packets, thus maintaining smooth playback by reducing the 
frame rate or picture quality in ways that will still allow the 
user to have a satisfactory experience.  Since HTTP uses 
TCP, which provides reliable transport, it does not have the 
luxury of selectively dropping video data, and so maintaining 
smooth playback is more difficult when there is packet loss.  
This problem is especially relevant when the user is roaming 
while using a wireless device, as the user may move to 
locations where connection quality is poor.  Consequently, 
another benefit of having NFB between the client and server 
is that it reduces the path over which retransmitted packets 
must travel, which lessens the performance penalty incurred 
by packet loss. 

 
Figure 4.  The packet retransmission path is reduced when using network 

flow buffering. 

Figure 4 shows the reduced length of the retransmission 
paths when NFB is available.  In the case of a wireless client, 
if the wireless access network is more prone to packet loss 
than the rest of the wired WAN, retransmissions will 
typically only have to travel between the client and 
intermediary supporting NFB (assuming it is beyond the 
wireless portion) and not suffer the delay of the entire 
network. 

III. PERFORMANCE COMPARISON 
We now compare NFB-enhanced HTTP to direct HTTP 

and to Real streaming under the two usage scenarios 
described in Section 2.  By “Real streaming,” we mean 
streaming as implemented by Real™ when using their 



commonly available RealOne™ Player accessing video from 
their servers, and essentially treating it as a black box, 
measuring end-to-end performance as observed by the output 
at the player.  We chose the latter as a good representative of 
a video streaming protocol that is both popular and 
technologically mature. 

A. Experimental Setup 
The experimental setup is as follows. For the client, we 

used a notebook computer with a 500MHz Intel Pentium III 
processor running the RealOne™ Player on Windows 98.  
The server was a P3 933MHz PC running Windows 2000.  
The intermediate “gateway” machine used for NFB was a 
Pentium II 450MHz PC running FreeBSD.  To simulate a 
network with a given bandwidth, we used DummyNet in 
FreeBSD (IP Firewall kernel module), which supports the 
creation of pipes to control bandwidth, delay, and packet loss 
between two communication endpoints.  Four pipes are used 
in total, one pair for symmetric bidirectional LAN control 
and another for symmetric bidirectional WAN control. 

B. Bandwidth Variation and Smoothing 
In this experiment, we show how NFB can provide 

smooth playback that would otherwise be interrupted 
multiple times.  In addition to the performance improvement, 
using the NFB requires no more application-layer buffering 
than is required when streaming directly from server to 
client. In fact, in circumstances where smoothing works well, 
it is normally expected to use less.  The video clip used for 
this experiment was 202 seconds (3.4 minutes) in length, 
with a bit rate of 38.5 KBps (308 Kbps). 

Bandwidth Cycle
(This shows 2 cycles, 24 seconds each, 12 bandwidth changes 

per cycle, each bandwidth lasts for two seconds)
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Figure 5.  Bandwidth for smoothing experiment. 

We used DummyNet to create cyclical client/gateway 
“LAN” and gateway/server “WAN” bandwidths as shown in 
Figure 5. The averages for the WAN and LAN for each cycle 
are 41.75 KBps, which is above the average video playback 
rate of 38.5 KBps.  Without smoothing, the effective 
bandwidth seen by the client is the minimum at any point in 
time of the bandwidth cycles, averaging 25 KBps, and we 
expect the video player to have to interrupt playback so that 
the network can catch up to the video. 
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Figure 6.  Playback in each of the three scenarios. 

Figure 6 shows the video playback as amount of data 
played over time for direct HTTP, Real streaming, and NFB-
enhanced HTTP. With NFB-enhanced HTTP, the player 
buffers for 17 seconds before playback begins.  Once 
playback begins, the video plays smoothly and at full quality 
for its entirety without any additional buffering by the player. 
This is due to the smoothing effect of NFB, which allows a 
higher average bandwidth to be sustained to the client. For 
direct HTTP (i.e., without NFB), the player buffers for 28 
seconds before playback begins.  During playback, the video 
plays at full quality, but the player interrupts the video three 
times to refill its buffer, for a total of 124 seconds of 
buffering after playback has started, and 152 seconds of total 
buffering, as compared to just 17 seconds with NFB-
enhanced HTTP. 

When Real streaming is used, there is an initial 5 seconds 
of buffering before playback begins.   The player quickly 
recognizes that bandwidth is inadequate and attempts to 
adapt accordingly.  In doing so, it reduces the frame rate and 
picture quality, and ends up only retrieving 1.97MB 
(1966954 bytes), or about 25%, of the video. This results in a 
choppy, “slide show” resulting in very poor-quality 
playback.  Despite this adaptation, the video playback is still 
interrupted 7 times for a total of 165 seconds of additional 
buffering. 

The extra buffering that occurs when there is no 
smoothing is required because the player's buffer is suffering 
from underflow, as the average bandwidth is lower than the 
video bit rate.  Note that even if the player had perfect 
knowledge of the future, it would have to delay the start of 
the video by 152 seconds to ensure smooth playback under 
direct HTTP.  Not only would this frustrate the user, it would 
also require a buffer size of nearly 6MB (152 x 38.5 KBps).  
Given that the player cannot anticipate network traffic bursts, 
or that it may not be desirable to delay the start of the video 
for so long and force the user to wait, or to reduce memory 
consumption, the player is forced to interrupt the video for 
two periods of half a minute or more to complete playback. 

 



Video Buffering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 50 100 150 200 250 300 350 400

Time (s)

A
m

ou
nt

 B
uf

fe
re

d 
(b

yt
es

 x
 1

06 )

HTTP

Real Streaming

HTTP/NFB
(Combined)

 
Figure 7.  Buffering during the smoothing experiment. 

In Figure 7, we show the amount of buffering at the 
player for direct HTTP, Real streaming, and NFB-enhanced 
HTTP (in the latter case, the combined amount buffered at 
both the player and intermediary for NFB is presented).  The 
large spikes in buffering for direct HTTP result from the 
player trying to manage its buffer when the bandwidth is 
bursty.   The maximum buffer size for the player in this case 
is 1.1 MB (1103346 bytes). The buffering when using Real 
streaming is also bursty.  However, the drastic reduction in 
amount of video data played, at the cost of playback quality, 
results in a maximum client buffer size of 258 KB (257805 
bytes). Finally, the smoothing effect of NFB-enhanced 
HTTP can be seen by the significantly reduced burstiness of 
its (combined) buffering. 

The combined buffering when NFB-enhanced HTTP is 
being used is further broken down into its two components, 
the client buffering and the intermediary (for NFB) 
buffering, in Figure 8.  When the intermediary buffer is 
peaking because the WAN bandwidth is higher than that of 
the LAN, the client buffer is draining because the LAN 
bandwidth is lower than the video rate.  When the LAN 
bandwidth increases, the client buffer will start to increase, 
but the intermediary buffer begins to drain since the WAN is 
now the bottleneck.  The maximum combined buffering 
(client + intermediary) peaks at 785 KB (785057 bytes), less 
than the maximum buffer requirement at the client when 
direct HTTP is used. The maximum buffering at the client 
when the NFB is used is 660 KB (660514 bytes).  This is due 
to the fact that without NFB, the average effective bandwidth 
over the course of the playback is lower, so more buffering is 
required to compensate. 

C. Packet Loss 
In this experiment, we show how NFB reduces 

retransmission delay under packet loss for HTTP streaming, 
which can result in video performance comparable to that of 
Real streaming.  Here, we configured DummyNet to 
randomly drop packets in the LAN portion, to compare how 
direct HTTP, Real streaming, and NFB-enhanced HTTP 
tolerate packet loss. 
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Figure 8.  Breakdown of buffering at client and NFB. 

The random loss of packets is expected to reduce the 
effective bandwidth.  However, under TCP, the limited 
latency between the client and NFB-intermediary allows for 
a higher tolerance of packet loss than under the full end-to-
end latency of the entire network, since it will take less time 
to retransmit lost packets.  (In our experiments, the LAN 
delay was 10ms, and the WAN delay 50ms, for a total end-
to-end delay of 60ms.) When Real streaming is used, the full 
latency is still a factor, but the protocol may selectively 
choose to allow packets to be lost rather than retransmitting.  
Thus, Real streaming, if it adapts well, is expected to avoid 
video interruptions at the cost of reduced playback quality.   

We ran three trials, each having DummyNet configured 
with a different packet loss rate which remains constant 
throughout the course of the trial.  We chose packet loss rates 
of 2%, 4.5%, and 5% because each is a threshold where we 
observed that one of the scenarios typically starts to 
encounter interruptions to playback.  The 2% rate was 
chosen because it was the threshold where direct HTTP 
started to degrade in performance and was no longer 
competitive with the other approaches (interruptions in 
playback occur at this loss rate).  The 4.5% loss rate is the 
corresponding threshold for Real streaming; interruptions in 
playback start occurring at this point. Finally, at 5% loss rate 
we see interruptions in playback even with the NFB 
approach. 

We expect direct HTTP to be the least tolerant of packet 
loss. Figure 9 shows the playback under 2% packet loss for 
each scenario.  With direct HTTP, there is a 20 second 
interval of buffering before the playback starts, and there is 
an additional 29 second interruption in playback.  Neither of 
the other two scenarios incurs an interruption during 
playback.  With NFB-enhanced HTTP, there is an initial 14-
second buffering period before playback begins, after which 
the video plays at full quality without interruption.  When 
Real streaming is used, the video takes the longest to start, as 
there is an initial 28-second buffering period. The video then 
plays at nearly full quality without interruption, with about 
95% of the video data being played.  As the packet loss rate 
increases and the effective bandwidth over the network (with 
a 60ms delay) decreases, we expect direct HTTP playback to 



continue to degrade in the form of increased frequency and 
duration of interruptions of video playback for re-buffering. 
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Figure 9.  Playback under 2% packet loss when using Real streaming vs. 

network flow buffering. 
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Figure 10.  Playback under 4.5% packet loss when Real streaming vs. NFB-

enhanced HTTP. 
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Figure 11.  Playback under 5% packet loss when using Real streaming vs. 

NFB-enhanced HTTP. 

We now compare how NFB-enhanced HTTP and Real 
streaming perform at higher packet loss rates.  Figure 10 
shows the playback with a 4.5% packet loss rate.  With Real 
streaming, there is an initial buffering period of 30 seconds 
before playback begins, and an additional interruption of 12 
seconds to buffer more data that occurs 14 seconds into the 

playback.   Up until this point, the playback is very choppy, 
with only between 1 and 4 frames displayed per second and 
many artifacts on the screen.  However, after this 
interruption, the playback smoothens out, though the frame 
rate does occasionally drop to 2/3 its normal rate.  With 
NFB-enhanced HTTP, there is an initial buffering period of 
21 seconds before full-quality uninterrupted playback begins.  
Both protocols allow smooth playback when the packet loss 
rate is more than double what direct HTTP can tolerate. The 
amount of time playback is delayed or suspended for 
buffering using NFB-enhanced HTTP is roughly half that 
when using Real streaming. 

Finally, we examine what happens with a packet loss rate 
of 5%, where we begin to see interruptions during playback 
when NFB-enhanced HTTP is used, and erratic behavior 
from Real streaming.  This case is shown in Figure 11.  
When the packet loss rate is 5%, Real streaming exhibited 
mixed behavior. About half of the trials, it would adapt well 
to the packet loss, resulting in smooth playback at slightly 
reduced quality. But the other half of the trials, it would not 
adapt well, resulting in frequent interruptions in playback, 
where each interruption might last for 1 to 2 minutes! 

The poor performance example of Real streaming, which 
is cut off to fit into the chart, continues the same trend of 
frequent, long interruptions for the entire video, and 
playback can last 20 minutes or more.  When Real streaming 
adapts well, it buffers for about 12 seconds before playback 
begins, and has one buffering interruption of 18 seconds 
about 6 seconds into the playback. 

When NFB-enhanced HTTP is used, there is an initial 
buffering period of 26 seconds before playback begins.  
About 57 seconds into the playback, there is an interruption 
that lasts for about 23 seconds.  Thus, the general behavior of 
NFB-enhanced HTTP is similar to Real streaming when the 
latter is operating well. 

As the packet loss rate rises above 5%, we expect an 
increase in the frequency and duration of interruptions to 
playback, and that Real streaming will be less able to adapt 
and will more frequently exhibit the behavior of the poor 
playback case. 

D. Startup Delay Considerations 
NFB does not necessarily pre-buffer any data before 

streaming it to the client.  In fact, in the smoothing and 
packet loss experiments described previously, data is only 
buffered passively, when the NFB-to-Client bandwidth is 
less than the Server-to-NFB bandwidth.  In these scenarios 
there is no initial buffering delay at the NFB host.  

If the NFB location is chosen to optimize video playback 
from a particular server, only the first video played from this 
server will incur any deployment overhead.  All subsequent 
sessions can use the same NFB instance.  If the location is 
chosen to optimize a problematic network link such as the 
wired/wireless boundary (e.g. the user’s desktop PC or the 
wireless/wired gateway), the same NFB instance can be used 
for all video sessions after the initial deployment.   

Our experiments demonstrated that in the packet loss 
scenarios, the use of NFB reduced the initial client buffering 
before playback begins.   In the experiment using a 4.5% 



packet loss rate, the video started 9 seconds faster when 
using NFB as compared to when using Real streaming 
despite that fact that Real adjusted the playback quality to 
compensate for the high loss rate.  In all of our experiments, 
the video starts sooner with NFB than with direct HTTP.   

In the smoothing scenario, using Real streaming 
improves the video start time at the cost of a reduction in 
quality.  In our experiments, the reduction in quality was 
drastic; the actual reduction in quality will depend on the 
network conditions at the time the video is played.  NFB is 
primarily designed for situations in which HTTP must be 
used due to server or client limitations.  However, if the 
video server supports a streaming protocol, and the client has 
access to the protocol (e.g., the client is not behind a 
restrictive firewall), a good compromise is to start playback 
using the streaming protocol, and give the user the option to 
switch to HTTP with NFB if the user is dissatisfied with the 
reduced quality and is willing to wait for a restart. 

IV. RELATED WORK 
There is a large body of research on smoothing 

compressed video streams by sending frames to the client 
buffer ahead of their playback times to deal with bandwidth 
burstiness.  In this approach, a video transmission schedule is 
calculated at the server based on the bit rate over the course 
of the video, the server bandwidth, and the amount client 
memory available for buffering. In [5], the smoothing takes 
into account the possibility of having multiple intermediary 
buffers (such as proxies) along the path between server and 
client, and considers bandwidth limitations of network hops 
among the intermediary buffers, the client, and the server.  In 
[3], the constraint of minimizing peak server bandwidth is 
relaxed to keep the client and server in closer 
synchronization, which better supports interactive 
functionality such as fast-forward and rewind. Optimal 
smoothing can be approximated for live video by calculating 
the transmission schedule over a window of time based on 
the currently available video data in conjunction with 
predictive techniques [7]. We are attempting to solve a 
different problem, of dynamic changes in network 
performance and availability as a result of such factors as 
wireless network variability and congestion, for HTTP 
streaming.  Our approach is transparent to the server so it 
does not require existing servers to change.   

Video performance can also be improved using proxy 
caching.  Some approaches perform partial caching of video 
streams to improve performance, while reducing resource 
consumption at the proxy [6, 8, 9, 10].  Other approaches use 
cooperative caches to improve hit rates as well as reduce 
server load and WAN bandwidth utilization [1, 2, 11]. There 
are a number of important differences between NFB and 
proxy caching.  In proxy caching, videos are cached at a 
shared server accessed by many clients, so resources must be 
shared and the proxy can become a bottleneck.  NFB is a 
client-specific approach, so there is no competition for 
resources among multiple users.  Furthermore, the location 
of a shared proxy cache may not be ideal for a particular 

user.  NFB can operate under dynamic deployment, and the 
location can be chosen to best serve one particular client. 

V. CONCLUSIONS 
In this paper, we demonstrated that network flow 

buffering could make HTTP-based video competitive with, 
and in some ways even better than, Real streaming, under the 
conditions of high LAN packet loss rates or in networks with 
highly variable relative LAN/WAN bandwidths. Our 
experiments showed that the smoothing benefits of NFB-
enhanced HTTP support full-quality playback, while 
requiring less client buffering than direct HTTP, in cases 
where Real streaming will reduce buffering requirements at 
the cost of drastically reduced playback quality. 

The ability to dynamically deploy a simple flow-
regulating buffer has the added benefit of reducing 
retransmission delay in order to increase playback 
performance under high LAN packet loss rates.  In our 
experiments, using NFB-enhanced HTTP allows the video 
player to tolerate more than double the packet loss rate that 
direct HTTP can tolerate.  The lower the delay is between the 
NFB-intermediary and the client, the more tolerant the 
streaming will be to packet loss. Furthermore, using NFB-
enhanced HTTP outperforms Real streaming at medium 
packet loss rates, and is at least competitive with Real 
streaming at higher loss rates where Real streaming begins to 
exhibit erratic behavior. 
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