
Improving HTTP-based Video Performance using Network Flow Buffering

Jesse Steinberg and Joseph Pasquale
Dept. of Computer Science and Engineering

University of California, San Diego
La Jolla, CA, USA

{jsteinbe, pasquale}@cs.ucsd.edu

Abstract—We present network flow buffering, which is the use
of a remote flow-regulating buffer that is deployed between a
Web client and server to improve performance of HTTP-based
playback of video. We show that HTTP enhanced with
network flow buffering significantly improves performance,
especially under high packet loss and highly variable
bandwidth conditions, when compared with using either
straight HTTP or streaming. The benefits of network flow
buffering are numerous, and include reducing interruptions to
playback, maintaining high video-image quality, and
decreasing client-buffering requirements. Network flow
buffering is easily implemented with existing Web mechanisms.

Keywords: Video streaming, HTTP, proxy.

I. INTRODUCTION
Video is an increasingly larger fraction of Internet traffic

[4], with HTTP-based video streaming being very popular
and supported by most video players for various reasons.
One is the use of HTTP proxies from behind firewalls that
allow access to the outside world. Another is that it is easier
for Internet users to place video clips on Web sites provided
by their ISPs as they may not have direct access to a video
server, or they may lack the expertise to administer their own
server. In the former case, the video can be streamed
directly via HTTP, or a streaming protocol can be tunneled
through HTTP. However, in the latter case, the server
dictates that HTTP be used directly. When direct HTTP is
used, the client cannot take advantage of specialized
streaming protocols designed to optimize performance.

Network flow buffering (NFB) is a simple client-oriented
approach to improving video streaming over HTTP. With
NFB, an application-layer flow-regulating buffer is
dynamically deployed between a Web client and server.
These buffers act on a per-session basis. For example,
multiple buffers can be simultaneously deployed to different
locations to handle video sessions originating at different
servers. Furthermore, these buffers do not need to store video
data beyond the duration of a session (although they can if so
desired), and in many usage scenarios will store only a small
portion of the video data at any time. Dynamic deployment
does require a suitable host for NFB between the client and
server; however, the assumption that such a location exists is
not unreasonable, considering that the location need not
belong to a third party. For example, the user's own PC can
be used (as in the common scenario of the user with a thin
wireless client that is close to their PC at home or work).

In this paper, we compare NFB-enhanced HTTP to
“direct” (standard) HTTP and to streaming in two specific
scenarios. We show that the performance of NFB-enhanced
HTTP is superior to both direct HTTP and streaming when
there is a high rate of packet loss in a portion of the network
closest to the user (e.g., a wireless access network), or when
the bandwidths of that portion and the rest of the network
exhibit a high degree of variation relative to each other.

The remainder of the paper is organized as follows. In
Section 2, we introduce two common usage scenarios that
are the focus of our investigation. In Section 3, we analyze
the performance of NFB-enhanced HTTP by comparing it to
direct HTTP and streaming. We review related work in
Section 4, and present conclusions in Section 5.

II. USAGE SCENARIOS
The optimal location for NFB depends on network

conditions. Ideally, NFB is located just beyond a “problem
hop,” generally a boundary point where there is a significant
change in network performance or reliability characteristics.
This location will often be at a LAN/WAN gateway, such as
when the client accesses the Internet via a low-bandwidth
wireless connection. Or, it may be more practically located
beyond this point; perhaps the user’s home or office PC may
provide such a convenient location.

A. Smoothing
During a video session, the effective network bandwidth

seen by the user may change as the result of changing
network or server conditions. Reasons for this include
changes in packet loss rate in, say, a wireless connection as
the user roams, router congestion, or the server becoming
overloaded and being forced to reduce the transmission rate.
In this paper, smoothing refers to using NFB to mask (from
the client) dynamic changes in relative bandwidth between
the WAN and LAN that can cause the effective bandwidth
seen by the user to be lower than the video playback rate.
Thus, smoothing occurs when the WAN and LAN
bandwidths are highly variable relative to each other.

Figure 1 shows a scenario of LAN and WAN bandwidths
during a video session. Each line shows the potential
amount of data transferred over time, and hence the slope
represents the bandwidth. Although the LAN and WAN have
the same average bandwidth, the WAN bandwidth is bursty
while that of the LAN is constant. As shown, the effective
bandwidth (i.e., minimum slope) seen by the client has a
lower average.

TIME

AMOUNT
OF

DATA

LAN BANDWIDTH

WAN BANDWIDTH

COMBINED BANDWIDTH (SERVER TO CLIENT)

Figure 1. WAN and LAN bandwidths for smoothing scenario.

TIME

AMOUNT
OF

DATA

VIDEO
SIZE

PLAYBACK
FAILURE

CLIENT
BUFFER

SIZE

DIRECT TO SERVER

VIDEO PLAYBACK RATE

SERVER TO CLIENT DATA RATE

Figure 2. Failure when data rate drops below playback rate.

TIME

AMOUNT
OF

DATA

VIDEO
SIZE

USING NFB

CLIENT
BUFFER

SIZE

VIDEO PLAYBACK RATE

SERVER TO NFB DATA RATE

NFB TO CLIENTDATA RATE

Figure 3. Benefits of smoothing with network flow buffering.

In Figures 2 and 3, video playback is depicted with and
without NFB, respectively. A specialized video streaming
protocol is expected to perform poorly under these
conditions of high relative variability for two reasons. The
effective bandwidth is considerably below the video

playback rate, so the video application will be forced to
either delay the video start time to buffer a large amount at
the client, reduce video quality, or interrupt playback in
order to buffer. Furthermore, the unpredictable nature of the
bandwidth will make it more difficult for the video
application to make correct protocol and buffering decisions
on the fly.

When NFB is used, a smoothing effect allows the video
to play smoothly. When the WAN bandwidth is higher than
the LAN bandwidth, the buffer will fill up. At a later time,
when the LAN bandwidth is higher than the WAN
bandwidth, data will be available at the buffer in order to
maintain higher throughput. In the scenario depicted in
Figure 3, the client will see the bandwidth as higher than the
video playback rate, and will therefore be able to maintain
uninterrupted, full-quality playback. Even if the smoothed
playback rate is less than the video playback rate, the
frequency and duration of interruptions will still be reduced.

B. Reduced Retransmission Path
One of the primary motivations for using a specialized

UDP-based video protocol is that it can selectively drop
packets, thus maintaining smooth playback by reducing the
frame rate or picture quality in ways that will still allow the
user to have a satisfactory experience. Since HTTP uses
TCP, which provides reliable transport, it does not have the
luxury of selectively dropping video data, and so maintaining
smooth playback is more difficult when there is packet loss.
This problem is especially relevant when the user is roaming
while using a wireless device, as the user may move to
locations where connection quality is poor. Consequently,
another benefit of having NFB between the client and server
is that it reduces the path over which retransmitted packets
must travel, which lessens the performance penalty incurred
by packet loss.

Figure 4. The packet retransmission path is reduced when using network

flow buffering.

Figure 4 shows the reduced length of the retransmission
paths when NFB is available. In the case of a wireless client,
if the wireless access network is more prone to packet loss
than the rest of the wired WAN, retransmissions will
typically only have to travel between the client and
intermediary supporting NFB (assuming it is beyond the
wireless portion) and not suffer the delay of the entire
network.

III. PERFORMANCE COMPARISON
We now compare NFB-enhanced HTTP to direct HTTP

and to Real streaming under the two usage scenarios
described in Section 2. By “Real streaming,” we mean
streaming as implemented by Real™ when using their

commonly available RealOne™ Player accessing video from
their servers, and essentially treating it as a black box,
measuring end-to-end performance as observed by the output
at the player. We chose the latter as a good representative of
a video streaming protocol that is both popular and
technologically mature.

A. Experimental Setup
The experimental setup is as follows. For the client, we

used a notebook computer with a 500MHz Intel Pentium III
processor running the RealOne™ Player on Windows 98.
The server was a P3 933MHz PC running Windows 2000.
The intermediate “gateway” machine used for NFB was a
Pentium II 450MHz PC running FreeBSD. To simulate a
network with a given bandwidth, we used DummyNet in
FreeBSD (IP Firewall kernel module), which supports the
creation of pipes to control bandwidth, delay, and packet loss
between two communication endpoints. Four pipes are used
in total, one pair for symmetric bidirectional LAN control
and another for symmetric bidirectional WAN control.

B. Bandwidth Variation and Smoothing
In this experiment, we show how NFB can provide

smooth playback that would otherwise be interrupted
multiple times. In addition to the performance improvement,
using the NFB requires no more application-layer buffering
than is required when streaming directly from server to
client. In fact, in circumstances where smoothing works well,
it is normally expected to use less. The video clip used for
this experiment was 202 seconds (3.4 minutes) in length,
with a bit rate of 38.5 KBps (308 Kbps).

Bandwidth Cycle
(This shows 2 cycles, 24 seconds each, 12 bandwidth changes

per cycle, each bandwidth lasts for two seconds)

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50

Time (s)

B
an

dw
id

th
 (

K
by

te
s/

s)

WAN
LAN

Figure 5. Bandwidth for smoothing experiment.

We used DummyNet to create cyclical client/gateway
“LAN” and gateway/server “WAN” bandwidths as shown in
Figure 5. The averages for the WAN and LAN for each cycle
are 41.75 KBps, which is above the average video playback
rate of 38.5 KBps. Without smoothing, the effective
bandwidth seen by the client is the minimum at any point in
time of the bandwidth cycles, averaging 25 KBps, and we
expect the video player to have to interrupt playback so that
the network can catch up to the video.

Video Playback

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400

Time (s)

A
m

ou
nt

 P
la

ye
d

(b
yt

es
 x

 1
06)

HTTP
Real Streaming
HTTP/NFB

Figure 6. Playback in each of the three scenarios.

Figure 6 shows the video playback as amount of data
played over time for direct HTTP, Real streaming, and NFB-
enhanced HTTP. With NFB-enhanced HTTP, the player
buffers for 17 seconds before playback begins. Once
playback begins, the video plays smoothly and at full quality
for its entirety without any additional buffering by the player.
This is due to the smoothing effect of NFB, which allows a
higher average bandwidth to be sustained to the client. For
direct HTTP (i.e., without NFB), the player buffers for 28
seconds before playback begins. During playback, the video
plays at full quality, but the player interrupts the video three
times to refill its buffer, for a total of 124 seconds of
buffering after playback has started, and 152 seconds of total
buffering, as compared to just 17 seconds with NFB-
enhanced HTTP.

When Real streaming is used, there is an initial 5 seconds
of buffering before playback begins. The player quickly
recognizes that bandwidth is inadequate and attempts to
adapt accordingly. In doing so, it reduces the frame rate and
picture quality, and ends up only retrieving 1.97MB
(1966954 bytes), or about 25%, of the video. This results in a
choppy, “slide show” resulting in very poor-quality
playback. Despite this adaptation, the video playback is still
interrupted 7 times for a total of 165 seconds of additional
buffering.

The extra buffering that occurs when there is no
smoothing is required because the player's buffer is suffering
from underflow, as the average bandwidth is lower than the
video bit rate. Note that even if the player had perfect
knowledge of the future, it would have to delay the start of
the video by 152 seconds to ensure smooth playback under
direct HTTP. Not only would this frustrate the user, it would
also require a buffer size of nearly 6MB (152 x 38.5 KBps).
Given that the player cannot anticipate network traffic bursts,
or that it may not be desirable to delay the start of the video
for so long and force the user to wait, or to reduce memory
consumption, the player is forced to interrupt the video for
two periods of half a minute or more to complete playback.

Video Buffering

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

0 50 100 150 200 250 300 350 400

Time (s)

A
m

ou
nt

 B
uf

fe
re

d
(b

yt
es

 x
 1

06)

HTTP

Real Streaming

HTTP/NFB
(Combined)

Figure 7. Buffering during the smoothing experiment.

In Figure 7, we show the amount of buffering at the
player for direct HTTP, Real streaming, and NFB-enhanced
HTTP (in the latter case, the combined amount buffered at
both the player and intermediary for NFB is presented). The
large spikes in buffering for direct HTTP result from the
player trying to manage its buffer when the bandwidth is
bursty. The maximum buffer size for the player in this case
is 1.1 MB (1103346 bytes). The buffering when using Real
streaming is also bursty. However, the drastic reduction in
amount of video data played, at the cost of playback quality,
results in a maximum client buffer size of 258 KB (257805
bytes). Finally, the smoothing effect of NFB-enhanced
HTTP can be seen by the significantly reduced burstiness of
its (combined) buffering.

The combined buffering when NFB-enhanced HTTP is
being used is further broken down into its two components,
the client buffering and the intermediary (for NFB)
buffering, in Figure 8. When the intermediary buffer is
peaking because the WAN bandwidth is higher than that of
the LAN, the client buffer is draining because the LAN
bandwidth is lower than the video rate. When the LAN
bandwidth increases, the client buffer will start to increase,
but the intermediary buffer begins to drain since the WAN is
now the bottleneck. The maximum combined buffering
(client + intermediary) peaks at 785 KB (785057 bytes), less
than the maximum buffer requirement at the client when
direct HTTP is used. The maximum buffering at the client
when the NFB is used is 660 KB (660514 bytes). This is due
to the fact that without NFB, the average effective bandwidth
over the course of the playback is lower, so more buffering is
required to compensate.

C. Packet Loss
In this experiment, we show how NFB reduces

retransmission delay under packet loss for HTTP streaming,
which can result in video performance comparable to that of
Real streaming. Here, we configured DummyNet to
randomly drop packets in the LAN portion, to compare how
direct HTTP, Real streaming, and NFB-enhanced HTTP
tolerate packet loss.

NFB Buffering Breakdown

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250
Time (s)

A
m

ou
nt

 P
la

ye
d

(b
yt

es
 x

 1
06)

NFB

Client
Using
NFB

Figure 8. Breakdown of buffering at client and NFB.

The random loss of packets is expected to reduce the
effective bandwidth. However, under TCP, the limited
latency between the client and NFB-intermediary allows for
a higher tolerance of packet loss than under the full end-to-
end latency of the entire network, since it will take less time
to retransmit lost packets. (In our experiments, the LAN
delay was 10ms, and the WAN delay 50ms, for a total end-
to-end delay of 60ms.) When Real streaming is used, the full
latency is still a factor, but the protocol may selectively
choose to allow packets to be lost rather than retransmitting.
Thus, Real streaming, if it adapts well, is expected to avoid
video interruptions at the cost of reduced playback quality.

We ran three trials, each having DummyNet configured
with a different packet loss rate which remains constant
throughout the course of the trial. We chose packet loss rates
of 2%, 4.5%, and 5% because each is a threshold where we
observed that one of the scenarios typically starts to
encounter interruptions to playback. The 2% rate was
chosen because it was the threshold where direct HTTP
started to degrade in performance and was no longer
competitive with the other approaches (interruptions in
playback occur at this loss rate). The 4.5% loss rate is the
corresponding threshold for Real streaming; interruptions in
playback start occurring at this point. Finally, at 5% loss rate
we see interruptions in playback even with the NFB
approach.

We expect direct HTTP to be the least tolerant of packet
loss. Figure 9 shows the playback under 2% packet loss for
each scenario. With direct HTTP, there is a 20 second
interval of buffering before the playback starts, and there is
an additional 29 second interruption in playback. Neither of
the other two scenarios incurs an interruption during
playback. With NFB-enhanced HTTP, there is an initial 14-
second buffering period before playback begins, after which
the video plays at full quality without interruption. When
Real streaming is used, the video takes the longest to start, as
there is an initial 28-second buffering period. The video then
plays at nearly full quality without interruption, with about
95% of the video data being played. As the packet loss rate
increases and the effective bandwidth over the network (with
a 60ms delay) decreases, we expect direct HTTP playback to

continue to degrade in the form of increased frequency and
duration of interruptions of video playback for re-buffering.

Playback Under 2% Packet Loss

0
1
2
3
4
5
6
7
8
9

0 40 80 120 160 200 240

Time (s)

A
m

ou
nt

 P
la

ye
d

(b
yt

es
 x

 1
06)

HTTP
Real Streaming
HTTP/NFB

Figure 9. Playback under 2% packet loss when using Real streaming vs.

network flow buffering.

 Playback Under 4.5% Packet Loss

0
1
2
3
4
5
6
7
8
9

0 50 100 150 200 250

Time (s)

A
m

ou
nt

 P
la

ye
d

(b
yt

es
 x

 1
06)

Real Streaming
HTTP/NFB

Figure 10. Playback under 4.5% packet loss when Real streaming vs. NFB-

enhanced HTTP.

Playback Under 5% Packet Loss

0
1
2
3
4
5
6
7
8
9

0 50 100 150 200 250 300 350 400 450

Time (s)

A
m

ou
nt

 P
la

ye
d

(b
yt

es
 x

 1
06)

Real Streaming: Good
Perf.
Real Streaming: Poor
Perf.
HTTP/NFB

...

Figure 11. Playback under 5% packet loss when using Real streaming vs.

NFB-enhanced HTTP.

We now compare how NFB-enhanced HTTP and Real
streaming perform at higher packet loss rates. Figure 10
shows the playback with a 4.5% packet loss rate. With Real
streaming, there is an initial buffering period of 30 seconds
before playback begins, and an additional interruption of 12
seconds to buffer more data that occurs 14 seconds into the

playback. Up until this point, the playback is very choppy,
with only between 1 and 4 frames displayed per second and
many artifacts on the screen. However, after this
interruption, the playback smoothens out, though the frame
rate does occasionally drop to 2/3 its normal rate. With
NFB-enhanced HTTP, there is an initial buffering period of
21 seconds before full-quality uninterrupted playback begins.
Both protocols allow smooth playback when the packet loss
rate is more than double what direct HTTP can tolerate. The
amount of time playback is delayed or suspended for
buffering using NFB-enhanced HTTP is roughly half that
when using Real streaming.

Finally, we examine what happens with a packet loss rate
of 5%, where we begin to see interruptions during playback
when NFB-enhanced HTTP is used, and erratic behavior
from Real streaming. This case is shown in Figure 11.
When the packet loss rate is 5%, Real streaming exhibited
mixed behavior. About half of the trials, it would adapt well
to the packet loss, resulting in smooth playback at slightly
reduced quality. But the other half of the trials, it would not
adapt well, resulting in frequent interruptions in playback,
where each interruption might last for 1 to 2 minutes!

The poor performance example of Real streaming, which
is cut off to fit into the chart, continues the same trend of
frequent, long interruptions for the entire video, and
playback can last 20 minutes or more. When Real streaming
adapts well, it buffers for about 12 seconds before playback
begins, and has one buffering interruption of 18 seconds
about 6 seconds into the playback.

When NFB-enhanced HTTP is used, there is an initial
buffering period of 26 seconds before playback begins.
About 57 seconds into the playback, there is an interruption
that lasts for about 23 seconds. Thus, the general behavior of
NFB-enhanced HTTP is similar to Real streaming when the
latter is operating well.

As the packet loss rate rises above 5%, we expect an
increase in the frequency and duration of interruptions to
playback, and that Real streaming will be less able to adapt
and will more frequently exhibit the behavior of the poor
playback case.

D. Startup Delay Considerations
NFB does not necessarily pre-buffer any data before

streaming it to the client. In fact, in the smoothing and
packet loss experiments described previously, data is only
buffered passively, when the NFB-to-Client bandwidth is
less than the Server-to-NFB bandwidth. In these scenarios
there is no initial buffering delay at the NFB host.

If the NFB location is chosen to optimize video playback
from a particular server, only the first video played from this
server will incur any deployment overhead. All subsequent
sessions can use the same NFB instance. If the location is
chosen to optimize a problematic network link such as the
wired/wireless boundary (e.g. the user’s desktop PC or the
wireless/wired gateway), the same NFB instance can be used
for all video sessions after the initial deployment.

Our experiments demonstrated that in the packet loss
scenarios, the use of NFB reduced the initial client buffering
before playback begins. In the experiment using a 4.5%

packet loss rate, the video started 9 seconds faster when
using NFB as compared to when using Real streaming
despite that fact that Real adjusted the playback quality to
compensate for the high loss rate. In all of our experiments,
the video starts sooner with NFB than with direct HTTP.

In the smoothing scenario, using Real streaming
improves the video start time at the cost of a reduction in
quality. In our experiments, the reduction in quality was
drastic; the actual reduction in quality will depend on the
network conditions at the time the video is played. NFB is
primarily designed for situations in which HTTP must be
used due to server or client limitations. However, if the
video server supports a streaming protocol, and the client has
access to the protocol (e.g., the client is not behind a
restrictive firewall), a good compromise is to start playback
using the streaming protocol, and give the user the option to
switch to HTTP with NFB if the user is dissatisfied with the
reduced quality and is willing to wait for a restart.

IV. RELATED WORK
There is a large body of research on smoothing

compressed video streams by sending frames to the client
buffer ahead of their playback times to deal with bandwidth
burstiness. In this approach, a video transmission schedule is
calculated at the server based on the bit rate over the course
of the video, the server bandwidth, and the amount client
memory available for buffering. In [5], the smoothing takes
into account the possibility of having multiple intermediary
buffers (such as proxies) along the path between server and
client, and considers bandwidth limitations of network hops
among the intermediary buffers, the client, and the server. In
[3], the constraint of minimizing peak server bandwidth is
relaxed to keep the client and server in closer
synchronization, which better supports interactive
functionality such as fast-forward and rewind. Optimal
smoothing can be approximated for live video by calculating
the transmission schedule over a window of time based on
the currently available video data in conjunction with
predictive techniques [7]. We are attempting to solve a
different problem, of dynamic changes in network
performance and availability as a result of such factors as
wireless network variability and congestion, for HTTP
streaming. Our approach is transparent to the server so it
does not require existing servers to change.

Video performance can also be improved using proxy
caching. Some approaches perform partial caching of video
streams to improve performance, while reducing resource
consumption at the proxy [6, 8, 9, 10]. Other approaches use
cooperative caches to improve hit rates as well as reduce
server load and WAN bandwidth utilization [1, 2, 11]. There
are a number of important differences between NFB and
proxy caching. In proxy caching, videos are cached at a
shared server accessed by many clients, so resources must be
shared and the proxy can become a bottleneck. NFB is a
client-specific approach, so there is no competition for
resources among multiple users. Furthermore, the location
of a shared proxy cache may not be ideal for a particular

user. NFB can operate under dynamic deployment, and the
location can be chosen to best serve one particular client.

V. CONCLUSIONS
In this paper, we demonstrated that network flow

buffering could make HTTP-based video competitive with,
and in some ways even better than, Real streaming, under the
conditions of high LAN packet loss rates or in networks with
highly variable relative LAN/WAN bandwidths. Our
experiments showed that the smoothing benefits of NFB-
enhanced HTTP support full-quality playback, while
requiring less client buffering than direct HTTP, in cases
where Real streaming will reduce buffering requirements at
the cost of drastically reduced playback quality.

The ability to dynamically deploy a simple flow-
regulating buffer has the added benefit of reducing
retransmission delay in order to increase playback
performance under high LAN packet loss rates. In our
experiments, using NFB-enhanced HTTP allows the video
player to tolerate more than double the packet loss rate that
direct HTTP can tolerate. The lower the delay is between the
NFB-intermediary and the client, the more tolerant the
streaming will be to packet loss. Furthermore, using NFB-
enhanced HTTP outperforms Real streaming at medium
packet loss rates, and is at least competitive with Real
streaming at higher loss rates where Real streaming begins to
exhibit erratic behavior.

VI. REFERENCES
[1] S. Acharya and B. Smith, “MiddleMan: A Video Caching Proxy

Server,” Proc. 10th NOSSDAV, June 2000.
[2] M. Dahlin, R. Wang, T. Anderson, D. Patterson, “Cooperative

Caching: Using Remote Client Memory to Improve File System
Performance,” Proc. OSDI, Nov. 1994.

[3] W. Feng, “Rate-Constrained Bandwidth Smoothing for the Delivery
of Stored Video,” Proc. IS&T/SPIE Multi-media Networking and
Computing, Feb. 1997.

[4] Hitwise Press Report, “Hitwise Data Shows Overall Visits to Video
Search Sites Up 164%,” http://www.hitwise.com/press-
center/hitwiseHS2004/videosearch.php, May 24, 2006.

[5] J. Rexford, and D. Towsley, “Smoothing Variable-bit-rate Video in
an Internetwork,” IEEE/ACM Trans. Networking, pp. 202-215, Apr.
1999.

[6] S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix Caching for
Multimedia Streams,” Proc. INFOCOM, Mar. 1999.

[7] S. Sen, J. Rexford, J. Dey, J. Kurose, and D. Towsley, “Online
Smoothing of Variable-bit-rate Streaming Video,” IEEE Trans.
Multimedia, pp. 37-48, Mar. 2000.

[8] Y. Wang, Z. Zhang, D. H.C. Du, and D. Su, “A Network Conscious
Approach to End-to-End Video Delivery over Wide Area Networks
Using Proxy Servers,” Proc. IEEE INFOCOM, Apr. 1998.

[9] K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based Proxy Caching
of Multimedia Streams,” Proc. WWW, 2001.

[10] [S. Jin, A. Bestavros, A. Iyengar, “Network-Aware Partial Caching
for Internet Streaming Media Delivery,” ACM/Springer Multimedia
Systems Journal, vol. 9, no. 4, Springer-Verlag, Oct. 2003.

[11] D. A. Tran, K. A. Hua, and S. Sheu, “A New Caching Architecture
for Efficient Video Services on the Internet,” Proc. IEEE Symp.
Applications and the Internet (SAINT), Jan. 2003.

