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ABSTRACT

Deep neural networks (DNNs) have been widely adopted in
brain lesion detection and segmentation. However, locating
small lesions in 2D MRI slices is challenging, and requires
to balance between the granularity of 3D context aggrega-
tion and the computational complexity. In this paper, we pro-
pose a novel view-disentangled transformer to enhance the
extraction of MRI features for more accurate tumour detec-
tion. First, the proposed transformer harvests long-range cor-
relation among different positions in a 3D brain scan. Second,
the transformer models a stack of slice features as multiple 2D
views and enhance these features view-by-view, which ap-
proximately achieves the 3D correlation computing in an ef-
ficient way. Third, we deploy the proposed transformer mod-
ule in a transformer backbone, which can effectively detect
the 2D regions surrounding brain lesions. The experimen-
tal results show that our proposed view-disentangled trans-
former performs well for brain lesion detection on a challeng-
ing brain MRI dataset.

Index Terms— Transformer, lesion detection, brain MRI

1. INTRODUCTION

Deep convolutional neural networks (CNNs) have achieved
great success in medical image analysis [1, 2] and can even
outperform human experts on some task. CNN models have
become an important component in computer-aided diagnosis
systems. Locating brain tumors including primary tumor and
metastasis from magnetic resonance imaging (MRI) is a fun-
damental task for radiologists. However, brain metastases at
the early stage are so small that they could be easily missed or
mixed with vessels. Recently, thin MRI technique has been in
widespread use, which significantly improves the resolution
of 3D scans but also produces a much larger number of 2D
slices. Going through more 2D slices increases the workload
of radiologists, which may cause visual fatigue and higher
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missing rate of brain lesion detection. Thus, we aim to design
a novel CNN-based method that helps a radiologist localize a
brain tumor as efficiently as possible.

Automatic brain tumor and lesion detection has been
studied for years. A group of traditional methods is template
matching [3] that computes the correlation between pre-
defined tumor templates and each image position. But these
methods are limited by the handcrafted features and tem-
plates. Another group of brain lesion detection methods con-
ducts binary classification for each image position, which is
usually referred to as brain lesion segmentation [4, 5]. How-
ever, these methods require to label each image pixel/voxel,
which is expensive and also unnecessary if a radiologist only
needs to know the rough locations of brain tumors. Besides,
some of existing methods are designed with the brain MRI
dataset [6] of large-size tumors, which are not satisfactory
for small tumor detection in clinical applications. Some
other methods [7, 8] adopt existing 2D object detection net-
works [9] to predict the bounding-box of brain lesions in a 2D
slice. However, these models suffer from the lack of 3D con-
text fusion, namely aggregating the CNN features of different
MRI slices. Universal lesion detection [1, 2, 10, 11](ULD)
methods, which aim at locating universal lesions in various
organs for CT slices, could be applied to brain tumor detec-
tion in MRI slices. The recent advances [2] in ULD focus on
merging features from different slices but they seldom study
the long-range correlations between 3D spatial positions.

To better model 3D features for brain lesions, we conceive
a novel view-disentangled transformer module. The key idea
is to enhance stacked 2D slice features with the long-range
correlation [12, 13] between each pair of 3D spatial posi-
tions. To obtain the correlations for some target positions,
the target feature acts as a query and their similarities with
the feature of all positions are densely computed. These cor-
relations act as weights to aggregate all the features to update
the target one. For the features of normal brain tissue, they
are similar and used to update each other, which reduces the
feature noises. Besides, the contrast between a lesion feature
and normal brain features could be well preserved and even
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sharpened. However, directly measuring the dense correla-
tions is computationally prohibited since we need to maintain
high resolution of a slice feature to detect small lesions. Thus,
we introduce a view-disentangled mechanism that deals with
a 3D feature from three partial views in a sequential manner.
For each single view, the feature correlations are calculated in
a 2D form so that the computational costs are effectively re-
duced and become affordable. We further apply the approach
of divide-and-conquer to improve the efficiency by only com-
puting the correlations of features in the same sub-region.

In overall, our contributions are in three folds: firstly,
we introduce a view-disentangled transformer to harvest 3D
long-range contexts from multiple 2D views; secondly, we
develop a view-disentangled detection network by deploying
the proposed module in a transformer-based detection model;
lastly, we conduct experiments with a challenging Brain MRI
dataset to verify that the proposed network is competitive and
even superior to existing lesion detection methods.

2. METHOD

In this section, we first propose a novel view-disentangled
transformer (VD-Former). Then we introduce a transformer-
based lesion detection backbone and how the proposed VD-
Former is integrated with the backbone.

2.1. View-Disentangled Transformer

To locate small lesions, it is desirable to preserve high-
resolution features of brain MRI. On the other hand, brain
lesions and normal tissues are naturally 3D structures so it
is common to extract brain features from a 3D view. How-
ever, applying 3D convolution layers (C3D) to a whole 3D
brain image not only costs a prohibited size of GPU memory,
but also require a large number of annotated 3D MRI scans
for training. To obtain a tradeoff between feature resolution
and computing cost, we first calculate 2D features for each
MRI slice. Then a window of slice features are fused into
a single one with a new view-disentangled transformer. The
resulted feature is considered to contain the 3D context. The
mechanism of the proposed VD-Former can be formulated
as:

x′t = F ([xt−bT/2c, · · · , xt, · · · , xt+bT/2c]) (1)

where F (·) denotes the VD-Former and xt is the 2D feature
of t-th slice in a MRI scan. If k ∈ {t−bT/2c, · · · , t, · · · , t+
bT/2c} surpasses the valid range of the brain scan x, xk is
padded with zeros. [· · · ] denotes a concatenation of T con-
secutive slice features and returns Xt,T . The shape of Xt,T

is C ×H ×W × T where C is the channel number. H and
W are the two spatial dimensions of a 2D slice. x′t denotes
an enhanced feature of t-th slice, and is considered to harvest
3D information from the T slices surrounding xt. The shape
of xt and x′t is C ×H ×W × 1.
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Fig. 1. (a) shows the idea of View-Disentangled Transformer
that approximately computes 3D correlations from multiple
2D views. (b) is the proposed brain lesion detector based on
the VD-Former.

Since we aim to efficiently attain dense voxel-level cor-
relations in Xt,T to enhance xt, we implement the proposed
VD-Former as:

F (Xt,T ) = VH,W (VH,T (VW,T (Xt,T )))[t] (2)

where VW,T (·) is a transformer that computes the correlations
between any two vectors of size C within each W × T plane.
As the input of VW,T (·), Xt,T is transposed from C×H×W×
T to H × C ×WT where the 1st dimension of H elements
is processed in parallel. VH,T (·) and VH,W (·) are similar to
VW,T (·), but correspond to the other two views. As shown
in Eq. (2) and Fig. 1(a), a cascade of 2D transformers from
three different views could efficiently approximate a vanilla
3D transformer to extract inter-slice features. [t] is to return
the centering feature among T slices. The returned feature is
also denoted as x′t in Eq. (1).

To further reduce the computational overhead, we im-
plement each 2D transformer (VH,W , VH,T and VW,T ) with
Window-based Multi-head Self-Attention (W-MSA). Take
VW,T as an example. Given a window size w, the W × T
plane is cropped into bW/wc × bT/wc windows of size
w × w. Only if two feature vectors belong to the same win-
dow, their correlations are measured and used to update Xt,T .
To produce inter-window features, a Shifted-Window MSA
module is adopted following the above W-MSA module. The
overall process of VW,T is formulated as:

VW,T (X) = ST,W
−w/2(Aw(S

W,T
w/2 (Aw(X)))) (3)

where Aw(·) denotes a W-MSA module with a window size



w. SW,T
w/2 (·) is to cyclically shift its input feature along the di-

mensions of W and T . ST,W
−w/2(·) is to reversely shift and align

the feature with the original input X . The shifted-window
MSA is implemented as ST,W

−w/2(Aw(S
W,T
w/2 (·))). The details

of the W-MSA module Aw can be found in [14].

2.2. Overall Brain Lesion Detection Architecture

To extract multi-scale features for each 2D MRI slice, we
adopt a transformer-based feature pyramid network (FPN)
that consists of en encoder and a decoder. The encoder con-
tains a patch embedding layer at the beginning and four basic
Swin Transformer blocks [14]. Between two consecutive
transformer blocks, a patch merging layer is used to reduce
the feature resolution by converting the features of each 2× 2
patch to a feature vector. The output feature of the patch
embedding layer is denoted as C1. The output of the last
transformer block is denoted as C5. The intermediate outputs
of the patch merging layers are denoted as C2-C4. The de-
coder aligns the channel number of Ci, fuses Ci from high to
low levels, and yields the fused features Pi. The multi-scale
feature fusion can be formulated as:

Pi =

{
Conv(Ci), i = 5,

Conv(Ci) + Up(Ci+1), 2 ≤ i < 5,
(4)

where Conv(·) denotes a convolution layer converting the
channel number to 256. Up(·) is to up-sample Ci+1 so that
Ci+1 has the same resolution as Ci. To obtain a higher-level
feature, P6 is computed by applying a max-pooling operator
to P5.

In a baseline without using our proposed view-disentangled
transformer, P1-P6 are used to predict the bounding box of
brain lesions in a Cascade R-CNN [15] way. Cascade R-
CNNs are based on two-stage detection. At the first stage,
a sub-network takes {Pi} as input to predict the region pro-
posals of brain lesions. At the second stage, a sequence
of different detectors are employed to regress the bounding
boxes iteratively. To develop a model with the proposed VD-
Former, we set up a VD-Former module after each Pi in the
above-mentioned baseline, as shown in Fig. 1(b). Since Pi is
a feature of a 2D MRI slice, Pi can be denoted as Pt,i where
t is the slice index. Pt,i is updated as P ′t,i by our proposed
VD-Former using T − 1 neighboring slices, which can be
formulated as:

P ′t,i = F ([Pt−bT/2c,i, · · · , Pt,i, · · · , Pt+bT/2c,i]) (5)

where P ′t,i and Pt,i correspond to x′t,i and xt,i in Eq. (1). F
is the view-disentangled transformer. Then P ′t,1-P ′t,6 will re-
place Pt,1-Pt,6 to be used for lesion detection in the t-th slice.
Note that the input of the brain lesion detector is T 2D images
which has 3 channels corresponding to 3 consecutive slices.
For examples, the center one of these T images can be de-
noted as [It−1, It, It+1] where It is the t-th 2D MRI slice.

Each time T images are sent into the detector, only the results
of the centering slice are predicted.

3. EXPERIMENTS

3.1. Implementation details

We collect an in-house brain MRI dataset of 266 patients and
14,530 2D lesion boxes. Each MRI scan has more than 1
bounding box of lesions which are of 3 types, metastasis, pri-
mary tumour and benign lesion. We only focus on 1-category
lesion detection regardless of lesion types. In practice, ra-
diologists can predict the fine-grained types with the lesion
locations. We use the MRI modality of T1CE. Each MRI is
of size 512×512×{100∼300}. Each 2D slice is combined
with its adjacent slices to form a 3-channel image as an input.
The channel of unavailable slices are padded with zeros. The
dataset is randomly split into 3 subsets of 128, 48, 90 patients,
for training, validation and testing respectively. For evalu-
ation, we use sensitivity [16] and mean Average Precision
(mAP) [17] with an IoU threshold of 0.5. We report the sen-
sitivity when the average number of false positives per scan
is 1/2/4/8. The experiments are run on a NVIDIA V100 GPU
of 32GB. Our model is initialized by the ImageNet-pretrained
weights and trained for 36 epochs with an AdamW optimizer,
an initial learning rate of 1e-4, a weight decay of 0.05, a batch
size of 1. T is set as 3. 5 slices are input to the network at
once. Cross-entropy loss and Smooth L1 loss are adopted to
classify and regress lesion boxes respectively.

3.2. Comparison with the state-of-the-art

We verify the effectiveness of our proposed view-disentangled
transformer based detector by comparing to the existing le-
sion detection models. For comparisons we select two groups
of existing methods. The first group is universal lesion de-
tection (ULD) methods including MULAN [1], ACS [10]
and A3D [2], which are proposed to locate nodules in CT for
different organs. These ULD methods model 3D features by
fusing 2D features of multiple slices but they do not resort
to dense pairwise correlations. The second group, which is
based on 2D object detection, includes Faster RCNN (with
FPN) [9], DHRCNN [18], Dynamic RCNN [19], Deformable
DETR [20], and Swin Cascade RCNN [14]. Swin Cascade
RCNN is implemented by combining a Swin Transformer
model with a Cascade R-CNN. The input of these 2D object
detection methods is a 3-channel 2D image that corresponds
to a stack of 3 consecutive MRI slices. Thus these methods
have access to the basic 3D contexts. These methods only
predict lesion boxes for the slice at the centering input chan-
nel. As Table 1 shows, our proposed method (denoted as
‘Ours’) significantly outperforms both two groups of exist-
ing models with mAP and sensitivity. The proposed method
achieves the highest mAP of 0.414 that is 1.6% higher than
the second best A3D. Our model obtains the best Average



Table 1. Comparison between the state-of-the-art models and our proposed method.

Model Year mAP
Sensitivity at FPs / scan

Params
1 2 4 8 Average

Faster RCNN 2015 0.352 0.233 0.291 0.371 0.500 0.381 41.12M
MULAN 2019 0.329 0.130 0.216 0.318 0.406 0.311 26.03M

DHRCNN 2020 0.386 0.217 0.286 0.360 0.468 0.368 46.71M
Dynamic RCNN 2020 0.352 0.143 0.219 0.309 0.409 0.313 41.12M

Deformable DETR 2021 0.346 0.145 0.216 0.291 0.381 0.295 40.8M
ACS 2021 0.283 0.170 0.216 0.279 0.356 0.283 41.12M
A3D 2021 0.398 0.158 0.225 0.285 0.351 0.285 74.04M

Swin Cascade RCNN 2021 0.387 0.200 0.278 0.370 0.468 0.371 97.8M
Ours 0.414 0.246 0.332 0.449 0.564 0.449 109.68M

Table 2. Effectiveness of our proposed view-disentangled
transformer.

Model mAP
Sensitivity at FPs/scan

1 2 4 8 Average

Baseline 0.387 0.200 0.278 0.370 0.468 0.371
+P3D 0.406 0.229 0.304 0.391 0.486 0.394
+C3D 0.412 0.218 0.319 0.411 0.523 0.415

+VDFormer 0.414 0.246 0.332 0.449 0.564 0.449

Sensitivity of 0.449 which is 6.8% higher than the second
best Faster RCNN of 0.381. As Fig. 2 displays, our pro-
posed method locates all 4 lesions while the existing methods
FRCNN, MULAN and DHRCNN have missed 1-2 regions.

3.3. Effectiveness of the View-Disentangled Transformer

We show the effectiveness of our proposed VD-Former mod-
ule. In Table 2, the model ‘Baseline’ has been described in
Sec 2.2 and is based on [14]. ‘+VD-Former’ is developed
by deploying our proposed module at the baseline (shown
in Fig. 1(b). ‘+C3D’ and ‘+P3D’ denote two models imple-
mented by replacing all the VD-Former modules with C3D
and P3D modules respectively. The C3D module is to apply
a vanilla 3D convolution to a stack of 2D slice features. The
pseudo 3D (P3D) module joints 1D and 2D convolutions to
approximate a C3D layer, which is adopted in MULAN [1].
As Table 2 displays, the model with the VD-Former surpasses
the baseline without 3D fusion by 2.7% mAP, which shows
the effectiveness of VD-Former. Besides, the Average Sen-
sitivity of +VD-Former is 3.4% and 5.5% higher than those
of +C3D and +P3D respectively. As Fig. 2 shows, the base-
line and the model with P3D fusion predict 1-2 false neg-
atives while our method with the VD-Former does not out-
put any FPs. The above results suggest that our proposed
VD-Former is a competitive module for 3D feature fusion.
To understand the efficiency of VD-Former, we try to deploy
vanilla 3D transformers (3D-Formers) at the baseline but ap-
plying 3D-Formers to P4-P6 is already prohibited (>32 GB

OursBaseline+P3DBaseline

FRCNN MULAN DHRCNN

Fig. 2. Visual results of existing methods, the baseline, the
baseline+P3D and our method. Real lesions and the predicted
ones are marked with blue and red boxes respectively.

GPU memory). In contrast, applying VD-Formers to the fea-
ture maps P4-P6 (see Fig. 1(b)) takes 7.3 GB and equipping
P2-P6 needs 26 GB. More details are in the supplemental ma-
terials.

4. CONCLUSION

In this paper we introduce a new way to enhance 3D MRI fea-
tures for locating brain lesions. The proposed neural network
module, View-Disentangled Transformer, is able to model
contrast and spatial coherence by harvesting dense correla-
tions among 3D spatial positions in a brain. The proposed
VD-Former separates a 3D feature into multiple 2D views,
aggregates these 2D-view correlations to approximate the 3D
correlation computing. We further develop a brain lesion de-
tection network based on the VD-Former, and experimentally
show that the proposed VD-Former based detector obtains the
state-of-the-art performance in comparison to existing object
detection and universal lesion detection methods.
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