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Abstract

Wing disc pouches of fruit flies are a powerful genetic model for studying physiological 

intercellular calcium (Ca2+) signals for dynamic analysis of cell signaling in organ development 

and disease studies. A key to analyzing spatial-temporal patterns of Ca2+ signal waves is to 

accurately align the pouches across image sequences. However, pouches in different image frames 

may exhibit extensive intensity oscillations due to Ca2+ signaling dynamics, and commonly used 

multimodal non-rigid registration methods may fail to achieve satisfactory results. In this paper, 

we develop a new two-phase non-rigid registration approach to register pouches in image 

sequences. First, we conduct segmentation of the region of interest. (i.e., pouches) using a deep 

neural network model. Second, we use a B-spline based registration to obtain an optimal 

transformation and align pouches across the image sequences. Evaluated using both synthetic data 

and real pouch data, our method considerably outperforms the state-of-the-art non-rigid 

registration methods.
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1. INTRODUCTION

Ca2+ is a ubiquitous second messenger in organisms [1]. Quantitatively analyzing spatial-

temporal patterns of intercellular calcium (Ca2+) signaling in tissues is important for 

understanding biological functions. Wing disc pouches of fruit flies are a commonly used 

genetic model system of organ development and have recently been used to study the 

decoding of Ca2+ signaling in epithelial tissues [1, 2]. However, wing discs can undergo 

considerable movements and deformations during live imaging experiments. Therefore, an 

effective automatic image registration approach is needed to align pouches across image 

sequences.
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Registering tissues that undergo deformations in time-lapse image sequences is a 

challenging problem. For example, experimental image data of wing disc pouches at 

different time points are moving or deforming due to a general feature of tissue growth, 

morphogenesis, and due to general movement during the live imaging process. Furthermore, 

a time-lapse movie can contain many frames, and a number of movies are needed to obtain 

reliable measurements of Ca2+ activity due to the noisy and stochastic nature of the signals, 

which make the processing more complicated and costly. Common approaches suffer 

considerably due to cumbersome intensity distortions of tissues caused by Ca2+ oscillations. 

A method for minimizing the error residual between the local phase-coherence 

representations of two images was proposed to deal with non-homogeneity in images [3], 

which relies heavily on structural information. But, in our problem, the intensity inside the 

pouches may change a lot, thus causing such methods to fail. A Markov-Gibbs random field 

model with pairwise interaction was used to learn prior appearance of a given prototype, 

which makes it possible to align complex images [4]. Incorporation of spatial and geometric 

information was proposed to address the limitations of the static local intensity relationship 

[5]. But, the computational complexity of these methods is high. In our problem, a single 

time-lapse movie may have hundreds of frames, and hundreds of movies are analyzed. 

Hence, these methods do not work well for our problem. In general, known methods do not 

address well the kind of complex intensity distortion in our images with a reasonable 

computation cost.

To address the difficulty of spatial intensity distortion along with various ROI deformations 

and movements, we propose a new non-rigid registration approach to effectively align 

pouches at different time points in image sequences. Our approach consists of two main 

stages: (1) a segmentation stage and (2) a mapping stage (see Fig. 1). The segmentation 

stage is based on a deep neural network (FCN). Because the accuracy of the ROI boundary 

is a key factor influencing the registration results, we apply a graph search algorithm to 

refine the segmented pouch boundaries. The mapping stage uses the segmentation results 

from the first stage to characterize an optimal transformation. We first apply a rigid 

transformation to modulate the movement of pouches, and then design an object pre-

detection B-spline based non-rigid algorithm to produce the final mapping.

2. METHODOLOGY

In this section, we present a complete pipeline, which takes time-lapse image sequences of 

pouches as input and produces the registered sequences (see Fig. 1). We first discuss the 

segmentation stage (i.e., FCN model and boundary refinement), and then the mapping stage 

(i.e., rigid transformation and non-rigid transformation).

2.1. Segmentation Stage

Our registration approach is based on accurate pouch segmentation. Pouches in our images 

are commonly surrounded and touched by extra tissues with similar intensity and texture, 

and the separation boundary between pouches and extra tissues is usually of poor visibility. 

Meanwhile, the noise induced by the live imaging process makes the segmentation task 

more challenging. Thus, it is important for our segmentation algorithm to leverage the 
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morphological and topological contexts, in order to correctly segment the shape of each 

actual pouch, especially its boundary, from the noisy background. For this, we employ an 

FCN model to exploit the semantic context for accurate segmentation, and a graph search 

algorithm to further refine the boundaries.

FCN module—Recently, deep learning methods have emerged as powerful image 

segmentation tools. Fully convolutional networks (FCN) are widely used in general semantic 

segmentation and biomedical image segmentation [6, 7].

It is worth mentioning that in our images, the separation boundary between a pouch and 

other tissues is usually quite subtle (as thin as 3 to 5 pixels wide) and obscure, while the 

whole contextual region (including both the pouch and extra tissues) can be of a relatively 

large scale (more than 200 × 200 pixels). Therefore, the FCN model must fully exploit both 

the fine details and a very large context. For this purpose, we carefully design the FCN 

architecture following the model in [8] to leverage a large receptive field without sacrificing 

model simplicity and neglecting fine details. The exact structure of our FCN model is 

depicted in Fig. 2.

Boundary refinement—We observed that the boundaries of the output pouches from our 

FCN model may be fuzzy or of irregular shape in difficult cases (see Fig. 4(F)). To improve 

the boundary accuracy of the segmented pouches, we first apply a Gaussian smooth filter to 

reduce the influence of intensity variations inside the pouches and then employ a graph 

search algorithm with the node weights being the negatives of the gradients to further refine 

the shape boundaries. This allows the subsequent mapping stage to be built upon more 

accurate segmentation and produce better registration results. Details of this process are 

omitted due to the page limit.

2.2. Mapping Stage

The goal of the registration process is: For every point in the source image, obtain an 

optimal corresponding point in the reference image. A key observation is that the intensity 

profile of the same pouch may incur substantial changes in different frames of an image 

sequence, due to undergoing Ca2+ signal waves. Hence, intensity is not a reliable cue for 

finding optimal correspondence between points in different frames of a sequence. Here, we 

utilize the results from the segmentation stage.

Rigid transformation—Since there are lots of movements (i.e., rotation and translation) 

of pouches in image sequences, we first compute an optimal rigid transformation to reduce 

their influence. This optimization step uses a regular-step gradient descent algorithm. Note 

that here, local optimum traps could be an issue in practice. Specifically, since the pouches 

are often of oval shapes, a local optimum may yield incorrect results where the object is 

aligned with the opposite orientation. To resolve this issue, we always initialize the 

optimization process using the optimum parameters computed from the preceding frame in 

the sequence, since the pouch movement in consecutive frames is usually not very big.
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Non-rigid transformation—The non-rigid registration seeks an optimal transformation 

T : x, y, t x′, y′, t0 , which maps any points in the source image at time t to time t0 (i.e., in 

the reference image). We use the free-form deformation (FFD) transformation model, based 

on B-splines [9], to find an optimal transformation.

For our problem, not too many control points are needed outside a pouch, because we need 

to focus only on the ROI. Thus, detecting ROIs first can save computation time. Pouches 

will be near the same position in the frames after the rigid registration, making it possible to 

do non-rigid transformation only around the ROI area. Based on this observation, we can 

crop an area in the first frame, and apply a lattice Φ to this area in the following changing 

frames. We define the lattice Φ as an (m + 3) × (n + 3) grid in the domain Ω (see Fig. 3).

We define the registration model as follows. Let Ω = x, y Xl ≤ x < Xr, Y l ≤ y < Y r  be a 

rectangular domain in the xy plane, where the X and Y values specify the boundary of the 

detection area. To approximate the intensity of scattered points, I(x, y), in a pouch, we 

formulate a function f as a uniform cubic B-spline function: 

f x, y = ∑j = 0
3 ∑i = 0

3 Bi s Bj t Φ i + k, j + l , where s = x − x , t = y − y , k = x − 1, and 

l = y − 1. In addition, Bi represents the i-th basis function of the cubic B-spline: B0(t) = 

(1−t)3/6, B1(t) = (3t3−6t2 +4)/6, B2(t) = (−3t3 − 6t2 +4) /6, and B3(t) = (t3)/6.

Since the resolution of the control points determines the non-rigid degree and has a big 

impact on the computation time, a higher resolution of control points gives more freedom to 

do deformation while also increasing the computation time. To optimize this trade-off, we 

use a multi-level mesh grid approach [10] to devise a computationally efficient algorithm. 

Let Φ1, Φ2,…, Φg denote a hierarchy of meshes of control points with increasing resolutions 

and T1, T2,…, Tg be the deformation functions with respect to each mesh. We first apply a 

coarse deformation, and then refine the deformation gradually. The size of the mesh grid is 

increased by a factor of 2 with the same spacing, so that the raw image is down-sampled to 

the corresponding size at different levels. The final deformation is the composition of these 

functions: T (Ω) = Tg (…T2(T1(Ω))…).

To obtain an optimal transformation Φ, we minimize the following energy function: E = Fs + 

QS, where the first term is the similarity measure and the second term is for regularization. 

Q is the curvature penalization and S is the displacement of control points. The similarity 

measure we use is the sum of squared distance (SSD): SSD = 1
N ∑ A − BT 2

, where A is the 

reference image intensity function, BT is the intensity function of the transformed image of a 

source image B under the current transformation T and N is the number of pixels.

This process iteratively updates the transformation parameters, T , using a gradient descent 

algorithm. When a local optimum of the cost function is smaller than ε or the number of 

iterations is bigger than Nmax, the algorithm will terminate.
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3. EXPERIMENTS AND EVALUATIONS

We evaluate our registration approach from two perspectives. First, we evaluate the accuracy 

of the segmentation method, because the segmentation accuracy is crucial to our overall 

approach. Second, we conduct experiments using both synthetic data and real biological data 

to assess the registration performance of different approaches.

3.1. Segmentation Evaluations

We conduct experiments on 100 images of 512 × 512 pixels selected from 10 randomly 

chosen control videos. Our method is compared with both traditional method (e.g., level set 

[11]) and state-of-the-art FCN models (i.e., U-Net [7] and CUMedNet [12]). The FCN 

models are trained using the Adam optimizer [13] with a learning rate of 0.0005. Data 

augmentation (random rotation and flip) is used during training. We use the mean IU 

(intersection over union) and F1 as the metrics. Table 1 shows the quantitative results of 

different methods, and Fig. 4 shows some segmentation examples of pouches using different 

methods. It is evident that our FCN model works better in segmenting difficult ROIs, and 

our boundary refinement can help obtain accurate ROI boundaries.

3.2. Registration Evaluations

We compare the registration performance with the Demon algorithm [14] and a B-spline 

method based on Residual Complexity (RC) [15], which are two state-of-the-art non-rigid 

registration methods for images with spatially-varying intensity.

Synthetic data—For synthetic data, we choose 8 pouch images as reference images. 

Specifically, for each reference image R, we generate 20 source images by adding geometric 

distortion GT, and intensity distortion IT, to simulate an image sequence with undergoing 

movements and Ca2+ signaling i . e . , R
GT Si

1 IT Si
2, i = 1, 2, …, 20 . For geometric 

distortions, we apply an elastic spline deformation to perturb the points according to the grid 

deformation and a rigid transformation. For intensity distortion, we first add Gaussian noise 

in random disk-shaped regions within the pouch to simulate the calcium signal waves and 

then rescale the intensity to [0, 1]. Our target is to find the optimal transformation Ti from 

every source image Si
2 to the corresponding reference image i . e . , Si

2 Ti R . To quantify the 

performance, we compare the intensity root mean square error (RMSE) between the 

reference image R and the clean registered images Ci, which are obtained by applying Ti to 

the geometrically distorted images without intensity distortion i . e . , Si
1 Ti Ci . The idea is to 

evaluate whether the registration algorithm is able to find an optimal geometric 

transformation without damaging the texture. Fig. 5.I shows some visual results of different 

methods, and Table 2 gives quantitative results. The results of our approach are considerably 

more accurate.

Wing disc pouch data—We randomly choose 8 movies from 150 control videos. In each 

movie, we take the first frame as the reference image and all the other frames as source 
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images. To validate the registration results, we apply transformation T to the annotation of 

source images to obtain the registered annotation boundary and compare the results using 

the Hausdorff distance (HD) error metric. Table 3 gives the quantitative results. Our 

approach achieves accurate boundary shapes. Also, our method obtains clear texture inside 

ROIs, as shown by the examples in Fig. 5.II.

4. DISCUSSIONS AND CONCLUSIONS

In this paper, we propose a new two-stage non-rigid image registra tion approach and apply 

it to analyze live imaging data of wing disc pouches for Ca2+ signaling study. Comparing to 

the state-of-the-art non-rigid methods for biomedical image registration, our approach 

achieves higher accuracy in aligning images with non-negligible texture distortions. Our 

approach lays a foundation for quantitative analysis of pouch image sequences in whole-

organ studies of Ca2+ signaling related diseases. Our approach may be extended to solving 

other biomedical image registration problems, especially when the intensity profiles and 

texture patterns of the target objects incur significant changes. The mapping stage of our 

approach is application-dependent, while our segmentation method is general and can be 

applied to many problems by modifying only the graph search based boundary refinement 

procedure.
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Fig. 1. 
An overview of our proposed registration approach.
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Fig. 2. 
The structure of our FCN model.
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Fig. 3. 
Configuration of lattice grid Φ for non-rigid transformation.
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Fig. 4. 
Segmentation results of different methods on a somewhat difficult pouch image (BR = 

Boundary Refinement). The red arrow indicates a location that demonstrates the effect of 

BR.
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Fig. 5. 
Registration results. I: Synthetic data. (A) A reference image; (B) A source image; (C) The 

expected registration result; (D) Our method; (E) RC; (F) Demon. II: Real pouches. (C) 

Intermediate segmentation; (D) Our method; (E) RC; (F) Demon. The red arrows point at 

some areas with unsatisfactory registration.
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Table 1.

Comparison results of segmentation.

Mean IU F1 score

Level set 0.8235 0.8294

CUMedNet 0.9394 0.9454

U-Net 0.9479 0.9542

Our FCN 0.9586 0.9643

Our FCN + BR 0.9617 0.9682
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Table 2.

Registration results of synthetic data.

Movie No. Our method RMSE (pixel) RC RMSE (pixel) Demon RMSE (pixel)

1 0.097 ± 0.019 0.137 ± 0.039 0.150 ± 0.023

2 0.097 ± 0.021 0.133 ± 0.025 0.184 ± 0.043

3 0.091 ± 0.012 0.137 ± 0.033 0.162 ± 0.021

4 0.098 ± 0.009 0.119 ± 0.024 0.128 ± 0.018

5 0.086 ± 0.011 0.094 ± 0.020 0.124 ± 0.010

6 0.088 ± 0.013 0.132 ± 0.059 0.149 ± 0.015

7 0.095 ± 0.018 0.096 ± 0.013 0.133 ± 0.021

8 0.099 ± 0.019 0.109 ± 0.019 0.175 ± 0.034

Average 0.094 ± 0.015 0.120 ± 0.029 0.151 ± 0.023
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Table 3.

Registration results of real pouch data.

Movie No. Our method HD (pixel) RC HD (pixel) Demon HD (pixel)

1 5.199 ± 0.484 5.490 ± 0.876 5.633 ± 0.517

2 5.556 ± 1.250 6.189 ± 0.833 6.819 ± 1.193

3 5.568 ± 0.702 6.403 ± 0.812 6.164 ± 0.514

4 4.342 ± 1.347 6.160 ± 1.311 6.761 ± 0.787

5 4.622 ± 0.684 5.461 ± 0.824 5.072 ± 0.330

6 4.913 ± 0.527 5.328 ± 1.394 6.696 ± 0.703

7 6.882 ± 1.162 7.413 ± 0.574 7.192 ± 0.836

8 5.344 ± 0.443 6.173 ± 0.805 5.845 ± 0.576

Average 5.303 ± 0.825 6.077 ± 0.929 6.273 ± 0.682
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