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Abstract— In recent years, infrastructure-based localization
methods have achieved significant progress thanks to their
reliable and drift-free localization capability. However, the pre-
installed infrastructures suffer from inflexibilities and high
maintenance costs. This poses an interesting problem of how to
develop a drift-free localization system without using the pre-
installed infrastructures. In this paper, an infrastructure-free
and drift-free localization system is proposed using the ambient
magnetic field (MF) information, namely IDF-MFL. IDF-MFL
is infrastructure-free thanks to the high distinctiveness of the
ambient MF information produced by inherent ferromagnetic
objects in the environment, such as steel and reinforced concrete
structures of buildings, and underground pipelines. The MF-
based localization problem is defined as a stochastic optimiza-
tion problem with the consideration of the non-Gaussian heavy-
tailed noise introduced by MF measurement outliers (caused
by dynamic ferromagnetic objects), and an outlier-robust state
estimation algorithm is derived to find the optimal distribution
of robot state that makes the expectation of MF matching cost
achieves its lower bound. The proposed method is evaluated
in multiple scenarios1, including experiments on high-fidelity
simulation, and real-world environments. The results demon-
strate that the proposed method can achieve high-accuracy,
reliable, and real-time localization without any pre-installed
infrastructures.

I. INTRODUCTION

Localization is a fundamental task in developing au-
tonomous robotic systems which has the potential to enable
extensive industrial applications, such as construction [1],
logistics [2], and underground mine exploration [3]. All of
these missions rely on reliable state estimation for mobile
robots. During the last decade, simultaneous localization
and mapping (SLAM) technology [4]–[6] has been well
applied to mobile robots. However, localization in enclosed
or partially enclosed environments (e.g. corridors, indus-
trial warehouses, carparks) still remains challenging and
intractable due to the inevitable drift of the SLAM system.
Even though the loop closure [7], [8] and bundle adjustment
(BA) [9]–[11] techniques are able to correct drift, the state
can change drastically when the drift is eliminated. The state
transition is unacceptable for the mobile robots due to the
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causing of destabilization. To overcome the aforementioned
limitations of SLAM systems, pre-installed infrastructures,
such as ultra-wideband (UWB) anchor [12], radio frequency
identifications (RFIDs) [13], and QR codes [14], are typically
deployed in industrial scenarios. However, the installation
and maintenance process of infrastructures-based localization
systems is inflexible and costly which significantly limits
the industrial application of the mobile robot system. Hence,
inspired by natural animals, such as spiny birds and lobsters,
that can sense their position and orientation using infor-
mation from the local anomalies of earth MF [15], [16],
an infrastructure-free localization system is investigated for
mobile robots by using the local ambient MF.

A. Related Works

In recent years, infrastructure-free localization systems
have been amenable for wide-scale commercial use. A serial
of priori-map-based SLAM methods is investigated to realize
smooth and drift-free localization without any infrastructures.
In [17], a real-time high-precision visual localization system
is designed for autonomous vehicles that employ only low-
cost stereo cameras to localize the vehicle with a priori 3D
LiDAR map. The drift of the visual odometry is eliminated
by registering the visual point cloud to the pre-build LiDAR
map through a probabilistic weighted Normal Distributions
Transformation (NDT) [18]. Considering that visual feature
detection and matching are unstable in texture-less or repet-
itive scenarios, a semantic pre-build map is adopted in [19]
which contains typical features in parking lots, such as guide
signs, parking lines, speed bumps, etc. However, the priori-
map-based SLAM methods typically degrade significantly or
even become unobservable in conditions of the visual/LiDAR
odometry unreliable caused by poor illumination or self-
similar scenes.

To overcome this, an ambient MF-based localization sys-
tem has become as a viable alternative for infrastructure-free
localization thanks to the distinctiveness and pervasiveness
of MF distortions caused by ferromagnetic objects. The use
of MF as a source of SLAM is a promising novel approach.
To achieve MF-based SLAM, the MagSLAM [20] employs
a grid-based spatial discretization methodology and assumes
the MF intensity in one grid with respect to the same
distribution. In [21], a pedestrian dead reckoning (PDR)-
aided MF SLAM is investigated which represents the MF
map with a reduced-rank Gaussian process [22] using the
Laplace basis functions, and a Rao-Blackwellized particle
filter (PF) is adopted to compensate for position drift in
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PDR. To further improve the real-time performance of [21],
the PF is replaced by extended Kalman filter (EKF) in [23]
thanks to the derivation of the MF gradient expressions.
However, similar to the visual/LiDAR SLAM [4], [6], the
MF SLAM also suffers from drift when the pre-build MF
map is unavailable.

A series of works investigate the process of offline MF
map construction through the bilinear interpolation [24],
Gaussian process [25], and learning-based MF prediction
[26]. In [27], a drift-free MF-based localization algorithm
is proposed by fusing the MF-based localization with PDR
through the EKF, where the MF-based localization algorithm
is designed to estimate the rigid transformation that optimally
aligns the MF measurements with the pre-build MF map
through the Gauss-Newton optimization. Considering the
potential MF gradient flatness region in real-world environ-
ments, which can lead to the degeneracy of gradient-based
state estimation (e.g. Gauss-Newton, Levenberg-Marquardt,
and Kalman filter) [28], PF [29]–[31] is well-applied thanks
to its excellent performance in non-convex optimization. In
[32], a complete MF localization system is designed by
integrating offline MF map construction, PDR odometry, and
a dynamic time warping (DTW)-based MF sequence match-
ing [33] into an indoor pedestrian localization framework.
Both [27], [29]–[32] are wheel odometry/PDR-aided MF
localization systems, which limited them can only deploy
on certain robot platforms (legged robots or robots equipped
with the wheel encoder). To overcome this problem, a few
works [34]–[36] paid attention to the pure MF localization
algorithm. In [34] and [35] the MF-based localization is
realized through the classical K-Nearest Neighbors (KNN)
algorithm. However, the KNN-based MF matching is typi-
cally limited by the similar-sequential-route assumption (the
online localization route should be similar to the route
used in the offline MF map construction process) due to
the 3D MF vector measured by a magnetometer at one
single location is highly dependent on the orientation. In
[36], a pure MF localization method is proposed with the
maximum a posteriori (MAP) estimator which solves the
similar-sequential-route limitation problem with a rotation-
invariant MF descriptor.

B. Motivation and Contributions

In view of the aforementioned analysis, despite the re-
cent popularity of ambient MF-based state estimation re-
search for infrastructure-free localization, most of the works
are drift-suffered [20], [21], [23], auxiliary odometry-aided
[27], [29]–[32], or similar-sequential-route limited [34], [35].
However, drift is unacceptable for mobile robots in enclosed
or partially enclosed environments, and the dependence on
auxiliary odometry limits the application of the algorithm
into certain robot platforms, while the similar-sequential-
route limitation leads the robot to track with the fixed path.
With the goal of designing a flexible drift-free localization
system, in this work, a robust pure MF-based localization
system is developed without any assistance from infrastruc-
tures. The key idea of the proposed infrastructures-free, drift-

free localization system is to find the optimal distribution
of state that makes the expectation of MF matching cost
achieves its lower bound. The MF matching cost is designed
to describe the difference between the real-time MF measure-
ments and the pre-built MF map which integrates correct
MF matching measurement and MF measurement outlier
(ignored in traditional MF-based localization methods) si-
multaneously in a piecewise function. Different from the
traditional MF-based localization methods [20], [21], [23],
[27], [29]–[31], [34]–[36], which generally approximate the
MAP problem with the Gaussian distribution assumption, the
proposed method deals with non-Gaussian heavy-tailed noise
(MF measurement outlier introduced) robustly by optimizing
the expectation of cost function with a stochastic optimiza-
tion algorithm. The main contributions of this paper are listed
as follows:

• A pure MF-based localization approach is proposed
for mobile robots which is infrastructure-free, drift-
free, and does not rely on any additional odometry
information.

• To deal with the non-Gaussian heavy-tailed noise, an
outlier-robust state estimator is derived which can opti-
mize the non-convex and noncontinuous state estimation
problem with parallel sampling.

• The practical implementations of the proposed stochas-
tic estimator are illustrated in detail, including Monte-
Carlo approximation, sampling dimension shrinking on
manifolds, and cost-shifting strategy. The practicability
and performance of the proposed MF-based localization
system are extensively verified in both simulated and
real-world experiments.

II. SYSTEM OVERVIEW

The overall design of the proposed MF-based localization
system is given in Fig. 1, which can be divided into an
offline MF map construction phase and an online MF-based
localization phase. For offline MF map construction, an
external odometry is introduced to project the MF mea-
surements into the world frame. Although the loop closure
and BA of the SLAM system can lead to state transition
in the online localization phase, these techniques are very
suitable to provide a drift-free and high-accuracy trajectory
for the offline mapping phase. In this work, a LiDAR SLAM
algorithm [4] is adopted to provide drift-free pose estimation
with loop closure [8], and a global LiDAR BA [11] is also
implemented to further improve the accuracy of the estimated
offline trajectory. After projecting the collected MF data
into the world frame, a MF interpolation is adopted using
the Gaussian process [25] to produce a dense MF map.
The MF map is stored using the hash data structure in a
certain resolution (0.05m used in this work) to achieve an
effective data insertion and index operation in a constant
time complexity of O(1). For the online localization phase,
the magnetic matching cost is constructed by measuring the
difference between the online collected MF measurements
and their correspondences in the pre-build MF map (indexed
in the hash table). The online MF-based localization is
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Fig. 1. System overview of IDF-MFL. As noted in Remark 1, the external
odometry is only used in offline MF map construction phase.

realized by minimizing the expectation of the MF matching
cost in a stochastic optimization manner (Section IV), and a
Monte-Carlo sampling is adopted to approximate the optimal
distribution of state which makes the expectation of cost
function achieve its lower bound (Section V).

Remark 1: Different from auxiliary odometry-aided MF-
based localization methods [27], [29]–[32], in this work, the
external odometry information is only used in the offline
MF map construction phase. In industrial applications, map
construction devices and mobile robots are typically two
separate entities. Hence, during the online localization phase,
low-cost pure MF localization can be achieved without
LiDAR or platform-specific odometry systems, such as PDR,
wheel odometry.

III. PROBLEM FORMULATION

The objective of the proposed localization system is to
utilize magnetic sensing to determine the robot’s state,
producing robust, drift-free, and infrastructure-free estimates
in repetitive environments. Given a magnetic map M and
a sequence of magnetic measurements Btk = {Bi

tk
}Ni=1,

with Bi
tk

= [Bi
x,tk

, Bi
y,tk

, Bi
z,tk

]⊤ the i-th magnetic sensor
measurements within the magnetic sensor frame. The MF-
based localization measurements can be represented as the
following model:

Ri
tk
Bi

tk
= M(pi

tk
) + oi

tk
+ ntk , i = 1, . . . , N

Ri
tk

= Rtk
bRi

m,pi
tk

= Rtk
bpi

m + ptk

(1)

where Rtk ∈ SO3 and ptk ∈ R3 are the unknown (to-be-
estimated) rotation and translation vector, (·)tk indicates the
variable obtained at time tk, N is the number of magnetic
sensors installed on the robot, bRi

m and bpi
m are extrinsic

between i-th magnetic sensor frame and body frame, M(pi
tk
)

is a function which returns the ambient MF of pre-build
MF map M at position pi

tk
within the local frame, oi

tk
is

a zero vector if the measurement is an inlier, or a vector of
arbitrary number for outlier measurement, and ntk models
the measurement noise.

Traditional MF-based state estimation methods [27], [31],
[36] formulate the localization problem as a MAP problem
which is solved through the iterative least-squares optimiza-
tion or PF with the Gaussian approximation. However, the
estimation performance of both least-squares optimization

and PF degrades dramatically under non-Gaussian heavy-
tailed noises which are often induced by measurement out-
liers oi

tk
. Hence, the present work defined the MF-based

state estimation problem as a stochastic optimization problem
[37]:

x̂tk = argmin
xtk

∼Q
EQ [S (xtk)] (2)

where Q is treated as the basis distribution of the state vector
xtk , EQ[·] denotes the expectation operation over the state
vector xtk with respect to Q, S(xtk) is the cost function
defined in (4), and the optimal state vector x∗

tk
is defined as:

x∗
tk

=
[
p∗⊤
tk

,ϕ∗⊤
tk

,v∗⊤
tk

,ω∗⊤
tk

]⊤
(3)

where ϕtk ∈ R3 is the axis-angle representation of the
rotation matrix Rtk ∈ SO3, vtk and ωtk are linear velocity
and angular velocity, respectively.

Assume the noise of the MF-based measurements is un-
known but bounded [38], the cost function S(xtk) can be
written as a piecewise function according to the definition
of oi

tk
.

S (xtk) =

N∑
i=1

{ ∥∥M(pi
tk
)−Ri

tk
Bi

tk

∥∥2 , inlier
c2 , outlier

(4)

where c2 is a value larger than the upper bound of∥∥M(pi
tk
)−Ri

tk
Bi

tk

∥∥2.

IV. ROBUST ESTIMATION VIA STOCHASTIC
OPTIMIZATION

Solving the stochastic optimization problem (2) is to find
the optimal state vector x∗

tk
that minimizes the expectation

of the cost function S(xtk). Assume that the optimal distri-
bution Q∗ can be defined, which makes EQ∗ provides the
lower bound of EQ. The stochastic optimization problem (2)
can be solved by calculating the expectation of xtk over the
optimal distribution Q∗.

x∗
tk

= argmin
xtk

∼Q
EQ [S (xtk)]

∆
= EQ∗ [xtk ] =

∫
q∗ (x)xdx

(5)

where q∗(·) is the probability density function of the optimal
distribution Q∗. As a consequence of (5), if the optimal
probability density function q∗ can be defined, the stochastic
optimization problem can solved by directly sampling from
the optimal distribution. Hence, the definition of the optimal
probability density function is crucial for solving (5), which
is derived from the lower bound of EQ∗ [S (xtk)] (given in
Theorem 1).

Theorem 1: The lower bound of EQ∗ [S (xtk)] can be
defined as:

EQ∗ [S (xtk)] ≥

− λ log

(
EQ

[
exp

(
− 1

λ
S (xtk)

)])
− λD (Q∗||Q)

(6)

where λ ∈ R+ and D (Q∗||Q) denotes the KL divergence
between distributions Q∗ and Q.



Proof: For (6), the expectation of the first term on
the right-hand side can be switched by using the standard
importance sampling technique [39].

−λ log

(
EQ

[
exp

(
− 1

λ
S (xtk)

)])
= −λ log

(
EQ∗

[
exp

(
− 1

λ
S (xtk)

)
q

q∗

]) (7)

where q is the density function correspondence to distribu-
tion Q. Using Jensen’s inequality and the concavity of the
logarithm, the upper bound of the right-hand side of (7) can
be defined as:

−λ log

(
EQ∗

[
exp

(
− 1

λ
S (xtk)

)
q

q∗

])
≤

− λEQ∗

[
log

(
exp

(
− 1

λ
S(xtk)

)
q

q∗

)] (8)

The right-hand side of (8) can be simplified using the
definition of KL-divergence.

−λEQ∗

[
log

(
exp

(
− 1

λ
S(xtk)

)
q

q∗

)]
= EQ∗ [S(xtk)] + λD(Q∗||Q)

(9)

Substituting (8) and (9) into (7) yields the inequation (6).
This completes the proof.

According to Theorem 1, the optimal probability den-
sity function can be derived. Expanding the KL-divergence
D (Q∗||Q), (6) can be rewritten as:

EQ∗

[
log

(
q∗

q

)]
= EQ∗ [log (q∗)]− EQ∗ [log (q)] ≥

− log

(
EQ

[
exp

(
− 1

λ
S (xtk)

)])
− 1

λ
EQ∗ [S (xtk)]

(10)
Simplifying (10) as

EQ∗ [log(q∗)] ≥ EQ∗

[
log

(
exp

[
− 1

λS (xtk)
]
q

EQ
[
exp

(
− 1

λS (xtk)
)])]

(11)
Hence, the EQ∗ achieves its lower bound (6) when the
optimal probability density function q∗ is defined as follow

q∗ =
exp

[
− 1

λS (xtk)
]
q

EQ
[
exp

(
− 1

λS (xtk)
)] (12)

With the definition of the optimal probability density func-
tion, (5) can be rewritten by using the standard importance
sampling [39] trick.

x∗
tk

=

∫
q∗(x)

q(x)︸ ︷︷ ︸
w(x)

q(x)xdx = EQ [w(xtk)xtk ] (13)

where w(·) denotes the weight of importance sampling.
The expression in (13) computes expectation by switching
sampling from Q∗ (in (5)) to sampling from Q.

V. PRACTICAL IMPLEMENTATION FOR MAGNETIC
FIELD-BASED STATE ESTIMATION

Equation (13) forms the basis of the proposed MF-based
state estimation, which gives the optimal solution to the
stochastic optimization problem (2). Considering the expec-
tation is hard to perfectly evaluate in practice, a Monte-Carlo
sampling is adopted to approximate the optimal state derived
in (13).

x̂tk =

M−1∑
j=0

exp
[
− 1

λS
(
xj
tk

)]
xj
tk

M−1∑
k=0

exp
[
− 1

λS
(
xk
tk

)] (14)

where x̂tk denotes the estimated state, M ∈ Z+ is the
number of Monte-Carlo sampling, xj

tk
and xk

tk
denote the

random state vector obtained from j-th and k-th Monte-Carlo
sampling, respectively.

A. Reducing the Sampling Dimension on Manifolds

The real-time performance of the Monte-Carlo sampling
required by (14) is sensitive to the sampling number M ,
the number of magnetic sensors installed on the robot N ,
and the dimension of the state vector xtk ∈ R12. The time
complexity for evaluation of (14) is O(122 ×MN), which
means both Monte-Carlo sampling number M and magnetic
sensors number N are linear dependence parameters of the
time complexity, and the state dimension is even the square
dependence parameters of the time complexity. However, M
and N are also trade-off parameters between the real-time
performance and accuracy of the sampling-based state esti-
mation methods. Therefore, a dimension reduction sampling
strategy is designed to improve the real-time performance
of the proposed algorithm. With the kinematic model, the
motion of the robot at time tk can be predicted from the
preceding state xtk−1

.

ptk = ptk−1
+ vtk−1

∆t+
1

2
atk−1

∆t2

ϕtk = Log
[
exp

(⌊
ωtk−1

∆t
⌋
×

)
Rtk−1

] (15)

where ∆t = tk − tk−1, ⌊·⌋× denotes the skew-symmetric
cross-product matrix, and Log(·) denotes the logarithmic
mapping from a rotation matrix to a rotation vector.

According to (15), at time tk, the cost function S(xtk) can
be transformed as a function of the state vector x̂tk−1

and
τtk−1

= [a⊤tk−1
,ω⊤

tk−1
]⊤ ∈ R6. Hence, (14) can be rewritten

as:

τ̂tk−1
=

M−1∑
j=0

exp
[
− 1

λS
(
x̂tk−1

, τ j
tk−1

)]
τ j
tk−1

M−1∑
k=0

exp
[
− 1

λS
(
x̂tk−1

, τ k
tk−1

)] (16)

where τ j
tk−1

and τ k
tk−1

denote the random vector obtained
from j-th and k-th Monte-Carlo sampling, respectively. The
state vector x̂tk can be estimated by substituting τ̂tk−1

and
x̂tk−1

into the kinematic model (15). As a consequence, the
evaluation of (16) has a time complexity of O(62 ×MN)
which is only a quarter of the complexity of (14).



Algorithm 1: MF-based localization
Input : Btk : Newly obtained magnetic

measurements, M: MF map, M : Number of
samples, x̂tk−1

: The state estimated at time
tk−1.

Output: x̂tk : The estimated state vector.
for j ← 0 to M − 1 do

τ j
tk−1
← Sampling

Get xj
tk

by substitute τ j
tk−1

and x̂tk−1
into the

kinematic model (15)
for each Bi

tk
∈ Btk do

Calculate the pose of i-th magnetic sensor
over j-th sampling as:
Rij

tk
= Rj

tk
bRi

m, pij
tk

= Rj
tk

bpi
m + pj

tk

if IsOutlier(Rij
tk
,pij

tk
) is True then

S(xj
tk
) = S(xj

tk
) + c2

else

S(xj
tk
) = S(xj

tk
) +

∥∥∥M(pij
tk
)−Rij

tk
Bi

tk

∥∥∥2
Smin = min

[
S(xj

tk
)
]
, j = 0, · · · ,M − 1

τ̂tk−1
=

M−1∑
j=0

exp
[
− 1

λ

(
S
(
x̂tk−1

,τ j
tk−1

)
−Smin

)]
τ j
tk−1

M−1∑
k=0

exp
[
− 1

λ

(
S
(
x̂tk−1

,τk
tk−1

)
−Smin

)]
Get x̂tk by substitute τ̂tk−1

and x̂tk−1
into the

kinematic model (15).
return x̂tk

B. Improve the Numerical Stability: Cost Shifting

Consider the negative exponentiation required by (16) is
numerically sensitive to the range of the input values [40].
The range of MF matching cost should be shifted to make
the cost of the best Monte-Carlo sample have a value of zero.
Define Smin as the minimum cost of S

(
x̂tk−1

, τ j
tk−1

)
, j =

0, · · · ,M − 1, and multiply exp( 1λSmin)/ exp(
1
λSmin) by

(16) results in

τ̂tk−1
=

M−1∑
j=0

exp
[
− 1

λ

(
S
(
x̂tk−1

, τ j
tk−1

)
− Smin

)]
τ j
tk−1

M−1∑
k=0

exp
[
− 1

λ

(
S
(
x̂tk−1

, τ k
tk−1

)
− Smin

)]
(17)

which can prevent numerical overflow or underflow and
improve the stability of the proposed MF-based localization.
The complete algorithm is summarized in Algorithm 1.

VI. RESULTS

In this section, the effectiveness of the proposed MF-
based localization method is demonstrated through a series
of experiments. To quantitatively verify the capability of the
proposed method, a high-fidelity physical simulation envi-
ronment is deployed with absolute ground truth. Moreover,
real-world experiments are conducted with an autonomous
mobile robot to further demonstrate the practical applicability
and robustness of the proposed method.

(a) Simulated Warehouse (b) Husky A200 mobile platform

Fig. 2. High-fidelity physical simulation environment and the mobile robot
platform used in real-world experiments.

• High-Fidelity Physical Simulation: The Gazebo soft-
ware package2 is employed to resemble the actual indus-
trial warehouse. As shown in Fig. 2(a), the simulated in-
dustrial warehouse consists of repetitive goods shelves,
steel concrete pillars, and conveyor belts. The local MF
variations are modeled according to Gaussian process
regression [25] and overlaid on the basic geomagnetic
field as shown in Fig. 3.

• Real-world Experiments: A Clearpath Husky A200 au-
tonomous mobile robot platform3 is deployed to collect
the MF data in various real-world environments, in-
cluding office corridor, semi-indoor carpark, and office
building. As shown in Fig. 2(b), the Husky A200 plat-
form is equipped with two magnetic sensor arrays (each
array consists of 7 magnetic sensors, and only the top
array is used for online localization), a VN-100T IMU,
an Ouster OS1-32 LiDAR, and a laptop with an Intel i7-
10875H CPU @2.3GHz and 32GB RAM. Ground truth
for all the real-world data sequences is generated by
combine the state-of-the-art LiDAR-inertial odometry
FAST-LIO2 [4] with loop closure [8] and global BA
[11].

A. Comparison Baseline

To illustrate the effectiveness of the proposed method,
we present detailed quantitative analyses of the proposed
with state-of-the-art MF-based localization methods, which
include 1) Probability-based [36]: a pure MF localization
method realized through the MAP estimation; 2) Gradient-
based [27]: a PDR-aided MF localization method utilizes
Guass-Newton iterative and EKF; 3) PF-based [31]: a
PDR/MF fusion localization method based on PF; 4) DTW-
based [32]: a PDR/MF fusion localization method based on
DTW.

Remark 2: Most MF-based localization methods rely on
foot-mounted sensors and PDR algorithms, such as [27],

2https://gazebosim.org/home
3https://clearpathrobotics.com

https://gazebosim.org/home
https://clearpathrobotics.com


Fig. 3. MF distribution and trajectory estimation results. In each map, color designates the MF integrated intensity (l2−norm) according to the scale
shown in each map. Trajectories estimated by the proposed method and ground truth are noted with white and yellow, respectively.

[31], [32], which cannot provide state estimation for non-
legged robots. For a fair comparison, the PDR algorithm
output used in [27], [31], [32] is replaced by the wheel
odometry information in both simulation and real-world
experiments.

B. Accuracy Evaluations

The absolute trajectory error (ATE) results of each method
listed in Section VI-A are shown in Table I. From the results,
the proposed method provides high localization accuracy in
all data sequences, with an average ATE of 0.0852m. The
proposed method achieves an accuracy improvement of over
52% and 23% when compared with the state-of-the-art pure
MF localization method [36] and the wheel odometry-aided
MF localization method [27], [31], [32], respectively. The
performance improvement mainly attributed to the outlier
measurements is not neglected by the proposed method
in Section III. Generally, MF localization methods [27],
[31], [32], [36] formulate the state estimation problem as
a MAP problem and solve the state approximately through
the Gaussian distribution assumption. The proposed method
approximates the lower bound of the optimal expected cost
function (Theorem 1) through Monte-Carlo sampling, which
can better handle the non-Gaussian noise introduced by out-
lier measurements. Especially for the Carpark environments,
the presence of dynamic vehicles introduces a higher number
of outlier observations compared to the corridor, office build-
ing, and simulation environments. Hence, compared with the
state-of-the-art MF-based localization methods, the proposed
method achieves a 45% to 77% accuracy improvement in
a carpark environment. Comparison between the proposed
method and ground truth over all data sequences are shown in
Fig. 3, which shows the proposed method achieves consistent
trajectory estimation with the ground truth.

TABLE I
THE COMPARISON OF ABSOLUTE TRAJECTORY ERROR (ATE,

METERS). THE BEST RESULT IS HIGHLIGHTED IN BOLD.

Method Proposed Probability Gradient PF DTW
Warehouse 0.1204 0.1566 0.1001 0.0957 1.2716
Corridor 0.0582 0.1561 0.0933 0.1062 0.1119
Building 0.0865 0.1581 0.0873 0.0947 0.1407
Carpark 0.0756 0.2541 0.3404 0.1492 0.2092
Average 0.0852 0.1812 0.1553 0.1114 0.4334

C. Robustness Evaluations

The robustness of the MF-based localization methods is
largely based on avoiding degeneracy and local minimum
that arise from cases such as scarcity of MF gradient informa-
tion and inevitable mismatchings. As described in Remark 2,
the wheel odometry information is adopted by both Gradient-
based [27], PF-based [31], and DTW-based [32] methods
in case degeneracy occurs. For a fair comparison, a MF-
based global localization method [41], [42] is introduced to
re-initialize the MF-based localization methods from failed
cases such as the gradient-based optimizer cannot converge,
PF degeneracy, and all candidates of DTW or MAP estimator
(used in the Probability-based method [36]) have similar cost.
Comparison results of the localizability over the proposed
method with state-of-the-art methods are shown in Fig. 4.
From the result, both [27], [31], [32], [36] are not able to
solve the MF-based localization problem reliably. Three fac-
tors contribute to this: 1) degeneracy caused by insufficient
MF variation (especially for the gradient-based method).
2) inaccuracies in the correspondence search, affected by
the bad initial guess. 3) measurement outliers introduced
by external disturbance, such as vehicles, pedestrian-carried
smartphones. Thanks to the penalize of outliers in (4) and
the robust optimal solver ((13) in an information-theoretic
sense) designed in Section IV, the proposed method produces
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Fig. 4. Comparations of localizability for investigated MF-based localization methods.

TABLE II
THE COMPARISON OF AVERAGE PROCESSING TIME (MILLISECONDS).

THE BEST RESULT IS HIGHLIGHTED IN BOLD.

Method Proposed Probability Gradient PF DTW
Warehouse 1.2834 5.8672 0.2410 1.4257 14.0315
Corridor 4.5387 17.3779 0.6764 4.8696 43.5775
Building 9.2516 32.3832 1.0178 7.9291 72.8186
Carpark 9.7129 24.7835 0.8594 7.1066 54.3153

a reliable state estimation in both date sequences, as shown
in Fig. 4.

D. Running Time Evaluations

The localization efficiency is summarized in Table II.
From the results, the average state estimation time of the pro-
posed method is well-bounded within 10ms, which allows
MF localization to take place in real-time using the high-
frequency magnetic sensor at a rate of 100Hz. Although the
gradient-based MF localization method achieves significant
real-time performance, as described in Section VI-B and
Section VI-C, it cannot realize reliable MF-based localiza-
tion. Thanks to the fully paralleled stochastic optimization
algorithm and the sampling dimension-reducing strategy
introduced in Section IV and Section V, compared with
the pure MF-based localization method [36], the proposed
method achieves a significant efficiency improvement, which
saves 61% to 78% processing time. Furthermore, the pro-
posed method provides a comparable real-time performance
with the PF-based method [31] while achieving a high-
accuracy velocity estimation (as shown in Fig. 5). These re-
sults demonstrate the advantage of the proposed method over
previous works that only considered pose estimation [27],
[31], [32], [36]. As shown in Fig. 5, the proposed method
achieves smoother velocity estimation when compared with
the ground truth provided by the state-of-the-art LiDAR-
inertial odometry FAST-LIO2 [4].

VII. CONCLUSION

In this article, an infrastructure-free and drift-free local-
ization system, IDF-MFL, is developed for mobile robots
using the ambient MF information. The proposed method
formulates the MF-based localization problem as a MF
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Fig. 5. Velocity estimated from the proposed method and ground truth
under the Corridor sequence. It is worth noting that velocity can change
drastically when loop closure occurs. The velocity ground truth is generated
by FAST-LIO2 [4].

matching problem in a stochastic optimization formulation,
which defines the MF matching cost in a piecewise function
formulation with the consideration of outliers. The optimal
solution of the MF-based localization problem is derived
by finding the optimal distribution of the robot state that
makes the expectation of MF matching cost achieve its
lower bound, and a detailed mathematical lower bound
for the cost function expectation is carefully derived. To
deploy the proposed stochastic estimator in practice, a series
of practical implementations are given in detail, including
Monte-Carlo approximation, sampling dimension shrinking,
and MF matching cost-shifting strategy. With the successful
implementation of the proposed method using C++ and ROS
framework, extensive experiments are conducted to verify
the practicability and performance of the proposed MF-
based localization algorithm. The results show that IDF-MFL
produces high-accuracy, reliable, and real-time localization
results without any pre-installed infrastructures, and has a
great potential to enable mobile robot applications.
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[7] D. Galvez-López and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, 2012.

[8] G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor
for place recognition within 3d point cloud map,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 4802–4809.

[9] A. P. Bustos, T.-J. Chin, A. Eriksson, and I. Reid, “Visual slam: Why
bundle adjust?” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 2385–2391.

[10] T. Deng et al., “Plgslam: Progressive neural scene represenation with
local to global bundle adjustment,” arXiv preprint arXiv:2312.09866,
2023.

[11] Z. Liu, X. Liu, and F. Zhang, “Efficient and consistent bundle
adjustment on lidar point clouds,” IEEE Transactions on Robotics,
vol. 39, no. 6, pp. 4366–4386, 2023.

[12] T.-M. Nguyen, M. Cao, S. Yuan, Y. Lyu, T. H. Nguyen, and L. Xie,
“Viral-fusion: A visual-inertial-ranging-lidar sensor fusion approach,”
IEEE Transactions on Robotics, vol. 38, no. 2, pp. 958–977, 2022.

[13] A. Tzitzis, A. Malama, V. Drakaki, A. Bletsas, T. V. Yioultsis, and
A. G. Dimitriou, “Real-time, robot-based, 3d localization of rfid
tags, by transforming phase measurements to a linear optimization
problem,” IEEE Journal of Radio Frequency Identification, vol. 6, pp.
439–455, 2022.

[14] V. Magnago, L. Palopoli, R. Passerone, D. Fontanelli, and D. Macii,
“Effective landmark placement for robot indoor localization with po-
sition uncertainty constraints,” IEEE Transactions on Instrumentation
and Measurement, vol. 68, no. 11, pp. 4443–4455, 2019.

[15] J. Xu et al., “Magnetic sensitivity of cryptochrome 4 from a migratory
songbird,” Nature, vol. 594, no. 7864, pp. 535–540, Jun 2021.
[Online]. Available: https://doi.org/10.1038/s41586-021-03618-9

[16] L. C. Boles and K. J. Lohmann, “True navigation and magnetic maps
in spiny lobsters,” Nature, vol. 421, no. 6918, pp. 60–63, Jan 2003.
[Online]. Available: https://doi.org/10.1038/nature01226

[17] X. Zuo, W. Ye, Y. Yang, R. Zheng, T. Vidal-Calleja, G. Huang, and
Y. Liu, “Multimodal localization: Stereo over lidar map,” Journal
of Field Robotics, vol. 37, no. 6, pp. 1003–1026, 2020. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21936

[18] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal,
“Fast and accurate scan registration through minimization of the
distance between compact 3d ndt representations,” The International
Journal of Robotics Research, vol. 31, no. 12, pp. 1377–1393, 2012.
[Online]. Available: https://doi.org/10.1177/0278364912460895

[19] T. Qin, T. Chen, Y. Chen, and Q. Su, “Avp-slam: Semantic visual
mapping and localization for autonomous vehicles in the parking lot,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 5939–5945.

[20] P. Robertson et al., “Simultaneous localization and mapping for
pedestrians using distortions of the local magnetic field intensity in
large indoor environments,” in International Conference on Indoor
Positioning and Indoor Navigation, 2013, pp. 1–10.

[21] M. Kok and A. Solin, “Scalable magnetic field slam in 3d using
gaussian process maps,” in 2018 21st International Conference on
Information Fusion (FUSION), 2018, pp. 1353–1360.
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