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Exercise Motion Classification from Large-Scale Wearable Sensor Data
Using Convolutional Neural Networks

Terry Taewoong Um!, Vahid Babakeshizadeh? and Dana Kuli¢!

Abstract— The ability to accurately identify human activities
is essential for developing automatic rehabilitation and sports
training systems. In this paper, large-scale exercise motion data
obtained from a forearm-worn wearable sensor are classified
with a convolutional neural network (CNN). Time-series data
consisting of accelerometer and orientation measurements are
formatted as images, allowing the CNN to automatically extract
discriminative features. A comparative study on the effects
of image formatting and different CNN architectures is also
presented. The best performing configuration classifies 50 gym
exercises with 92.1% accuracy.

I. INTRODUCTION

In recent years, several computer [!] and robotic [2, 3]
systems have been proposed to coach users during rehabilita-
tion or physical training. The coaching systems demonstrate
exercises to the users through videos or robot motions and
evaluate the users’ movements to determine if they are
performing the exercises correctly. However, the ability of
the current coaching systems to recognize human movements
is limited to a small number of distinctive movements. To
enable these coaching systems to be used for a wider array
of exercise regimens in both sports training and rehabilita-
tion, it is necessary for the systems to be equipped with
better recognition algorithms to classify a large number of
exercises.

Classification of human motions, called human activity
recognition (HAR), has been widely investigated in the past
decade, based on vision data [4], 3D data [5], wearable
sensor data [0], etc. Wearable sensors provide a convenient
way to collect data without the need for extensive installation
and setup, thus, they are often preferred when data should be
collected in real life settings. Moreover, the rapid growth of
the wearable device market provides access to a large amount
of wearable sensor data. In this research, we take advantage
of large-scale wearable sensor data to enhance classification
ability.

In large-scale data classification problems, convolutional
neural networks (CNN) have demonstrated excellent per-
formance over the past decade (e.g. [7]). Although CNNs
were originally proposed for static 2D images [8], they have
been successfully extended to other nonstatic domains, e.g.,
speech recognition [9] and sentence classification in natural
language [10]. In these works, CNNs learn useful features
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Fig. 1. The wearable band, PUSH [11], is a device for measuring
performance of gym exercises with an accelerometer and gyroscope.

directly from raw data, i.e., no hand-crafted features are
needed. As these researches have shown that learned features
from CNNs can outperform classical hand-crafted features in
various domains, we may expect that CNNs can also learn
useful features from raw wearable sensor data and use these
features for successful classification, if large-scale data is
available.

In this research, exercise motion data obtained from a
forearm band, PUSH [11] (Fig. 1), are classified using CNN.
The exercise motion data, collected from gym exercises
performed by athletes, are considerably more difficult to
classify than usual daily activity data, since many gym
exercises have similar arm movements (e.g. front and back
lat pull-down). Moreover, there are a large number of unique
exercise classes (more than 300), which is a significantly
larger number of classes than usual HAR with a single
wearable sensor [0].

The challenging large-scale classification problem is tack-
led by using CNN in this research. We employed CNNs
rather than recurrent neural networks (RNNs) [12], which
are usually employed for sequence data, because exercise
repetition (rep) data are relatively short (mostly less than 4
seconds), and therefore, may not need long-term memory
for training. By creating image-like 2D data from the raw
acceleration and orientation data, CNN efficiently learns
discriminative features and a classifier for differentiating
between the exercises. The proposed approach can be used
for computer or robotic exercise coaching systems as well as
for human trainers to assist with training management and
performance monitoring.

The outline of the paper is as follows: First, related
research on classification with single arm-worn wearable



sensor data are briefly surveyed in Section II. In Section III,
the CNN architecture used for classifying wearable sensor
data is described, including a description of the dataset. Clas-
sification results with various CNN architectures and input
formats are presented in Section IV. Finally, findings from
the research and directions for future work are summarized
in Section V.

II. RELATED WORK

Although most research on HAR with wearable sensors
uses multiple sensors attached to different body parts, there
have been several works based on a single arm-worn sensor.
In [13], 5 activities (walking, running, cycling, driving, and
sports) are classified with 72.3% accuracy using decision
tree, naive Bayes and naive Bayes with PCA. In this work, 19
features are first extracted from time, frequency and spatial
domains and classified with the aforementioned classifiers.
In [14], 5 activities (running, walking, lying, standing and
sitting) are classified with 91.1% accuracy by using 13
statistical features from time and frequency domains and a
multilayer perceptron classifier.

Recent works have attempted to classify more than 5 activ-
ities based on a single arm-worn sensor. [ 15] classifies 9 daily
activities (brushing teeth, washing dishes, watching TV, etc.)
with 82.8% accuracy by using 12 statistical features from an
accelerometer and a support vector machine classifier. They
also increase the accuracy to 90.2% by using an additional
2 features from a temperature sensor and altimeter. Lastly,
[16] shows that 26 activities including ambulation, cycling,
sedentary poses, and others, can be classified with 84.7%
accuracy using 13 statistical features and a support vector
machine classifier.

The most relevant previous work to our research is RecoFit
[17], a wearable sensor to recognize and count repetitive
exercises. Similar to PUSH, RecoFit measures 3-axis ac-
celerometer and gyroscope data from the upper forearm. The
collected data are first smoothed with a Butterworth filter and
60 statistical features are extracted from each of 5-second
sliding windows. The extracted features for each window
are classified using a multiclass support vector machine, and
finally, the prediction is made by voting with the prediction
results from all windows.

The RecoFit system gives 100%, 99.3%, 98.1%, 96.0%
accuracy for 4, 4, 7, 13-class classification, respectively. It
is an impressive result, however, there are several points
to remark for comparison with our research. First, they
collected data from a controlled experiment environment
while we used real-world data obtained from actual training
sessions of athletes. Although each exercise session used in
[17] lasts at least 20 seconds, our data have many sets of
exercises shorter than 20 seconds, and 11.5% of the data
contains fewer than four repetitions. As presented in Section
IV, few-rep data are more difficult to classify than many-rep
data.

Furthermore, our research classifies 50 classes that contain
many similar exercises, while the RecoFit research classifies
at most 13 classes, which are relatively distinctive (See
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Fig. 2. PUSH data consist of 449,260 reps from 49,194 sets of exercises.
The above graphs show (a) the total number of reps, (b) the number of sets
and (c) the average number of reps in a set, for each exercise. The index
of the top-50 exercises are sorted by the number of reps as in (a).

Appendix). For example, 7 kinds of bench press and 4 kinds
of squat, which could be confusing even to humans, are
considered as distinct labels in our experiment. On the other
hand, the 13 exercises in the RecoFit research are relatively
well-spread over a range of body-part exercises. Hence, the
exercise motion classification in this research can be regarded
as a more challenging and realistic problem.

III. CNN FOR WEARABLE SENSOR DATA
A. PUSH dataset

PUSH [11] is a forearm-worn wearable device for mea-
suring athletes’ exercise motions. PUSH is actively being
used by over fifty professional sports teams; athletes have
been voluntarily collecting exercise motion data for enhanc-
ing their training performance. From the privately available
dataset provided by PUSH Inc., we used a subset of the
data consisting of the top 50 most frequently-performed
exercises out of more than 300 exercises for this research
(See Appendix).

The top-50-exercise dataset consists of 49,194 sets and
449,260 reps of exercises obtained from 1441 male and 307
female athletes (Fig. 2). Each set consists of one or more reps
of a single exercise, self-labeled by the athlete. Note that seg-
mentation is performed by the device in preprocessing to ex-
tract each rep. Training and prediction process are performed
based on each rep data. The number of sets and reps are nec-
essarily unbalanced for each exercise; the exercise that has
the most reps is 0:Standing triceps extension
with dumbbell (1613 sets, 17380 reps) while the ex-
ercise that has the fewest reps is 49:Wide—grip bench
press with barbell (772 sets, 6133 reps). The num-
ber of reps in a set is also necessarily varied, from 1 to 254
reps, although 94% of the data have under 20 reps in a set.
The lengths of the reps are also varied, but 99% are shorter
than 784 samples, which is equivalent to 3.92 seconds.

Since each rep has a different length, while CNN takes
fixed-size data, each rep is zero-padded, i.e., filled by zeros
at the tail to make the length 784 samples. The reps that
have more than 784 samples are simply cropped to have
784 samples. Zero-padding is often used for solving the
variable-length problem in time-series data (e.g. [10]). Since
zero-padding preserves the length information, it is helpful
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Fig. 4. The baseline CNN architecture has two convolutional layers
followed by a fully connected layer. In the experiments, additional con-
volutional layers and fully connected layers are examined.

for discriminating between short duration and long duration
exercises.

The device is tightly bound on the upper forearm
and measures accelerations and orientations with a built-
in accelerometer and gyroscope, respectively. As a re-
sult, time-series data with 9 features - (Acc_x, Acc.y,
Acc_z) in the local frame, (Acc_x, Acc.y, Acc_z) in
the world frame and EulerAngle_x, EulerAngle.y,
EulerAngle_z) in the world frame - are obtained with a
200 Hz sampling rate.

B. CNN Architecture

CNN was originally developed for 2D image recognition
[18]. Rather than using hand-crafted features, CNN directly
learns features from raw pixels without any prior knowl-
edge about features. CNN sweeps convolution and pooling
windows over the image to create various feature maps. The
convolution window convolves pixel values in a local region,
called a receptive field, to determine the spatial correlation
between them. After that, the pooling window downsamples
the convolved data by, e.g., selecting maximum values only.

To apply CNN to the human motion data, we first need
to create 2D images from the raw sensor data. We create
2D images with three different approaches: (1) regard the
9 by 784 time-series data as a rectangular 2D image, (2)
treat the three different feature groups - local accelerations,
world accelerations, and Euler angles - as RGB channels in
an image and create a 3 by 784 by 3 tensor, (3) reshape
the 9 by 784 time-series data into an 84 by 84 square matrix
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(a) 9*784 full (b) 9*784 disjointed
Fig. 5. If the stride size along the y-axis is smaller than three as in (a),

the windows will convolve elements from different feature groups, e.g.,
(Acc.y, Acc-z, EulerAngle_x) . On the other hand, if the stride
size along the y-axis is three as in (b), the windows will convolve elements
within the same feature group.

(Fig. 3). Note that different choices of image formatting lead
to different convolutions with different neighboring elements,
which may include convolutions between irrelevant elements.

There are several hyperparameters to be chosen for the
CNN architecture; depth and width of the CNN architecture,
convolution and pooling window sizes, their stride sizes,
activation functions, etc. The baseline CNN architecture that
is used for the experiments is presented in Fig. 4. In the
baseline CNN architecture, two convolution layers, which
have 32 and 64 feature maps, are followed by a fully
connected layer which has 1024 nodes. Rectified units [19]
are employed as activation functions and softmax functions
are used for evaluating the final 50 output node values.
Experiments with different CNN architectures and input
formatting will be presented in the next section.

For optimization, the Adam optimizer [20] is employed
with a learning rate of 0.0005. Also, dropout [21] with a
probability of 0.5 is applied to each layer to avoid excessive
dependency on certain nodes. Cross-entropy loss is employed
for learning one-hot-encoded 50 exercises. Although the
CNN is learned based on rep-based predictions, we also
provide prediction results for each set by taking a majority
vote of the rep-based predictions in each set. It is expected
that set-based predictions give better results than rep-based
predictions because they include the benefit of majority
voting.

IV. EXPERIMENTS

Th experiments are performed with an open source deep
learning library, Tensorflow [22]. Built-in Adam optimizer
and dropout functions in Tensorflow are used for learning
CNN models. The computer used for the experiments is
equipped with 3.6 GHz quad-core processors and NVIDIA
GTX980 GPU.

A total of 404,200 training reps from 44,240 sets are
trained with 100-sized minibatches. Also, 45,060 reps from
4,954 unseen sets serve as the test set. Note that reps from
a single set belong to either the training or the test set, i.e.,
training and test sets are from separate sets. The data are



TABLE I

EFFECTS OF VARIOUS IMAGE FORMATTINGS AND CONVOLUTIONS: IT APPEARS THAT TREATING DIFFERENT FEATURE GROUPS AS DIFFERENT

CHANNEL (3*3*784) SHOWS THE BEST PERFORMANCE.

- Input 84#84 9784 full 9#784 disj 3%784%3
- Win Stride Dim Win Stride Dim Win Stride Dim Win Stride Dim
CNN convl 3*3 [1,1] 84%84 3*3 [1,1] 9*784 3*3 [3,1] 3*784 3*3 [1,1] 3*784%*3
Archi- pooll 3%3 [3,3] 28%28 3%4 [3,4] 3%196 1#4 [1,4] 3%196 2%4 [1,4] 2%196*3
tecture conv2 343 [1,1] 28%28 3%3 [1,1] 3%196 3%3 [1,1] 3%196 3%3 [1,1] 2%196*3
pool2 2*2 [2,2] 14*14 1*4 [1,4] 3*49 1*4 [1,4] 3*49 2*%4 [1,4] 1#49%*3
Set Set Set Set
Rep Set (>T7reps) Rep Set (>Treps) Rep Set (>T7reps) Rep Set (>T7reps)
Accuracy  Train  99.54  99.90 99.96 99.58  99.89 99.99 99.54  99.88 99.96 98.64  99.53 99.75
(%) Test 81.46 84.86 89.01 81.20 8547 88.85 81.70  85.61 89.39 83.34 87.04 90.47
(a) Train (b) Test (c) Train (>7reps) (d) Test (>7reps)
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Normalized confusion matrices for the 3*3*784 experiment. High classification accuracy is achieved for the majority of exercises, as seen by

the dominant diagonal. 43:Declined bench press with barbell exercises are often misclassified as 25:Alternating LEG ROMANIAN

deadlift with dumbbell exercises.

standardized over the entire training dataset to have zero-
mean and a variance of one in preprocessing. No additional
preprocessing such as filtering or frame-aligning is applied
to the raw data. In particular, we do not perform any
normalization to attempt to correct for differences in sensor
placement or alignment between users.

A. Effects of Image Formatting for Convolutions

As explained in III-B, there are three choices for shaping
the input data: 84x84, 9784 and 3x784x3. Note that
depending on the image formatting, features which are
separated in the input data vector may never have a chance
to be convolved together until the last convolution layer. For
example, in the 9x784 full experiment, Acc_x_local,
located in the top row of the image, will not be convolved
with EulerAngle_z, located in the bottom row, until the
last layer. On the other hand, Acc_z_world, located in
the 6th row in the image, will have many chances to be
convolved with EulerAngle_x, located in the 7th row,
because they are adjacent to each other.

To remove this bias posed by the location of features in
the input data vector, we may separate feature groups so
that no convolution happens between the groups in the first
layer. This is achieved by a CNN with 3x784x3 images.
In 3+x784+3 images, convolutions will happen only within
a feature group in the first layer, and their contributions will
be summed up to create new feature maps for the second
layer.

Another approach to avoid inter-group convolutions in the
first layer is realized in the 9«789 disjointed model.
In this case, the image format is the same as 9789 full,
however, convolution windows jump from a feature group to
another feature group by taking a stride size of three (See
Fig. 5). Therefore, the number of features will be reduced
from 9 to 3 after the first layer and these 3 features will be
convolved in the following layers.

The results after training for 40 epochs with these different
image formats are presented in Table I. For the data which
have more than 7 reps, the best test result is 90.47%, achieved
by the 3+ 3784 model while the worst test result is 88.85%,
achieved by the 9x784 full model. The results show that
convolutions on disjointed feature groups (9+784 disj
and 3+784~3) provide slightly better results than convolu-
tions over full feature groups (84«84 and 9+x784 full).
In other words, convolutions between different feature groups
(e.g. Acc_y, Acc_z and EulerAngle_x) have little ben-
efit for the classification task. These results are consistent
with what we expected: physically meaningful convolutions
can create better features than random convolutions.

Fig. 6 presents the confusion matrix for the 3*784*3
experiments in rep-based predictions. The most eas-
ily classifiable exercises are 6:Wide-grip back lat
pull-down with pulley machine (Train: 99.86%,
Test: 98.08%) and 0:Standing triceps extension
with dumbbell (99.90%, 96.21%) while the hard-
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Fig. 7. (a) Performance comparison between small-rep and many-rep
exercises. (b) Learning curves with different CNN architectures.

estare 43:Declined bench press with barbell
(88.06%, 51.71%) and 25:Alternating Romanian
deadlift with dumbbell (90.90%, 56.77%). In par-
ticular, the chance that the exercise 25 is misclassified as the
exercise 43 is 41.69%. One possible reason for this is that
they have relatively weak signals and similar lengths. Indeed,
the exercise 43 and 25 are the exercises which have the first
and third smallest signal magnitudes among the 50 exercises
and similar rep lengths which are 2.00 and 2.11 seconds on
average.

B. Effects of Data Reps and CNN Depth

As presented in Table I, the data which have many reps
show better performance than the data which have few reps.
This is to be expected in set-based predictions because if
there are many reps in a set, then the final decision can be
made based on the votes of many rep-based predictions. On
the other hand, in extreme cases, single-rep sets cannot take
the benefit of voting, thus, they obtain the same performance
in rep-based and set-based predictions.

An interesting observation is that many-rep data show
better performance than few-rep data even in rep-based
predictions (Fig. 7(a)). The reps from 1-rep exercises have
42.32% test accuracy while the reps from 20-rep exercises
have 97.23% accuracy. A possible explanation for this result
is that people perform more consistent movements when they
perform many-rep exercises with a light load, while they tend
to demonstrate more explosive and fluctuating movements
when they perform few-rep exercises with a heavier load.
Indeed, the average loads for 1-rep and 20-rep exercises are
51.1kg and 20.9kg, while the variances of the all reps of
I-rep and 20-rep exercises are 5.59 and 0.94, respectively.

Fig. 7(a) shows that trained knowledge from few-rep
exercises fails to be generalized to other unseen trials. This
can be due to a large within-class variability in few-rep
exercises, as we observed a large variance value from 1-rep
exercise data. We may avoid this problem by reporting classi-
fication results only when many reps are observed. However,
few-rep exercise data should not be ignored because many
athletes often train with few-rep exercises for building their
muscle strength. In the PUSH dataset, 36% of the sets have
fewer than 8 reps and 9% of the sets have fewer than
4 reps. Thus, improving the classification performance for
few-rep exercises will be the next challenge in our exercise
recognition problem.

TABLE 11
LEARNING RESULTS WITH THE 3% 784 %3 INPUTS WITH DIFFERENT
DEPTHS OF CNNS. DEEPER NETWORKS SHOW BETTER
GENERALIZATION ABILITY, IF LARGE ENOUGH DATA ARE AVAILABLE.

Layers Feature maps Dataset Rep Set (>];fecps)
5 32-64 Train 98.64  99.53 99.75
-(1024)-(1024) Test 83.34 87.04 90.47
3 32-64-128 Train 98.49  99.39 99.78
-(1024)-(1024) Test 85.26  88.55 92.14
4 32-64-128-256 Train 99.12  99.65 99.86
-(2048)-(1024) Test 84.98 88.41 92.08

To improve the generalization ability of the network, we
attempted to increase the depth of the CNN. In this exper-
iment, the 3-layer (92.14%) and 4-layer (92.08%) CNNs
show better test results than the 2-layer (90.47%) CNN
(Table II)). From these results, it appears that additional
layers provide some performance improvement. However,
CNNs with more than 3 layers fail to outperform the 3-layer
CNN. A direction for future work is to develop a customized
deep CNN architecture which improves performance over the
standard 3-layer CNN, particularly for small-rep exercises.
The learning curves with different CNN architectures and
image formats are presented in Fig. 7(b).

V. CONCLUSION

In this paper, we propose an approach for classifying large-
scale wearable sensor data of exercise movements using
CNN and demonstrate 92.14% classification accuracy on a
50-class exercise dataset with the 3-layer CNN. Experimental
results empirically indicate that treating different feature
groups - local acceleration, world acceleration, Euler angle in
this case - as different channels of images (3+784+3) gives
better results than providing 2D square (84x84) images
or rectangle (9x783) images. Also, deeper CNNs give
better results than shallow CNNs, although further research
is required to fully exploit the benefit of a deeper structure.
Lastly, sets with a large number of reps are easier to classify
than ones with a few reps because people tend to perform
movements more consistently when they perform a large
number of reps of an exercise.

The current research used pre-segmented data which have
relatively smaller within-class variance than nonsegmented
data. The pre-segmented data also ease the variable length
problem of time-series data so that CNN can treat the data as
fixed-size images using simple zero-padding. In future work,
we will investigate classification without segmentation, by
introducing deep CNN or combining with neural networks
for time-series data, e.g., LSTM [23].

APPENDIX

A. List of Exercises for PUSH dataset

(Sorted by the number of reps)

0. Standing triceps extension with dumbbell
1. Alternating lunges with dumbbell

2. Hammer-curl with dumbbell



3. Underhand-grip bent-over row with barbell

4. Lying triceps extension with dumbbell

5. Rope triceps push-down with pulley machine
6. Wide-grip back lat pull-down with pulley machine
7. Alternating backward lunges with dumbbell

8. Inclined bench press with dumbbell

9. Preacher curl with EZcurl bar

10. Side-raise with dumbbell

11. Triceps push-down with pulley machine

12. Push-ups

13. Wide-grip front lat pull-down with pulley machine
14. Kettlebell swing

15. Front-raise with dumbbell

16. Right-handed triceps Kick-back with dumbbell
17. Bench fly with dumbbell

18. Alternating traveling lunges with dumbbell
19. Reverse fly with dumbbell

20. Narrow-grip lat pull-down with pulley machine
21. Bench press with dumbbell

22. Alternating lunges with barbell

23. Seated military press with dumbbell

24. Goblet squat with dumbbell

25. Alternating Romanian deadlift with dumbbell
26. Bicep curl with dumbbell

27. Bent-over row with barbell

28. Left-handed split squat with barbell

29. Right-handed one arm row with dumbbell
30. Curl with EZcurl bar

31. Bent-over row with dumbbell

32. Romanian deadlift with barbell

33. Upright row with barbell

34. Hip thrust with barbell

35. Standing military press with dumbbell

36. Inclined fly with dumbbell

37. Inclined bench press with barbell

38. Alternating grip bent-over row with barbell
39. Arnold press with dumbbell

40. Goblet squat with kettlebell

41. Overhead press with barbell

42. Barbell good-morning

43. Declined bench press with barbell

44. Alternating step-ups with dumbbell

45. Bicep curl with pulley machine

46. Narrow-grip bench press with barbell

47. Wide-grip inclined bench press with barbell
48. Right-handed split squat with barbell

49. Wide-grip bench press with barbell

B. List of Exercises Used in RecoFit Research [17]

. Crunch

Row

. Punch

. Jumping jack

. Kettlebell swing

Triceps extension
. Push-up

. Rowing machine
. Russian twist

. Back fly

10. Shoulder press

11. Squat

12. Curl
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