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Fast HOG based Person Detection devoted to a Mobile Robot with a
Spherical Camera

A. A. Mekonnen1, C. Briand1, F. Lerasle1, A. Herbulot1

Abstract— In this paper, we present a fast Histogram of
Oriented Gradients (HOG) based person detector. The detector
adopts a cascade of rejectors framework by selecting discrimi-
nant features via a new proposed feature selection framework
based on Binary Integer Programming. The mathematical
programming explicitly formulates an optimization problem to
select discriminant features taking detection performance and
computation time into account. The learning of the cascade
classifier and its detection capability are validated using a
proprietary dataset acquired using the Ladybug2 spherical
camera and the public INRIA person detection dataset. The
final detector achieves a comparable detection performance as
Dalal and Triggs [2] detector while achieving on average more
than 2.5x - 8x speed up depending on the training dataset.

I. I NTRODUCTION

For decades it has been demonstrated that the autonomy of
an autonomous mobile robot highly depends on its environ-
ment perception capabilities. For example, if one considers
autonomous robot navigation, the success depends on the
robot’s ability to perceive its surrounding well and its ability
to distinguish obstacles from free paths. With such consider-
ation, an omnidirectional camera is the quintessential sensor.
An omnidirectional camera usually provides a360o Field Of
View (FOV) in the horizontal direction and sometimes even
cover more than120o in the vertical plane, pretty much the
essential surrounding. As a consequence, they are gaining
much appreciation and use in robotic applications, including
but not limited to: robot localization, mapping, ground robot
navigation, etc., [15]. One such application is detection of
people in the vicinity of a mobile robot be it for active
interaction or social considerations during navigation in
crowded environments. With a complete horizontal FOV, the
robot is appraised of any activity in its complete surrounding
which allows it to be better reactive and considerate [9], [22].

(a) (b)

Fig. 1: Ladybug2 camera and a stitched, and unwrapped image.

Contrary to their amenities, omnidirectional cameras are
not trivial to use. The actual technique used to cover wide
FOV governs the added difficulty. Currently, there are three
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prevalent types of omnidirectional cameras: dioptric, manage
wide angle coverage via combination of shaped lenses;
catadioptric, those that combine a classical camera with a
shaped mirror; and polydioptric, the kind which use multiple
cameras–with overlapping fields of view–oriented in various
directions. Both dioptric and catadioptric cameras sufferfrom
pronounced geometric distortions, significantly non-uniform
resolutions, and high sensitivity to illumination changes. On
the other hand, polydioptric cameras provide real omni-
directional view without pronounced geometric, resolution,
and/or illumination artifacts. But, as a result of their make,
they result in a high resolution image that demands high
computational resources for processing. TheLadybug2 is one
such kind of camera manufactured by Point Grey Inc [11].
TheLadybug2 (fig. 1a) is a spherical omnidirectional camera
system that contains six cameras mounted in such a way to
view more than75% of the full sphere. Each camera has
a maximum resolution of1024x768 pixels resulting in a
3500x1750 pixels stitched high resolution panoramic image
(fig. 1b). The camera system has an IEEE-1394b (FireWire
800) interface that allows streaming at 30 fps with the drivers
provided by the manufacturer [11].

In this work, we are interested in developing a person de-
tection system to detect people around a mobile robot using a
Ladybug2 camera. As stated previously, this camera does not
suffer from the severe geometric/illumination artifacts as the
other omnidirectional camera families. Clearly, the process-
ing power stipulated by the high resolution images is a major
bottleneck that makes classical person detection approaches
infeasible. Any application that intends to use these cameras
has to take this into consideration. In this paper, we propose
and implement an automated person detection system that not
only tries to optimize over detection performance, but also
optimizes over computation time required by the detector.
We build upon the original Histogram of Oriented Gradients
(HOG) features proposed by Dalal and Triggs [2], features
that have proven useful for almost a decade and are still
used by some of the state-of-the-art person detectors [3]
though at the expense of CPU resources. We formulate
a feature selection problem optimized via Binary Integer
Programming (BIP) [13] taking detection performance and
computation time into consideration to implement a person
detector that has comparable detection performance to the
original detector proposed by Dalal and Triggs and yet on
average is more than8 times faster on theLadybug2 images.

This paper is organized as follows: section II discusses
related works briefly, section III presents the overview of
our framework followed by feature pools and details of our



improved classifier learning in sections IV and V respec-
tively. Experiments and results are presented in section VI
and finally, the paper concludes with concluding remarks in
section VII.

II. RELATED WORKS

To date, various perspective camera based person detectors
have been proposed (see comprehensive surveys in [3], [7])
When considering a camera on a moving vehicle, as in a
mobile robot, the detector has to rely on information per
frame and can not rely on stationary or slowly changing
background assumptions/models. In this vein, the first major
successful breakthrough was the work of Dalal and Triggs [2]
which introduced and usedHOG features with a linearSVM
classifier. To date,HOG is the most discriminative feature
and no other single feature has been able to supersede it [3].
It has also been successfully used for person detection in 3D
(RGB + D) data [14].

The main downside ofHOG based detectors is the asso-
ciated computation time. These features are extracted first
by computing the gradient, then by constructing a histogram
weighted by the gradient in an atomic region called a cell.
Histograms of neighboring cells are grouped into a single
block, cross-normalized and concatenated to give a feature
vector per block. The final extracted feature within a given
detection window is the concatenation of the feature vectors
of constituent blocks (in one instance this amounted to a
3780 dimensional vector in [2]). For an arbitrary given image
frame, person detection proceeds by testing all possible
locations (position and scale), a.k.a sliding window approach,
with this high dimensional vector which indeed reduces
the speed significantly. To improve this, Zhuet al. [21],
reformulated the problem as a feature selection procedure
over HOG block size using AdaBoost in an attentional
cascade structure. The cascade structure, pioneered by Viola
and Jones [17], spreads the detection process into various
nodes that reject a majority of negative windows, allowing
only positive windows to progress through the entire cascade.
This speeds up detection drastically. Another alternative
is to parallelize the detection process over multiple pro-
cessors [12], but, this necessitates the use of specialized
Graphical Processing Unit (GPU).

Some works have managed to go beyond Dalal and Triggs
detector. But, they had to either combineHOG with multiple
other features (e.g. with Local Binary Patterns [18], with
edgelets and covariance descriptors [20]) or consider a part
based approach (e.g. [6]). CombiningHOG with other fea-
tures has showed advantages over detection performance as
well as speed. Part based approaches, on the other hand, try
to infer the presence of different parts of a person’s body and
aggregate the confidence to detect a person. Comparatively,
these kind of approaches lead to improved results primarily
because they can handle multiple poses and partial occlu-
sions. But consequentially, they incur increased computation
time.

When dealing with panoramic images from omnidirec-
tional cameras in autonomous robots with limited embedded

CPU resources it is impossible to directly useHOG based
detectors. One has to resort to cheap features at the cost
of reduced detection performance or their fusion with other
sensors, fore.g. with Laser Range Finders (LRFs) [22].
Another possibility could be to constrain the region of
interest within the images using hypothesis generated from
other fast modes,e.g. from LRF [10].

In this work we present a person detector with a cascade
configuration similar to Viola and Jones [17]. Each node of
the cascade considers the originalHOG features tweaked to
be suited for feature selection (discussed in section IV), BIP
for actual feature selection, and AdaBoost for feature weight-
ing and classification. Contrary to most feature selection
techniques that rely on boosting techniques where important
features are selected taking the error rate into consideration,
we use BIP to select discriminant features that have the least
combined computation time and yet fulfill the False Positive
Rate (FPR) and True Positive Rate (TPR) requirements of
the node. To the best of our knowledge this is new in the
literature. This paper claims three main contributions:

1) We develop and present a mathematical formulation
based on BIP for feature selection taking both compu-
tation time and detection performance into considera-
tion.

2) We present implementation details of a detector based
on the above formulation.

3) We present a thorough and comparative evaluation of
the proposed detector with Dalal and TriggsHOG de-
tector on a proprietary dataset collected withLadybug2
camera and on the INRIA public person dataset.

Even though this work is presented with emphasis on a
spherical camera, it is equivalently applicable to images from
classical cameras as demonstrated with validation on a public
dataset.

III. F RAMEWORK OVERVIEW

Fig. 2: On-line detector framework.

In this work, we adopt the attentional cascade detector
configuration pioneered by Viola and Jones [16]. Each node
rejects negative windows and passes along potential positive
windows onto the next stage. Only those classified as true



detection by all nodes are considered as true targets. This
structure has gained wide acceptance and has even been
applied in recent part-based approaches [5].

Fig. 2 depicts the final detector applied on live image
streams. The different images from theLadybug2 cameras
are first projected onto a spherical calibrated mesh [11]. They
are then blended along their overlapping fields of view to
form a stitched sphere. This sphere is finally unwrapped
to form a panoramic view. Candidate windows are then
generated via a sliding window approach and fed to the
attentional cascade classifier. At each stage of the cascade
k, k ∈ {1, 2, ...,K}, a significant proportion of the negative
samples are rejected and only those that make it till the end
are considered as true detections.

A key issue in cascaded detector configuration is how
to select which features to use in each node. Classically,
many authors have resorted to AdaBoost, one variant of the
boosted classifiers family, for feature selection and combi-
nation e.g. [16], [21]. But, this approach, which is quite
suitable when dealing with homogeneous features with the
same computational time, selects features solely based on
their detection performance. When considering features with
varying computation time, it is wise to take this factor into
consideration. To address this, we propose a novel feature
selection and classifier learning scheme illustrated in fig.3
and detailed in section V.

Fig. 3: Proposed feature selection and classifier learning scheme.

Given positive and negative training samples, Fisher’s
Linear Discriminant Analysis (Fisher LDA) is used to obtain
a projection hyperplane that would maximize the inter-class
scatter while minimizing the intra-class scatter. For each
feature in the feature pool (discussed in section IV) a decision
tree is learned which results in a specific TPR and FPR on
a validation set. Next, taking these two criteria as well as
computation time, Pareto-Front analysis [1] is used to reduce
the number of features considered. This step is employed to
decrease the number of features to a size manageable by the
BIP module. Using this reduced feature set, an optimization
problem is formulated via BIP to select relevant features with
the smallest computation time, that fulfill the TPR and FPR
requirements of the node.

BIP is a special case of integer programming where
decision variables are required to be 0 or 1 (rather than
arbitrary integers). It aims at minimizing a given linear
objective functionf = c.x subject to the constraints that
A.x ≥ b, where x represents the vector of 0-1 variables
(to be determined),c and b are known coefficient vectors,
A is a matrix of coefficients (called constraint matrix). It is

well-known that BIP isNP-hard in the strong sense but,
in practice, branch-and-cut techniques are able to solve huge
binary integer program very fastly [13], [19]. Finally, discrete
AdaBoost takes the features selected by the BIP module and
builds a strong classifier by weighting and combining them.

IV. FEATURE POOL

Fig. 4: Feature
parameterized by
(x, y, w, h).

Description: As it has been mentioned,
no other single feature has been able to
supersedeHOG feature [3]. Hence, nat-
urally, we have resorted to use it.HOG
features are extracted first by computing
the gradient, then by constructing a his-
togram weighted by the gradient in an
atomic region called a cell. Histograms of
neighboring cells are grouped into a single
block, cross-normalized and concatenated
to give a feature vector per block. The final
extracted feature within a given detection
window is the concatenation of the vectors from each feature
block (for a detailed explanation please refer to [2]).

In this work, we use the originalHOG features pro-
posed by Dalal and Triggs [2] along with their widely
preferred/used computation,i.e. a cell size of8x8 pixels,
a feature block size of2x2 cells and an8 pixel horizontal
and vertical stride. For a given64x128 image window, this
results in a7x15 feature block layout (each feature block is
a 36 dimensional vector). Now to get a pool of features, lets
introduce an operatorΩ that takes a starting location (x,y),
width (w), and height (h), and concatenates all feature blocks
within this region. Hence, for a specific input, the operator
Ω(x, y, w, h) returns a concatenated feature which makes one
component of our feature pool (fig. 4). Using all possible
values ofx, y, w, and h in a given image region made of
HOG feature blocks furnishes the considered feature pool,
̥, represented as a set in eq. 1. With the7x15 feature block
considered in the work, this results in a total of1792 features
that make up our feature pool.

̥ = {Ω(x, y, w, h) :0 ≤ x < 7; 0 ≤ y < 15;

1 ≤ w ≤ (7− x); 1 ≤ h ≤ (15− y)}
(1)

In summary, in the works of Dalal and Triggs, all resulting
feature blocks extracted from the64x128 image window are
concatenated, giving a single high dimensional vector–with
exactly7x15x36 dimensions–as a final feature. Whereas, in
our case, we end up with a pool of features with dimensions
ranging from36 (smallest) to7x15x36 (highest).

Computation Time: The features in our feature pool are
of varying dimensions. Incidentally, the associated time taken
to extract them varies. Since the smallest building unit is a
singleHOG feature block, determining the computation time
of each feature obtained using the above definedΩ operator
is straight forward. Each feature obtained usingΩ contains
an integral multiple of individualHOG blocks. If it takesτ
milliseconds to compute the feature vector of a single block,



then it takesn.τ milliseconds for a feature made up ofn
blocks using theΩ operator. With this, the computations time
for the different features in the pool varies from the smallest,
τ , to the highest,105.τ milliseconds.

V. CLASSIFIER LEARNING WITH COMPUTATION TIME

CONSIDERATION

In the adopted cascade configuration, each node of the
cascade is influenced by the implementation choice of weak
learners, the weak classifiers that are trained on each distinct
feature of the feature pool; feature selection algorithm, that
chooses a subset of the features taking selected performance
criteria into consideration; feature weighting and combining
algorithm; and data mining techniques that try to robustify
the classification performance of each node.

A. Weak Learners

These are each of the weak classifiers that are trained on
each distinct feature of the feature pool,̥. Each unique
weak classifier is associated with and trained on a unique
single feature. Recall that, we have chosen to use Fisher
LDA to determine a projection hyperplane to project the
multi-dimensional feature vectors to obtain a scalar value.
Then, a decision tree is learned (equivalent to having multiple
thresholds), per feature, to provide a binary classification
output. Fisher LDA is preferred over complex classifiers like
an SVM because of its comparatively short training duration.
Given the large amount of features in the considered feature
pool, employing SVM would lead to an overwhelming train-
ing period. In addition, Fisher LDA leads to a weak learner
that is easy to integrate with boosting methods. Once a weak
learner is trained on a given training set, it is characterized
by three performance indicator parameters: its True Positive
Rate (TPR), False Positive Rate (FPR) and computation time
(τj ; j ∈ {0, 1, ..., 1791}). Fisher LDA is implemented using
the alglib C++ mathematical library1.

B. Pareto Front Analysis

Recall that the total number of weak learners or features
considered is1792. As it will come evident in section
V-C this amount of features is too much for a tractable
optimization. Hence, the number of feature must be pre-
reduced. To do this, Pareto Front Analysis is used to ex-
tract the dominant features–based on their TPR, FPR, and
computation time. A simple algorithm outlined in [1] is
used to select the dominant features that maximize TPR,
and minimize both FPR and computation time. Fig. 5 shows
an exemplary instance of extracted front amongst the whole
depicted feature pool. The exact number of features extracted
depends on their properties (TPR, FPR, andτj), but in our
experiments the retained features never exceeded200.

C. Binary Integer Programming

The BIP based feature selection makes the core of this
work’s contribution. Provided the BIP is handed a few
number of weak learners or features̥∗, such that̥ ∗ ⊆ ̥,

1ALGLIB Project – http://www.alglib.net/
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plotted as a blue dot using their TPR, FPR, andτj values. The extracted
dominant features (that make the Pareto Front) are shown with red triangular
markers. The plot is shown in3D as well as projected2D plots to aid
visualization.

the optimization problem to select pertinent features that
satisfy both the node TPR and FPR requirements with the
minimum possible computation time is detailed subsequently.

The parameters of the proposed BIP are:
• N ∈ Z: number of training images/samples;
• M ∈ Z: number of weak learners considered,i.e.|̥∗|;
• yi ∈ {−1, 1}: yi = 1 for positive samples, elseyi = −1

(negative samples);
• hi,j ∈ {0, 1}: hi,j = 1 if weak learnerj detects sample

i to be positive, elsehi,j = 0;
• TPR ∈ [0, 1]: minimum true positive rate required at

the considered node of the cascade;
• FPR ∈ [0, 1]: maximum false positive rate at the node;
• τj ∈ R: computation time of weak learnerj.
Decision Variables: The BIP decision variables are the

following.
• uj ∈ {0, 1}: uj = 1 if weak learnerj is selected, else

uj = 0;
• ti ∈ {0, 1}: ti = 1 if a positive samplei has been

detected as positive (true positive) by at least one
selected weak learner, elseti = 0;

• fi ∈ {0, 1}: fi = 1 if a negative samplei has been
detected as positive (false positive) by at least one
selected classifier, elsefi = 0.

In total, there are(2N + M) binary variables in the BIP,
which is quite compact.

Objective Function and Constraints:

min
∑M

j=1 τjuj (1)

s.t ti ≤
∑M

j=1
1+yi

2 hi,juj , ∀i (2)

fi ≥
1−yi

2 hi,juj , ∀(i, j) (3)
∑N

i=1 ti ≥ (
∑N

i=1
1+yi

2 )TPR (4)
∑N

i=1 fi ≤ (N −
∑N

i=1
1+yi

2 )FPR (5)

uj , ti, fi ∈ {0, 1} , ∀(i, j) (6)

The objective function(1) aims at minimizing the com-
putation time. Constraints (2)-(5) express that a given rate
of detection quality has to be reached (depending on the
number of true and false positives). Constraints (2) linkuj

and ti variables so thatti = 0 if image i has not been
well-recognized.Constraints (3) linkuj and fi variables so
that fi = 1 if a negative imagei has been recognized as
positive by at least one selected classifier. Constraint (4)
expresses that the rateTPR of true positives, obtained



with the selected classifiers, has to be reached. Similarly,
constraint (5) expresses that the rateFPR of false positives,
obtained with the selected classifiers, must not be exceeded.
The total number of constraints is(N(M + 1) + 2), which
could be huge for largeN andM values. This optimization
formulation is implemented using the Gurobi c++ library [8].

D. Discrete AdaBoost

Once the BIP furnishes a set of weak learners/features that
fulfill the requirements set forth on the respective cascade
node, the selected features are weighted and combined to
obtain a strong classifier per node using AdaBoost. In this
work, our implementation of the discrete AdaBoost of Viola
and Jones [16] has been used because of its ease and good
strong classifier construction behavior. Evidently, any other
boosting framework that can accommodate a binary weak
learner could be used.

E. Cascade Construction

The complete cascade structure of the final detector is
built at the end of the training process. The training process
involved is trivial. It relies on a labeled positive and negative
sets first to learn the set of relevant features and then to
use these features to train the AdaBoost classifier in each
node of the cascade. To include vast number of negative
training samples, the mining technique presented by Viola
and Jones [17] is adopted. First, the node is constructed
using a provided positive and negative samples. Once this
is done, the trained nodes of the cascade (up to the current
node) are subjected to a lot of negative samples (in hundreds
of thousands). The mislabeled negative samples are kept for
training consequent nodes of the cascade and the process
continues until a tractable amount of negative samples have
been tested.

VI. EXPERIMENTS AND RESULTS

A. Evaluation metrics

To evaluate the detection performance, we have chosen to
use the Pascal Visual Object Classification (VOC) evaluation
metrics [4] as it is the well established and commonly used
metrics in object detection/classification tasks. The evalua-
tion involves a Precision-Recall curve and a single scalar
quantity called Average Precision (AP), which is basically
the area under the Precision-Recall curve. To determine these
values the True Positives, False Positive, True Negative, and
False Negatives of the test set are determined via a per-
window approach [3]. The per-window approach relies on
cropped labeled positive and negative train and test set. The
training is performed using these cropped images and the
test likewise (please refer [3] for details).

Computation time taken by the cascaded detector–relative
to Dalal and Triggs detector–is another parameter taken
into account. Since number of person containing candidate
windows are relatively very small compared to the number of
total candidate windows generated from person free zones,
the total number of windows tested by cascade is highly
influenced by the FPR. This means, if there areNw candidate

windows, it is safe to assume onlyNw∗FPR windows will
pass onto the next stage. With this, if the total computation
time taken by nodek to evaluate a single candidate window is
represented byζk, the total computation time for a cascade
with K nodes,ζK , is: ζK =

∑k=K

k=1 Nw(FPR)(k−1).ζk. If
we represent the time taken by Dalal and Triggs HOG to
evaluate a single window to beζHOG, the average speed up
with respect to Dalal and Triggs detector would be given by
eq. 2.

Average Speed Up=
ζHOG

∑k=K

k=1 (FPR)(k−1) ∗ ζk
(2)

But, recall thatζHOG and ζk are both integral multiples
of τ , the time taken to evaluate a single HOG feature block.
This simplifies the computation further and it becomes a ratio
of number of constituent HOG feature blocks weighted by
the cumulative FPR in the denominator.

B. Dataset

Experiments are carried out using two different sets of
datasets. The first one is the public INRIA person detection
dataset [2]. The training set for this dataset consists of 2416
cropped positive instances and 1218 images free of persons
(out of which many negative train/test cropped windows
could be generated). The test set contains 1132 positive
instances and 453 person free images for testing purposes.
This is the most widely used dataset for person detector
validation and comparative performance analysis.

Fig. 6: Sample positive (the first four) and negative (the last four) images
taken from theLadybug2 dataset

The second dataset is our proprietary dataset acquired
usingLadybug2 camera mounted on a mobile robot (referred
as Ladybug Dataset henceforth2). It contains 1990 positive
samples annotated by hand. It also contains 50 person free
full resolution images acquired from our robotic and other
rooms in the laboratory. Some 10000 negative windows
are randomly sampled from these images. Sample cropped
positive and negative instances are shown in fig. 6. The test
set contains 1000 manually cropped positive samples and 30
person free images.

C. Results

Validation: In this framework the parameters that need to
be specified are per node TPR and FPR and the depth of the
decision tree to use. Another factor is the Fisher LDA weight
computation. The Fisher LDA weights could be computed
once using a subset of the training set and then the same
weights will be used in all the cascade nodes. The other
alternative is to do the weight computation specifically on

2Please visit http://homepages.laas.fr/aamekonn/iros_
2013/ for more illustrations



each node. To validate all this, the Ladybug Dataset training
set is divided into a60% training and40% validation set and
various train-validation cycles are performed to determine the
effect of each parameter.

First, it is observed that computing Fisher LDA weights
per each node makes the classifier overfit on the training
set leading to a very deteriorated performance on the val-
idation set. Hence, Fisher LDA is computed once, and the
same weights are used throughout the cascade construction.
Second, using a decision tree of depth of2 showed better
performance on the validation set (0.16% higher than the
next best) as can be seen from the precision-recall curve
in fig. 7. Third, varying the FPR showed little variation in
AP but slightly better (≈ 0.1% higher) results are obtained
when using an FPR of0.4 and0.6 during training. Evidently,
higher FPR paves way to more number of cascade nodes but
does not necessary result in more computation time.
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Tree Depth 1,  AP 0.9838

Tree Depth 2,  AP 0.9858

Tree Depth 3,  AP 0.9842

Tree Depth 5,  AP 0.9571

Tree Depth 10,  AP 0.8683

Tree Depth 15,  AP 0.8520

Fig. 7: Precision-Recall curve for various tree classifier depths.

Ladybug Dataset: Three different cascade classifiers are
learned using FPR of0.4, 0.5, and0.6 but with fixed decision
tree depth of2. The results obtained are summarized in
table I.

TABLE I: Comparative summary of learned cascade classifiers on
Ladybug Dataset with varying FPR and Dalal and Triggs detector.

Method K (No. of Cas-
cade Nodes)

Average Speed Up
over [2]

Average
Precision

Cascade with FPR = 0.4 6 8.72x 0.9956
Cascade with FPR = 0.5 9 9.22x 0.9951
Cascade with FPR = 0.6 11 9.68x 0.9927
Dalal and Triggs [2] – 1.0x 0.9987

As can be clearly seen from the table, with a less than
0.5% detection performance loss (AP loss), our cascade
detector resulted in an 8.72x speed up on Dalal’s detector and
with a less than1% loss resulted in a 9.68x speed up. Dalal
and Triggs detector performance is obtained by training their
open-sourced3 detector with the Ladybug dataset training
data. Fig. 8 show the precision-recall curve corresponding
to the runs in table I. The features selected in the first four
nodes of the cascade structure obtained using an FPR of0.4
are shown in fig. 9 superimposed on an average gradient
image of the positive data.

INRIA Person Dataset: Tests on this dataset are carried
out to see the performance of our cascaded classifier on a

3available here:http://pascal.inrialpes.fr/soft/olt/
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Cascade FPR = 0.40,    AP 0.9956

Cascade FPR = 0.50,    AP 0.9951

Cascade FPR = 0.60,    AP 0.9927

Dalal and Triggs HOG,    AP 0.9987

Fig. 8: Comparative Precision-Recall curve for selected cascade detector
and Dalal and Triggs detector on the Ladybug Dataset.

(a) (b) (c) (d)

Fig. 9: Illustration of Selected HOG features of the first four
cascade nodes using FPR of0.4 and decision tree depth of
2. Clearly, the features become more computationally time
consuming as one progresses down the nodes of the cascade.

public dataset and eventually compare its performance with
Dalal and Triggs given the dataset has a lot of intra-class
and inter-class variation. Again with this dataset, a decision
tree depth of2 is used. Three different cascade structures
are learned using an FPR of0.5, 0.6, and 0.7. Table II
summarizes the results obtained.

TABLE II: Comparative summary of learned cascade classifiers on
INRIA Dataset with varying FPR and Dalal and Triggs detector.

Method K (No. of Cas-
cade Nodes)

Average Speed Up
over [2]

Average
Precision

Cascade with FPR = 0.5 8 2.46 0.9066
Cascade with FPR = 0.6 11 2.98 0.9133
Cascade with FPR = 0.7 13 4.01 0.9198
Dalal and Triggs [2] – 1.0x 0.9826
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Cascade FPR = 0.50,    AP 0.9066

Cascade FPR = 0.6,    AP 0.9133

Cascade FPR = 0.7,    AP 0.9198

Dalal and Triggs HOG,    AP 0.9826

Fig. 10: Comparative Precision-Recall curve on INRIA person dataset.

Even on the challenging INRIA dataset, our cascaded
detector resulted in a4x speed up with a less than7% AP



loss with a node FPR of 0.7. The corresponding Precision-
Recall plot is shown in fig. 10.

D. Comments

The results obtained from both datasets show there is
an average speed up by using out cascade framework in
all cases. Of course, for difficult dataset, more features are
required to attain the fixated detection performance. This in
turn decreases the overall all speed gain as shown by the
results from the INRIA dataset. This detector is ported on
a B21R mobile robot called Rackham with an onboarded
Ladybug2 camera, the detector detects people running at
a little less than 2 fps on a PIII 850 MHz PC4. Fig. 11
shows sample detection on aLadybug2 image. The results are
shown as they are without any post-processing (grouping of
overlapping detection). The learning/training phase is carried

Fig. 11: Sample person detection on theLadybug2 image.

out on a core i7 PC with an 8 GB of RAM. The two
major time consuming parts are the Fisher LDA weight
computation at the beginning and the BIP optimization
(specially when huge data is considered). But, no cascade
configuration that confirms to the current adopted scheme
exceeded a 24h training period.

VII. C ONCLUSIONS ANDPERSPECTIVES

In conclusion, a person detection framework that makes
use of the proven discriminant HOG features in a cascade
configuration has been presented. A new feature selection
technique based on mathematical programming has been
devised to select features with good detection performance
and less computation time. The complete final learning
system has been validated on a proprietary dataset acquired
using Ladybug2 camera, a sensor which is interesting but
surprisingly marginally used in the robotics community–
perhaps due to the time consumption with the associated high
resolution images. The methodology is also quite suitable for
conventional cameras (see our evaluation on public dataset).
The final results show comparable detection performance
to that of Dalal and Triggs detector while speeding up the
detection by more than8x on theLadybug2 images.

In the near future, we will use this detector in a tracking-
by-detection framework to track all passers-by in the robot
surrounding when navigating in crowds. The tracking infor-
mation will then be used to realize a socially acceptable
human aware navigation via control law based on visual
servoing techniques.

4Please see http://homepages.laas.fr/aamekonn/iros_
2013/ for a video of the live run on the robot.
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