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Abstract—In this paper, we propose a novel framework for 

gait quality assessment based on image analysis, extending the 

traditional signal-based approach. Specifically, we construct 

Cycle Dissimilarity Images (CDI) from raw gait signals. Such 

images summarize all local dissimilarities existing in the 

dynamics between a gait signal and one normal gait reference. 

Also, we construct a typical dissimilarity image, by matching 

each normal gait reference to itself. Then, we propose to 

quantify gait deviations by computing the distance between the 

CDIs and the typical dissimilarity images.  Our results indicate 

that, compared to the signal-based approach, this new 

framework leads to a more precise gait deviation assessment, 

and a more refined characterization of motor impairments, as 

hemiparesis, tetraparesis, and paraparesis.   

 
Keywords—clinical gait analysis, cycle dissimilarity image, 

normal gait reference image, dynamic time warping, deviation 
score, motor impairments. 

I. INTRODUCTION 

Human gait is a complex process that involves the 
coordination of multiple body segments and joints. In healthy 
individuals, this process is regulated by the Central Nervous 
System (CNS), which ensures the periodic movements of the 
limbs. However, neurological diseases such as cerebral palsy, 
multiple sclerosis, or stroke can cause CNS dysfunction, 
leading to impaired gait quality. The nature and extent of 
motor impairments due to these diseases can vary greatly 
depending on the pathology. In some cases, both upper and 
lower limbs may be affected simultaneously, as in paraparesis 
or tetraparesis. In other cases, only one side of the body may 
be impacted, as in hemiparesis. 

In recent years, there have been significant advancements 
in the assessment of gait quality, thanks to the development of 
new technologies and research methodologies. Inertial 
measurement units [1-5] and motion capture systems [6,7] 
now enable the precise recording of kinematic joint angles [1, 
8-11]. These recordings are used for clinical gait analysis to 
produce objective measurements that can assist clinicians in 
monitoring patients' progress and evaluating the effectiveness 
of interventions [12-14]. 

Different metrics have been proposed to quantify the 
deviations due to neurological diseases [15] from normal gait. 
The ability to accurately quantify these deviations is essential 
for the assessment of disease severity, the development of 
targeted rehabilitation strategies, and the evaluation of 
treatment efficiency. A few measures have been proposed in 

the literature for this purpose, including the Gait Deviation 
Index (GDI) [12], the Gait Profile Score (GPS) [13], and the 
Gillette Gait Index (GGI) [14].  

The common method for creating a normal gait reference 
involves averaging the time-normalized gait cycles obtained 
from healthy individuals in a specific dataset, as proposed by 
the GPS [13]. Another approach is to create a universal gait 
feature space that includes both healthy and pathological 
subjects, and then average the vectors corresponding to 
healthy subjects within this space, as implemented by the GDI 
[12]. More recently, we have proposed a distance-based 
approach combined to unsupervised learning (K-Medoids) to 
retrieve �  reference cycles that account for the intrinsic 
variability present in healthy gait [16]. Such reference cycles, 
called Normal Gait Profiles (NGPs), were retrieved using 
Dynamic Time Warping (DTW) distance to take advantage of 
raw (not normalized) gait signals. Then, to quantify 
pathological deviations from normal gait, we computed the 
DTW distance between a given cycle and the �  NGPs, 
resulting in a K-dimensional deviation vector. Our method has 
been shown to outperform the state-of-the-art measures for 
quantifying pathological deviations [17]. 

This study proposes a new framework for evaluating gait 
deviations, switching from gait signal analysis to image 
analysis, following the same principles presented in [16]. 
More precisely, instead of computing deviations from normal 
gait on raw gait signals, we construct a Cycle Dissimilarity 
Image, carrying a comprehensive view of all the differences 
(local distances) existing in the dynamics between one Normal 
Gait Profile and one gait cycle. Indeed, such image leverages 
time shifts between a cycle and such reference, as well as their 
respective differences in amplitude.  

Our approach also involves the creation of a Normal Gait 
Reference Image, by matching each Normal Gait Profile to 
itself. The assessment of gait deviation is carried out by 
comparing the Cycle Dissimilarity Image to the Normal Gait 
Reference Image using different metrics. Our results show 
that the proposed approach based on images outperforms our 
former results obtained on raw gait signals’ analysis [16]. We 
demonstrate in the following the power of this novel 
framework for gait analysis.  

The paper is organized as follows. In Section 2, we 
describe our dataset and the acquisition protocol, the process 
of creating the Cycle Dissimilarity Images, and the 
methodology employed to assess gait deviations using the 
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proposed images. Section 3 presents the results of our 
analysis, including a comparison of different metrics and with 
our previous state-of-the-art study. Finally, in Section 4, we 
offer our conclusions and discuss potential avenues for future 
research in this area. 

II. MATERIAL AND METHODS 

A. Data acquisition protocol and preprocessing 

For this retrospective study, we used angular kinematic 
data of 52 healthy individuals and 45 patients with 
neurological diseases. The data was collected at the 
Movement Analysis Laboratory of Coubert Rehabilitation 
Center of UGECAM Ile-de-France, which is a healthcare 
institution specialized in neuromotor rehabilitation. Each 
participant was informed that his/her data might be used for 
research purposes, and no participant objected to the use of 
his/her data. This retrospective study was approved on April 
10th, 2019, by the internal ethics committee of UGECAM Ile-
de-France. 

Data acquisition was performed during a spontaneous gait 
task using a Codamotion optoelectronic system integrating 
four CX1 cameras. The system was used to capture 3D 
angular kinematics of the pelvis, hip, foot, ankle, and knee in 
the sagittal, frontal, and transverse planes at a sampling rate of 
100 Hz. Participants were instructed to walk naturally at a self-
selected speed, for 10 meters in a straight line. This process 
was repeated five times in average, with each repetition 
constituting one gait trial. 

The healthy control (HC) group consists of young adults 
aged 18 to 41 years who had no diseases affecting motor 
function. The patient group is composed of adults aged 21 to 
75 years old (refer to Table I for more details). Among the 45 
patients, 21 have hemiparesis (HP), 13 have incomplete 
tetraparesis (TP), and 11 have paraparesis (PP). 

The angular kinematic signals of the joints were divided 
into gait cycles based on consecutive initial contact events. 
These events were automatically identified using a high-pass 
algorithm [21] and then manually verified by an expert. The 
number of gait cycles varied for each trial and patient. In total, 
the study dataset contains 526 HC, 200 HP, 98 PP and 126 TP 
gait cycles. Out of the 200 HP gait cycles, 100 cycles 
correspond to the affected lower limb and the remaining 100 
cycles correspond to the non-affected lower limb. 

For comparative purposes to our previous work [16], we 
focus this study only on the knee angular kinematics in the 
sagittal plane.  

 

B. Recall on Normal Gait Profiles extraction 

In our former work [16], to create a model of normal gait, 
we selected different representatives from the healthy 
population, called Normal Gait Profiles (NGPs). To achieve 
this, we applied an unsupervised algorithm called K-Medoids 
[22] on raw gait signals after a kmeans++ initialization [23], 
coupled to an elastic distance, namely Dynamic Time 
Warping (DTW) [24].   

 

 

 

TABLE I.  SUMMARY MEASURES (MEAN ± STANDARD DEVIATION) 

FOR HEALTHY AND PATHOLOGICAL POPULATIONS 

 

DTW is suitable to align and compare two raw gait signals 
that may be of different length. It works by finding the optimal 
warping path that minimizes the cumulative distance between 
the corresponding points in the two signals � and �, even if 
they are not perfectly aligned in time. The DTW distance is 
given by: 

������, �
 = �
�
� ∈ ���,�


�∑ ��� − ����
��,�
 ∈ � �

�
�       (1) 

where ���, �
 is the set of all possible warping paths that 
satisfy the boundary conditions (i.e., the first and last points of 
X and Y are aligned) and monotonicity (i.e., the warping path 
does not go backwards in time). In this study, we set the value 
of q to 2. By using DTW, we can achieve a more accurate 
comparison between two signals, since it tolerates local 
distortions and temporal shifts that may exist between them. 

Following the results of our experiments in [16], we 
consider in this study three NGPs to characterize normal gait.  

 

C. Dissimilarity Image construction 

As mentioned in the introduction, we propose a novel 
framework by switching from gait signal analysis to image 
analysis. We propose to construct a dissimilarity image 
matching two raw signals and containing the point-wise 
Euclidean distances computed between every observation in 
the first signal (a gait cycle) and every observation in the other 
one (see Fig. 1). The purpose of this transformation is to 
account for all potential alignments of the two raw signals, 
rather than relying only on the optimal path obtained through 
DTW as in [16].  

Since we use non-normalized knee gait cycles, the 
obtained images have varying sizes. Therefore, we normalize 
them to a (64,64) dissimilarity image.  

 

Fig. 1. Dissimilarity image constructed by comparing two raw gait cycles. 

 

 HC Patients 

Number of individuals 52 45 

Number of gait cycles 526 424 

Female 34 (65%) 14 (31%) 

Age (years old) 22.61 ± 3.88 46.64 ± 12.7 

Height (m) 1.71 ± 0.09 1.70 ± 0.1 

Weight (kg) 65.28 ± 10.77 70.84 ± 13.3 

Left cycle length (nb. points) 107.4 ± 6.7 220.5 ± 125.0 

Right cycle length (nb. points) 107.3 ± 6.6 222.8 ± 131.9 
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D. Gait quality assessment using Dissimilarity Images 

To measure gait deviations based on such images, we 
adopt the following methodology:  

1. We first extract the Normal Gait Profiles (NGPs) as 
explained in Section II.B.  

2. We generate three Normal Gait Reference Images 
(NGRIs) constructed from the three NGPs 
(��, � , �!
 previously obtained. This is obtained by 
creating a dissimilarity image "�  (refer to Section 

II.C and Fig. 1) that matches each NGP cycle ��  to 

itself (see Fig. 2).   

3. For a given cycle #�  (healthy or pathological) 
available in the database, we construct its 
corresponding Cycle Dissimilarity Image (CDI) by 
matching such cycle to each NGP. Therefore, three 
CDIs are obtained $�%�,�, $�%�, , $�%�,! as illustrated 
in Fig. 3.  

4. Then, for each cycle #�, we compute a 3D deviation 

vector �� = &��,�, ��, , ��,!' containing the distances 

between each CDI and each NRGI considering the 
metric d, namely:  

               ��,� = (�$�%�,� , "��                                (2) 

The metric d can be the Euclidean distance or the 
DTW distance. In next section, we explain how we 
compute the DTW distance between two images 
$�%�,� and "�. 

5. Finally, to assess gait deviation from normal gait, we 
apply Agglomerative Hierarchical Clustering on all 
the healthy and pathological cycles of the dataset 
represented by their 3D-vectors ��  (corresponding to 
each cycle  #�
. 

 

Fig. 2. Normal Gait References Images (NGRIs) constructed by matching 
each Normal Gait Profile (NGPs) to itself. 

 

 

Fig. 3. Cycle Dissimilarity Images (CDIs) constructed by matching the 
cycle #�  to the three Normal Gait Profiles (NGPs).  

E. Computing DTW distance between two dissimilarity 

images 

To compute the DTW distance between the two images 
$�%�,� and "�, we first construct a sequence of column vectors 

for each image. To this end, each image is split, from the left 
to the right, into a sequence of 64 column vectors of dimension 
64. We thus obtain two sequences of vectors called )*+1 and 
)*+2. 

To compute the DTW between both sequences, we 
calculate the local dissimilarity matrix with the Euclidean 
distance between each column vector .
 from )*+1  to each 

column vector /0  of )*+2 . The optimal path is searched in 

such dissimilarity matrix and the DTW distance is obtained as 
follows:  

 ����)*+�, )*+ 
 = �
�
� ∈ ��12��,12�3


4 5.� − /�5 

��,�
 ∈ �
    �3
 

where � is the set of all possible warping paths that satisfy the 
boundary conditions and monotonicity.  

 

III. EXPERIMENTS AND RESULTS 

A. 3D clustering of deviation vectors computed with DTW 

Fig. 4 displays the distribution of Cycle Dissimilarity 
Images (CDIs) of healthy controls and patients, into four 
clusters obtained with the hierarchical clustering. The clusters 
are displayed in green, dark green, orange and red, according 
to their progressive deviation from normal gait (NRGIs): the 
green cluster is the closest to normal gait, whereas the red 
cluster is the farthest.  

We grouped the healthy controls to the left side and the 
patients by motor impairment (HP, PP and TP) to the right 
side. Each person is represented by a vertical bar counting the 
number of cycles assigned to each cluster.   
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Fig. 4. Distribution of CDIs (cycles) for each person (a vertical bar) within 
the four clusters, based on DTW distance. CDIs in green are the closest 
to NGRIs, followed by CDIs in dark green, orange and red (the farthest 
to NGRIs). Persons are grouped per class: healthy controls (HC), 
Hemiparetic (HP), Paraparetic (PP) and Tetraparetic (TP) patients. 

We first note that most HC cycles are assigned to the green 
cluster as expected, and the other HC cycles to the dark green 
cluster. On the other hand, pathological cycles are distributed 
on the four clusters in an explainable manner:  

- For hemiparetic (HP) patients, we see a dominant 
trend of half of their cycles are assigned to one cluster 
(green or dark green), whereas the other half are 
assigned to another cluster (orange or red). This trend 
is observed for 19 HP patients among the 21. This 
accounts for the affected and non-affected sides of the 
body: the non-affected side cycles are found close to 
normal gait (green or dark green clusters) while the 
affected side cycles are found far from normal gait 
(orange or red clusters). Moreover, interestingly, we 
note that the non-affected side cycles are in majority 
assigned to the dark green cluster. This reflects the 
slight gait impairment of the non-affected side due to 
the compensation effects.  

- For paraparetic (PP) patients, we observe the different 
trend: the cycles of each patient belong to only one 
cluster (dark green, orange or red). This is observed 
for 7 patients among the 11. We note that most cycles 
are assigned to the orange and red clusters, and there 
is no cycle assigned to the light green cluster. This 
accounts for the severity of motor impairments for 
both lower limbs in this group. 

- For tetraparetic (TP) patients, compared to the PP 
group, we observe that more cycles are assigned to the 
dark green cluster and fewer cycles are assigned to the 
red one, showing that this class is less impaired. Also, 
we remark that 6 TP patients exhibit similar trend as 
HP: 5 TP have half of their cycles in the dark green 
cluster and half in the orange one; only one TP patient 
has half of his/her cycles in the dark green cluster and 
the other half in the red one.  

These results show the effectiveness of our method in 
characterizing gait deviations from normal gait. Moreover, 
our method highlights the specific differences existing 
between motor impairments in the three patient groups.  

 

 

 

 

We pursue our analysis by computing a scalar deviation 
score )� for each cycle #�, by averaging the three components 
of the 3D deviation vector �� . Fig. 5 displays the deviation 
scores for each population. For the hemiparetic patients, we 
separated the affected (HPA) and non-affected (HPNA) sides. 

 

Fig. 5. Boxplots of the deviation scores for each class. HPA and HPNA 
stand respectively for HP patients’ affected and non-affected sides.  

  The distinction between the affected (HPA) and non-
affected (HPNA) sides in HP patients is highly significant, 
with a Mood's median test p-value of 5.6 : 10< =. This result 
shows that our deviation score behaves well. We also note that 
for HC, the score values are the lowest and with low variance 
compared to patients. On the other hand, the boxplot for 
paraparetic patients is comparable to that of HPA in terms of 
score values (although a slight decrease of the median appears 
compared to HPA). Finally, the boxplot for tetraparetic 
patients is situated in between that of PP and HPNA. 

 

B. 3D clustering of deviation vectors computed with 

Euclidean distance 

 We compare the results of our method when using the 
Euclidean distance versus DTW in Equation 2. Fig. 6 shows 
the distribution of Cycle Dissimilarity Images of healthy 
controls and patients, into four clusters, based on Euclidean 
distance. The clusters are displayed in the same color code as 
that of Fig. 4 for comparative purposes.  

 

Fig. 6. Distribution of CDIs (cycles) for each person (a vertical bar) within 
the four clusters, based on Euclidean distance. CDIs in green are the 
closest to NGRIs, followed by CDIs in dark green, orange and red (the 
farthest to NGRIs). Persons are grouped per class: healthy controls 
(HC), Hemiparetic (HP), Paraparetic (PP) and Tetraparetic (TP) 
patients. 

We observe that most pathological cycles are in the red 
cluster (the farthest from the NGRIs) contrary to the previous 
results obtained with DTW in Fig. 4. Also, with Euclidean 
distance, we no longer capture the specific trend previously 
observed in the HP class, distinguishing between affected and 
non-affected sides. This is shown more precisely in Fig. 7 
displaying the distribution of deviation scores for HPA and 
HPNA, when considering in Equation (2) the Euclidean 
distance (Fig. 7 left) and DTW (Fig.7 right).  
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Fig. 7. Distribution of deviation scores obtained using the Euclidean 
distance (left) and the DTW (right) in Equation (2) for affected (HPA) 
and non-affected (HPNA) sides in hemiparetic patients. 

All these results show that, contrary to DTW metric, using 
Euclidean distance in Equation (2) does not allow a refined 
characterization of motor impairment differences between the 
three patients’ groups (HP, PP and TP). 

 

C. Image analysis versus raw signal analysis 

In our previous work [16], we emphasized the importance 
of exploiting different Normal Gait Profiles (NGPs) to 
account for the variability present in normal gait patterns. We 
compare in this section our approach based on images for gait 
analysis to the former one based on signal analysis.  

 Fig. 8 displays the results obtained with our former signal-
based methodology. We remark that a high number of 
pathological cycles, especially in the PP class, belong to the 
dark green cluster, contrary to the image-based analysis (refer 
to Fig. 4). Nevertheless, the signal-based methodology seems 
to retrieve the same trend between affected and non-affected 
sides in HP (since cycles of both sides are often not assigned 
to the same cluster). 

 

Fig. 8. Distribution of cycles for each person (a vertical bar) within the four 
clusters, with the signal-based approach of [16]. Cycles in green are the 
closest to NGPs, followed by cycles in dark green, orange and red (the 
farthest to NGPs). Persons are grouped per class: healthy controls 
(HC), Hemiparetic (HP), Paraparetic (PP) and Tetraparetic (TP) 
patients. 

For deeper comparative analysis, we focus on the affected 
(HPA) and non-affected (HPNA) sides of hemiparetic 
patients. We consider the normalized deviation scores 
)�  computed on HPA and HPNA cycles. This score is 
computed for both approaches as the average of the three 
components in the 3D-vector associated to each cycle, when 
compared to the three normal gait references (NRGIs for the 
proposed image-based approach and NGPs for the signal-
based approach [16]).  

Fig. 9 and Fig. 10 respectively show the distributions of 
deviation scores for left and right cycles for each hemiparetic 
patient, when considering our image-based approach on one 
hand and the signal-based approach on the other hand.    

 

Fig. 9. Boxplots of deviation scores for left (in green) and right (in orange) 
cycles per HP patient (one column), considering the image-based 
approach. The affected side is indicated by “L” (left) or “R” (right) at 
the top for each patient.  

 

Fig. 10. Boxplots of deviation scores for left (in green) and right (in orange) 
cycles per HP patient (one column), considering the signal-based 
approach. The affected side is indicated by “L” (left) or “R” (right) at 
the top for each patient.  

It can be seen that the separation between the affected and 
non-affected sides’ score values is higher when performing 
the image-based analysis (Fig.9), as observed for the 4th, 5th, 
8th, 13th, 14th, 17th, 18th, 19th, 21st hemiparetic patients.  

Additionally, with the image-based approach, for all HP 
patients except one (patient 20), the affected side is correctly 
detected, since it has a higher score (this corresponds to higher 
values of the 3 distances in the deviation vector). For the 
signal-based approach (Fig.10), the affected side is wrongly 
detected in two cases (patients 7 and 20).   

Finally, by performing the Mood's median test on the 
normalized deviation scores )� computed on HPA and HPNA 
with the signal-based approach, we found a significant 
difference between HPA and HPNA cycles’ scores, but with 
a much higher p-value of  2.7 : 10< � than that obtained with 
our proposed image-based approach ( 5.6 : 10< =
.  This 
difference reflects the higher precision of the image-based 
approach here proposed and its potential for further works in 
gait analysis.  

IV. DISCUSSION AND CONCLUSION 

In this study, we proposed a novel framework for gait 
analysis exploiting specific images constructed from raw gait 
signals. We first introduced images summarizing all the 
possible local dissimilarities existing in the dynamics between 
one gait cycle and one normal gait reference or “Normal Gait 
Profile” (NGP); such images are called “Cycle Dissimilarity 
Images” (CDIs).  We kept to this end three representatives for 
normal gait (NGPs) to well represent the existing variability 
among the healthy population. We then introduced the 
“typical” dissimilarity image for each normal gait reference 
(namely “Normal Gait Reference Images” or NRGIs), 
generated by computing the local distances between each 
NGP and itself. We proposed to measure the deviations 
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between the former (CDIs) and the latter (NRGIs) to better 
characterize pathological gait deviations comparatively to our 
former work exploiting gait signals [16].  

Results demonstrate that our image-based approach 
outperforms our former signal-based one, which was already 
shown to be a better way to quantify deviations compared to 
the well-known GDI and GPS [17]. Indeed, CDIs allow for a 
more detailed spatio-temporal representation of gait 
deviations, and thus a more precise assessment of motor 
impairments. More precisely, for HP patients, our results 
showed that a more accurate detection of the affected side is 
obtained with our proposed approach. Additionally, the gap 
between deviation scores for the affected (HPA) and non-
affected (HPNA) sides in HP patients, is greater with CDIs 
compared to raw gait cycles, as displayed in Fig. 9 and Fig. 
10, and confirmed by a much lower p-value of the Mood’s test 
(a factor of 2 : 10<?
. This proves the effectiveness of our 
proposed images to differentiate gait quality of the affected 
and non-affected sides of the body.  

Also, the image-based approach allows a more refined 
characterization of each patient group, when clustering the 
deviation vectors into four clusters. With the signal-based 
approach, a high number of PP cycles belongs to the dark 
green cluster, contrary to the image-based analysis (refer to 
Fig. 4) in which a more nuanced trend appears: most PP cycles 
are assigned to the orange and red clusters, accounting for the 
severity of motor impairments for both lower limbs. 

The use of the DTW also showed significant 
improvements in quantifying gait deviations compared to the 
use of Euclidean distance. This is due to the fact that DTW 
can manage spatio-temporal shifts.  

In conclusion, the proposed approach relying on images 
offers a comprehensive view of local differences existing in 
time and amplitudes between two raw gait signals. This 
contributes to describe gait in a higher-dimensional space 
allowing for a complete view of gait deviations. This novel 
perspective extends and outperforms the method in [16] and 
opens new possibilities for future work. 

There are still some limitations to consider. The current 
study was conducted on a dataset of young healthy adults, 
which may not fully represent normal gait. Additionally, the 
number of patients per motor impairment was limited and 
there was an imbalance between groups. This highlights the 
need to conduct the study on an extended dataset to confirm 
our findings. Finally, other joints will also be considered in 
future works.  
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