
MODEL-DRIVEN APPROACH FOR AUTOMATIC DYNAMIC PARTIALLY
RECONFIGURABLE IP CUSTOMIZATION.

Gilberto Ochoa-Ruiz1, Ouassila Labbani-Narsis1, El-Bay Bourennane1, Phillipe Soulard2

 1LE2I Laboratory - Burgundy University - 21000 DIJON - FRANCE
2SODIUS – 6 rue de Cornouaille – F-44300 NANTES - FRANCE

Corresponding author: gilberto_ochoa-ruiz@etu.u-bourgogne.fr

Abstract – This paper presents a framework which automates
the generation of DPR capable IP cores. The approach is
based in an MDE methodology, which exploits two widely
used standards for Systems-on-Chip specification,
UML/MARTE and IP-XACT. The approach aims at
generating IPs which incorporate different functionalities by
using code templates. The templates correspond to IP-XACT
components that represent VHDL modules to be implemented
in the IP. The IP-XACT sub-system description is generated
from the MARTE description, effectively diminishing the
complexity of creating this kind of systems by increasing the
level of abstraction. We present the MARTE modeling
concepts and how these models are mapped to IP-XACT
objects; the emphasis is given to the generation of IP cores
that can be used in the Xilinx EDK environment, since we aim
to develop a complete flow around their Dynamic Partial
Reconfiguration design flow. A model for the DPR IP is
presented and a case study for a simple IP is presented. The
use of our MDE approach is introduced to demonstrate how
the generation from MARTE to EDK systems is performed.

Index Terms—Dynamic Partial Reconfiguration, UML
MARTE, MDE, IP-XACT, ESL Design, EDA.

1. INTRODUCTION

 Run-time reconfiguration (RTR) has been introduced in
recent years as a means of virtualizing hardware tasks in
FPGA systems [1]. However, it wasn’t until the
introduction of Dynamic Partial Reconfiguration (DPR)
technologies by Xilinx that these systems became a reality.
In DPR systems, parts of the system can be reconfigured on
run-time while the other functionalities in the FPGA
remain operational [2].This capability can potentially
provide enormous benefits to the systems designers, such as
power and resources reduction utilization, amongst others.
 However, despite the efforts by Xilinx and many
industrial and academic endeavours, using DPR in very
complex systems remains a very daunting task. This is due,
in the first place, to the complexity of the design flow [3],
which requires and in-depth knowledge of many low level
aspects of the FPGA technology. Secondly, efforts in the
academia to extend the capabilities of DPR design flow
have further increased the complexity of DPR SoC designs.

 Some of these capabilities are, among others, RTOS
support, context switching functionalities, and protocol
adaptation. These features impact the design both at the
system and at the IP level. Extra functionalities, in the form
of static and dynamic wrappers, are added to the core [4],
and automatic composition could help to facilitate this task.
 In this paper, we propose a methodology to leverage the
conception of DPR IP cores. It is based in a Model Driven
Engineering (MDE) [4] approach in tandem with a
component based approach. Therefore, the seamless
integration and interoperability of the used IP is a necessity.
 Several approaches have made use the UML profile and
extensions to support embedded hardware resources
modelling. Many of them made use of the UML profile for
“Modelling and Analysis of Real Time and Embedded
Systems” (MARTE) [4], which is a proposal for OMG
standard profile. However, the mechanisms to move from
UML specifications to enriched levels have not been
standardized, and every approach manages this issue by
defining their own transformation rules and information
repository (using custom XMI data-books).
 The SPIRIT consortium has developed the IP-XACT
specification [5] that describes a standard way documenting
IP meta-data for SoC integration. Several industrial cases
studies have demonstrated that the adoption of IP-XACT
facilitates the configuration, integration, and verification in
multi-vendor SoC design flows [6], [7]. Additionally to the
IP packaging and integration, IP-XACT also provides ways
to automate the design flows where different tools are used.
 The standard has generated enormous interest in the
industrial and scientific communities as a means to
overcome the complexity of system integration. Several
research efforts have been carried out to integrate IP-XACT
into MDE flows. Initial attempts at bridging the gap
between UML/MARTE and IP-XACT have been presented
in [14]. In [15], authors presented a methodology to
perform this mapping, by means of models transformations;
however, they target SystemC code generation. However,
none of these approaches targets specifically DPR systems
and IP customization.

 The contributions of this paper relate to presenting an
MDE approach that uses the UML MARTE profile that
enables moving from high level models to HDL code
generation for the implementation of the IP core sub-system
description. IP-XACT is used as an intermediate model,
used to configure the deployed IPs in the platform and to
automate the parameterisation and customization of DPR
IPs. The parameterised system and IPs are then used to
generate the necessary inputs to the DPR design flow. Our
approach simplifies the conception of FPGA-based SoCs,
and it greatly facilitates the composition of DPR designs.
 The rest of this paper is organized as follows: in Section
II, we explain which role the different IEEE 1685 standard
concepts play in the proposed methodology. An important
aspect of any MDE methodology is the passage from the
high-level specification to the intermediate representation;
thus, in section III we present the mapping between
MARTE and IP-XACT. In section IV, we present a model
of DPR IP, and explain how the IP-XACT concepts are
used to customize this template-based architecture. Section
V presents a case study in which our framework is deployed
for implementing a simple image processing architecture.
Finally, in section VII we conclude, outlining future works.

2. IP-XACT CONCEPTS USED IN OUR

METHODOLOGY.

The IP-XACT standard defines a set of XML data-books
for IP and system description. This specification is meant to
be used by IP providers and system integrators and all
major EDA vendors as way to standardize the access to IP
related information, hence promoting IP-reuse among EDA
tools. The meta-data is used to configure, integrate and
verify IP in advanced SoC design environments.
Furthermore, it enables the creation of vendor-independent
tools for automated IP parameterisation, integration, and as
in the case of our approach, system customization.
 The standard defines four central object descriptions,
which are bus definition, abstract definition, component,
and design descriptions. These four elements are sufficient
for structurally describing a system and the IP cores the
compose it. The use of these concepts at the system level
has already been presented in [18]. We make use of these
concepts to describe customizable DPR cores, both at the
system level as at the subsystem level, as it will be
explained in more detail in the next sub-sections.

2.1. Bus and abstraction definition.

These two concepts are used in tandem to describe standard
buses, which comprise the different interfaces of an IP core.
The bus definition describes high-level aspects of a bus. It
basically serves as a reference to a more detailed
description provided by the abstraction definition. The

latter provides a complete description of the set of
interfaces of a bus, detailing its ports (width, direction, and
specific constraints) and other characteristics.
 In our approach, we have defined bus and abstraction
definitions not only for bus standards, but for the interfaces
comprising the IP at the subsystem level, in order to
facilitate the customization of the IP. This enables sub-
component stitching of only those sub-elements that have
been defined at the higher level of abstraction.

2.2. Component Description.

A component description packages the information related
to an IP core, as depicted in Figure 1. In our approach, we
have defined three types of IP cores: fixed IPs (non-
parametrisable), soft IPs (typically parametrisable
components, which low level implementation is hidden to
the user), and customizable IPs. A special case of the
customizable IPs is the aforementioned DPR core, whose
functionalities are established at a high-level of abstraction,
and added in the form of templates. Each type of IP
requires a different set of IP-XACT elements at the
component level, which will be described as follows.
 Firstly, a component description contains interfaces linked
to bus definitions, which abstracts the low level
implementation details. This element is common to all
types of IPs, since is used for top level stitching.
 The Parameters/choices sub-elements permit the
configuration of an IP core, and enable to automate the
parameterization of an IP within a tool flow. Obviously,
these elements are used both in soft and customizable IPs,
but their use depends on the intended design flow. In our
methodology, parameters/choices are set from the high-
level MARTE description. Models and views are used for
describing different implementations of the same
component (e.g. different levels of abstraction) or for
defining several hierarchical sub-systems, each of them
implementing different functionalities for a component
with the same interfaces.

Figure 1. IP-XACT concepts for a component description.

2.3. Design Description.

A design, as depicted in Figure 2, describes an actual top
level design as a set of component instances, which can be
configured through configurable elements. The sub-
elements in a design are connected between bus interfaces
(that conform to predefined bus definitions). There are
three kinds of connections, named interconnections in IP-
XACT: interconnections, ad-hoc connections and
hierarchical connections.
 We make use of design descriptions for two purposes: for
describing the top level architecture, as described in [16],
but also to describe the implementation of customizable and
DPR IPs. In IP-XACT, hierarchical components can be an
instance of a given top-level design, but make reference to
reference another design, describing its internal
implementation sub-components.

Figure 2. IP-XACT concepts for a design description.

The user can select which features are to be added to the IP.
These features include protocol adaptation logic, and DPR
services (e.g. context saving support) in the form of code
templates related to IP-XACT component instances. This
customization will be further details in Section 5.

3. MAPPING BETWEEN MARTE AND IP-XACT.

In this section, we briefly discuss how the mapping from
MARTE to IP-XACT is used in our methodology. This is
an important step, since facilitates the passage from a high-
level specification to an enriched model (IP-XACT). As
mentioned before, the aspects of deployment phase
discussed in this work are only concerned with structural
information of the system. UML for SoC has been used for
describing the architectural information of a platform. IP-
XACT is introduced in our methodology as an intermediate
representation that contains rich information about IPs and
their configuration.
 Therefore, IP-XACT decouples the MARTE modeling
from the targeted design flows. Moreover, IP-XACT has
been especially developed with the IP and SoC industries in
mind. This fact guarantees that both MARTE models and

IP-XACT descriptions remain interoperable; if the
targeted tool and design flow changes, it suffices to change
the way the meta-data is used in the flow. Figure 5 shows
an example of a MARTE to IP-XACT mapping.

Figure 3. An example of MARTE to IP-XACT mapping.

 In order to perform the aforementioned mapping, a step
must be defined in which the MARTE specification is
parsed. Certain elements in the MARTE platform model
will correspond to IP-XACT objects in the model library.
The objective of this phase is to identify all the elements in
the platform specification, generating as an output an IP-
XACT design file. Components are associated to IPs in
the model library by using their corresponding VLNVs, as
depicted in Figure 3. Additionally, the interconnections
between them must be defined, and the name is taken from
the corresponding MARTE connector name and the end
ports in the components the these connectors tie. A
complete list of the transformation mappings is provided
in Figure 4.
 This step is done both at the system and at the subsystem
(e.g. DPR cores) levels, producing design files for the top
level implementation, and for the “top level” of each of the
customizable IPs. This information is exploited, through
the use of generators, to produce VHDL templates and
other Xilinx files used by the Xflow of EDK, as it will be
detailed in the next section.

Figure 4. List of MARTE to IP-XACT mappings.

4. IP CUSTOMIZATION USING IP-XACT.

In this section, we present one of the main contributions of
this paper: how IP-XACT can be exploited in a component
based approach, using code templates, to customize DPR
IPs. First, we present a generic model for a DPR core,
detailing its main components; then, we discuss how the
MARTE and IP-XACT concepts presented in previous
sections are exploited to customize its functionalities.
 We have discussed the generation for the top-level
implementation in [18]. However, the design entry phase of
the DPR design flow also requires that the DPR IPs to be
integrated into the top-level platform are synthesized
independently, whilst maintaining the same interface for
different implementations of the module. Additionally, the
DPR IPs for SoC designs might have to be parameterized
and customized before code generation. Furthermore, the IP
must be attached to the bus, which is not always
straightforward, due to bus protocol incompatibilities.
Therefore, a Dapapath adaptation module must be added
between the Hw Accelerator and the bus attachment, as
depicted in Figure 5.
 The IP contains a task interface which is entirely
customizable (e.g. by using Xilinx IP core generator whose
inputs we generate). Moreover, the hardware accelerator
has to be wrapped as well. We refer to a DPR wrapper in
the sense that a black box has to be defined which contains
the static interfaces of the IP, This is a requirement of the
current Xilinx DPR design flow, since the interfaces of IP
in the floorplanning phase have to be frozen during the top
level implementation. At the IP level, all the user logic that
does not belong to the DPR wrapper is considered to be part
of the static wrapper. The dynamic wrapper interfaces have
to be customized as well, depending on the services the IP
supports; for instance, interfaces to the IPIF/context
wrapper have to be adapted, or connections for pipelining
or to FPGA pins must be added.

4.1. DPR IP core modeling in MARTE.

We have chosen to concentrate our efforts in targeting EDK
compatible IP cores, since we aim at generating DPR
systems in a Xilinx flow. However, the approach is
extensible to any kind of RTL description. The model in
Figure 5 represents subset of features from a more general
DPR component. The IP functionalities are chosen by the
user by setting tagged values. The model presented here
does not support context saving and the IP is only attached
to the bus. However, a protocol adaptation component has
been added between the IPIF and the DPR wrapper. For the
rest of this section, we focus in describing how the
components in the MARTE and IP-XACT descriptions are
exploited as templates by associating them with the
implementation fileSets.

Figure 5. Modelling of a DPR IP in MARTE.

4.2. IP-XACT related concepts and modeling.

As mentioned in previous sections, the MARTE model for
the platform description and the DPR cores modeling have
an underlying IP-XACT representation. Each of the <<Hw
Resource>> elements in the MARTE model is represented
by a “component instance” in an IP-XACT design file.
Similarly, component instances contain “bus interfaces”
described by “abstract definitions”, and “configurable
elements” that are mapped to tagged values in the high-
level specification. Each of the components have an
associated fileSet, that references where the
implementation files are located and how they to be
deployed in the flow.
 Figure 6 depicts an abstract representation of the IP-
XACT component description for the model in Figure 5.
For each customizable component in a design, IP-XACT
component and hierarchical design descriptions must be
defined. The component is stored in the library, which is
abstracted by the corresponding MARTE models.
Components in the IP-XACT design have associated
implementation files; for instance, the IPIF component
requires logic for implementing the read and write
interfaces, each located in a VHDL file. The ports of the
static wrapper also affect files such as the EDK MPD file,
which contains the IP external ports description.

Figure 6. IP-XACT model abstract representation for the DPR IP

Depending on the choices of the designer (e.g. master/slave,
burst support), the components are instantiated in the IPIF.
The IP interconnect interface has to be adapted accordingly;
for this, abstraction definitions for each interface have been
defined, and are added to the model following
parameterization options in the MARTE description.
 Similarly, the datapath adaptation logic is added if the
data width of the hardware accelerator is different from the
bus width. Currently, this logic is not generated
automatically; the designer of the IP has to create it
accordingly to the needs of the application, but we envision
exploring automatic protocol synthesis techniques to create
the wrapper. This wrapper will be discussed later on the
context of the intended application. Together with the HW
accelerator, the protocol adaptation logic comprises the
dynamic wrapper, or the static interface in the static design.

4.3. IP customization conception flow

The methodology for IP customization is explained in more
detail in this section. This work is an extension of the
approach presented in [16], which was used for system
generation of the top level description of the DPR design.
As mentioned before, the DPR design flow requires, as
inputs, the netlists for the top level design and for the
reconfigurable IPs. In that previous work, we discussed how
to generate the SoC platform; here the discussion revolves
around the DPR IPs as hierarchical components.
 The framework used in our methodology is depicted in
Figure 7. The designer of a DPR application starts by
composing a system using a MARTE description in a tool
such as Papyrus. An extension to the MARTE Profile for
DPR has been created, details can be found in [17]. The
static part of the system is created by integrating non DPR
components such as the processor, memory controller, and
communication IPs. The DPR IPs are also defined, with
special tag values, as described in previous sections.
 After the system has been composed and the DPR IPs
defined, the MARTE model is converted into an IP-XACT
design, retrieving the IP information from an abstract
model library. The obtained design description is fed to a
tool, Sodious MDWorkbench [19], a MDE platform which
enables to define meta-models and to perform model
transformations. We have created meta-models for the
different Xilinx files used in the EDK environment, such as
XBD, MHS, MPD, UCF, PAO, among others. As described
in our previous work, we use these meta-models to perform
model to model transformation between the IP-XACT
description and the aforementioned files. These files are
then fed to the Xilinx Xflow, that generates the top level
and IP netlists that are similarly used as inputs to
PlanAhead for implementing the DPR system. An in-depth
discussion of the role of the different files is out of the scope
of this paper; please refer to the Xilinx PSF Guide [18].

Figure 7. MDE framework for DPR system and IP composition

5. CASE STUDY: DPR IP INTEGRATION.

We have made use of the methodology previously
described to implement a simple DPR architecture. The
system contains two partial reconfigurable regions (PRR)
in which we have mapped two different pixel based tasks.
The architecture integrates a few simple components used
to test the two Partial Reconfigurable Modules (PRMs,
image inversion and binarization). The partial bitstreams
are stored in the compact flash, and retrieved by the
MicroBlaze, that writes the configuration information to
the ICAP. A program in the Microblaze controls the
configuration under request by the UART.
 Figure 8 shows the implementation for the PRMs. The
program running in the processor reads an image from
memory and sends it line by line to the IP, where is stored
in internal FIFOs. The datapath adaptation consists then
in the module that handles this functionality for the input
and output pixel information. Together with the hardware
IP, it comprises the dynamic wrapper, that is at first
completely implemented for testing, but which is
implemented as a black box for DPR implementation.

Figure 8. Implemented image processing IP with dynamic wrapper.

As described in Section 4.2, the basic architecture consists
of several templates, each associated with one or several
VHDL files. Figure 9 shows a snapshot of the fileSets in the
IP-XACT component description.

Figure 9. Snapshot of the fileSets IP-XACT component description.

Table 1 summarizes the synthesis results for each partial
reconfigurable module, the wrapper and the incurred
overhead by using the DPR wrapper. The functionality of
the system has been tested in an FPGA card incorporating a
Virtex FX50.

I.I I.B Wrapper Overhead Resources

LUT 1190 2297 90 8.7% 4%
Slice L 206 422 11 6% 2.8%
Slice M 94 167 12 16% 7.6%
Bram36 0 0 2 0% 0%

Table 1: Synthesis results for the two implementation of the DPR IP.

6. CONCLUSIONS

In this paper we have presented a design methodology that
enables the parameterization and customization of DPR IP
cores from a high-level specification. The presented
approach is based in two widely used standards, UML
MARTE and IP-XACT that until recent years had been
developed in parallel; a great deal of research have been
carried out to unify both standards, given the opportunities
offered by the IP-XACT standard for interchanging IP
descriptions among EDA tools.
 However, as it is demonstrated in this paper, IP-XACT
can also be exploited as a means for providing an
intermediate system description that can be used to pass
from UML MARTE models to HDL code generation. We
have showed how the IEEE 1685 standard can be used to
facilitate the customization of IP core by using sub-
component templates that are linked to MARTE models.

This approach also promotes IP reuse by automatically
integrating IP cores into DPR designs. The generated IP-
XACT design description for the customized IPs is then
used, in an MDE platform environment, to generate
several files. Among them are the files used by the Xilinx
EDK Xflow to produce the system and IP cores
implementations. This step produces the netlists that are
used as inputs for the Xilinx DPR design flow, effectively
leveraging the design entry phase of the DPR design flow.
However, it must be noted that our approach is nor limited
to EDK: different tools and flows can be addressed by
modifying the transformation rules.

7. ACKNOWLEDGMENTS

This work has been supported by the ANR FAMOUS
Project (ANR-09-SEGI-003)

8. REFERENCES

[1] P. Manet, “An Evaluation of Dynamic Partial Reconfiguration for Signal and Image
Processing in Professional Electronics Applications”, EUSASIP Journal of Embedded
Systems, 2008.
 [2] A. Donlin, “Applications, Design Tools and Low Power Issues in FPGA
Reconfiguration”, Chapter 22 in Designing Embedded Processors A Low Power
Perspective, Springer, 513 -541, 2007.
[3]. Xilinx Corporation, Partial Reconfiguration User Guide, Xilinx UG208, 2011.
[4] OMG, “Modeling and Analysis of Real-time and Embedded systems MARTE),
Beta 3,” http://www.omgwiki.org/marte-ftf2/doku.php, 2009.
[5] "IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and
Reusing IP within Tools Flows," IEEE Std 1685-2009, Feb. 18 2010.
[6] W. Kruijtzer et al., “Industrial IP Integration Flows based on IP-XACT Standards,”
in DATE’08, March 2008, pp. 32–37.
[7] C. Lennard, “Industrially Proving the SPIRIT Consortium Specifications for Design
Chain Integration,” in DATE’06, March 2006, pp. 1–6.
[8] J-L. Dekeyser, P. Boulet, P. Marquet, and S. Meftali, "Model driven engineering for
SoC co-design," IEEE-NEWCAS Conference, 2005. The 3rd International, vol., no.,
pp. 21- 25, 19-22 June 2005 doi: 10.1109/NEWCAS.2005.1496724.
 [9] J.Vidal and F. De Lamotte and G. Gogniat, “A co-design approach for embedded
system modeling and code generation with UML and MARTE,” in Design, Automation
and Test in Europe (DATE’09), 2009.
[10] J. Vidal, F. de Lamotte, G. Gogniat, J.- P. Diguet, and P. Soulard, "IP reuse in an
MDA MPSoPC co-design approach," Microelectronics (ICM), 2009 International
Conference on , vol., no., pp.256-259, 19-22 Dec. 2009.
[11] West team of LIFL laboratory. Graphical array specification for parallel and
distributed computing (Gaspard). [Online]. http://www2.lifl.fr/west/gaspard/.
[12] I. R. Quadri, A. Muller, S. Meftali, and J.-L. Dekeyser, “MARTE based design
flow for Partially Reconfigurable Systems-on-Chips,” in 17th IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC 09), 2009.
[13] I. R. Quadri, S. Meftali, and J.-L. Dekeyser, "Designing dynamically reconfigurable
SoCs: From UML MARTE models to automatic code generation," Design and
Architectures for Signal and Image Processing (DASIP), 2010 Conference on, vol., no.,
pp.68-75, 26-28 Oct. 2010.
[14] C. André, F. Mallet, A. M. Khan, and R. de Simone, "Modeling SPIRIT IP-XACT
with UML MARTE", In: Proc. DATE Workshop on Modeling and Analysis of Real-
Time and Embedded Systems with the MARTE UML profile, 2008.
[15].F. Herrera, E. Villar. “A Framework for the Generation from UML/MARTE
Models of IP-XACT HW Platform Descriptions for Multi-Level Performance”. In the
Proceedings of the Forum on Specification & Design Languages (FDL'2011).
Oldenburg, DE, September 2011.
 [16]. G. Ochoa, E.B. Bourennane, H. Rabah, O. Labbani, “ High-Level Modeling and
Automatic Generation of Dinamically Reconfigurable Systems,” in Proceedings of the
DASIP Conference, Tampere Finland. November 2011
[17] S. Cherif, I. R Quadri, S. Meftali, J-L Dekeyser: Modeling Reconfigurable
Systems-on-Chips with UML MARTE Profile: An Exploratory Analysis. DSD 2010.
[18]. Xilinx Corporation, Embedded System Tools Reference Guide, Xilinx
UG111,September 2009
[19]. Sodius Corporation, MDWorkbench, http://www.mdworkbench.com/, 2011.

