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Abstract – This paper presents a framework which automates 
the generation of DPR capable IP cores. The approach is 
based in an MDE methodology, which exploits two widely 
used standards for Systems-on-Chip specification, 
UML/MARTE and IP-XACT. The approach aims at 
generating IPs which incorporate different functionalities by 
using code templates. The templates correspond to IP-XACT 
components that represent VHDL modules to be implemented 
in the IP. The IP-XACT sub-system description is generated 
from the MARTE description, effectively diminishing the 
complexity of creating this kind of systems by increasing the 
level of abstraction. We present the MARTE modeling 
concepts and how these models are mapped to IP-XACT 
objects; the emphasis is given to the generation of IP cores 
that can be used in the Xilinx EDK environment, since we aim 
to develop a complete flow around their Dynamic Partial 
Reconfiguration design flow. A model for the DPR IP is 
presented and a case study for a simple IP is presented. The 
use of our MDE approach is introduced to demonstrate how 
the generation from MARTE to EDK systems is performed. 

Index Terms—Dynamic Partial Reconfiguration, UML 
MARTE, MDE, IP-XACT, ESL Design, EDA. 
 

1. INTRODUCTION 
 
   Run-time reconfiguration (RTR) has been introduced in 
recent years as a means of virtualizing hardware tasks in 
FPGA systems [1]. However, it wasn’t until the 
introduction of Dynamic Partial Reconfiguration (DPR) 
technologies by Xilinx that these systems became a reality. 
In DPR systems, parts of the system can be reconfigured on 
run-time while the other functionalities in the FPGA 
remain operational [2].This capability can potentially 
provide enormous benefits to the systems designers, such as 
power and resources reduction utilization, amongst others. 
   However, despite the efforts by Xilinx and many 
industrial and academic endeavours, using DPR in very 
complex systems remains a very daunting task. This is due, 
in the first place, to the complexity of the design flow [3], 
which requires and in-depth knowledge of many low level 
aspects of the FPGA technology. Secondly, efforts in the 
academia to extend the capabilities of DPR design flow 
have further increased the complexity of DPR SoC designs. 

 Some of these capabilities are, among others, RTOS 
support, context switching functionalities, and protocol 
adaptation. These features impact the design both at the 
system and at the IP level. Extra functionalities, in the form 
of static and dynamic wrappers, are added to the core [4], 
and automatic composition could help to facilitate this task. 
   In this paper, we propose a methodology to leverage the 
conception of DPR IP cores. It is based in a Model Driven 
Engineering (MDE) [4] approach in tandem with a 
component based approach. Therefore, the seamless 
integration and interoperability of the used IP is a necessity. 
    Several approaches have made use the UML profile and 
extensions to support embedded hardware resources 
modelling. Many of them made use of the UML profile for 
“Modelling and Analysis of Real Time and Embedded 
Systems” (MARTE) [4], which is a proposal for OMG 
standard profile. However, the mechanisms to move from 
UML specifications to enriched levels have not been 
standardized, and every approach manages this issue by 
defining their own transformation rules and information 
repository (using custom XMI data-books).  
    The SPIRIT consortium has developed the IP-XACT 
specification [5] that describes a standard way documenting 
IP meta-data for SoC integration. Several industrial cases 
studies have demonstrated that the adoption of IP-XACT 
facilitates the configuration, integration, and verification in 
multi-vendor SoC design flows [6], [7]. Additionally to the 
IP packaging and integration, IP-XACT also provides ways 
to automate the design flows where different tools are used. 
    The standard has generated enormous interest in the 
industrial and scientific communities as a means to 
overcome the complexity of system integration. Several 
research efforts have been carried out to integrate IP-XACT 
into MDE flows. Initial attempts at bridging the gap 
between UML/MARTE and IP-XACT have been presented 
in [14]. In [15], authors presented a methodology to 
perform this mapping, by means of models transformations; 
however, they target SystemC code generation. However, 
none of these approaches targets specifically DPR systems 
and IP customization. 



    The contributions of this paper relate to presenting an 
MDE approach that uses the UML MARTE profile that 
enables moving from high level models to HDL code 
generation for the implementation of the IP core sub-system 
description.  IP-XACT is used as an intermediate model, 
used to configure the deployed IPs in the platform and to 
automate the parameterisation and customization of DPR 
IPs. The parameterised system and IPs are then used to 
generate the necessary inputs to the DPR design flow. Our 
approach simplifies the conception of FPGA-based SoCs, 
and it greatly facilitates the composition of DPR designs. 
   The rest of this paper is organized as follows: in Section 
II, we explain which role the different IEEE 1685 standard 
concepts play in the proposed methodology. An important 
aspect of any MDE methodology is the passage from the 
high-level specification to the intermediate representation; 
thus, in section III we present the mapping between 
MARTE and IP-XACT. In section IV, we present a model 
of DPR IP, and explain how the IP-XACT concepts are 
used to customize this template-based architecture. Section 
V presents a case study in which our framework is deployed 
for implementing a simple image processing architecture. 
Finally, in section VII we conclude, outlining future works. 

 
2. IP-XACT CONCEPTS USED IN OUR 

METHODOLOGY. 
 
The IP-XACT standard defines a set of XML data-books 
for IP and system description. This specification is meant to 
be used by IP providers and system integrators and all 
major EDA vendors as way to standardize the access to IP 
related information, hence promoting IP-reuse among EDA 
tools. The meta-data is used to configure, integrate and 
verify IP in advanced SoC design environments. 
Furthermore, it enables the creation of vendor-independent 
tools for automated IP parameterisation, integration, and as 
in the case of our approach, system customization. 
  The standard defines four central object descriptions, 
which are bus definition, abstract definition, component, 
and design descriptions. These four elements are sufficient 
for structurally describing a system and the IP cores the 
compose it. The use of these concepts at the system level 
has already been presented in [18]. We make use of these 
concepts to describe customizable DPR cores, both at the 
system level as at the subsystem level, as it will be 
explained in more detail in the next sub-sections.  
 
2.1. Bus and abstraction definition. 
 
These two concepts are used in tandem to describe standard 
buses, which comprise the different interfaces of an IP core. 
The bus definition describes high-level aspects of a bus. It 
basically serves as a reference to a more detailed 
description provided by the abstraction definition. The 

latter provides a complete description of the set of 
interfaces of a bus, detailing its ports (width, direction, and 
specific constraints) and other characteristics.  
   In our approach, we have defined bus and abstraction 
definitions not only for bus standards, but for the interfaces 
comprising the IP at the subsystem level, in order to 
facilitate the customization of the IP. This enables sub-
component stitching of only those sub-elements that have 
been defined at the higher level of abstraction.   
 
2.2. Component Description. 
 
A component description packages the information related 
to an IP core, as depicted in Figure 1. In our approach, we 
have defined three types of IP cores: fixed IPs (non-
parametrisable), soft IPs (typically parametrisable 
components, which low level implementation is hidden to 
the user), and customizable IPs. A special case of the 
customizable IPs is the aforementioned DPR core, whose 
functionalities are established at a high-level of abstraction, 
and added in the form of templates. Each type of IP 
requires a different set of IP-XACT elements at the 
component level, which will be described as follows. 
  Firstly, a component description contains interfaces linked 
to bus definitions, which abstracts the low level 
implementation details. This element is common to all 
types of IPs, since is used for top level stitching.  
    The Parameters/choices sub-elements permit the 
configuration of an IP core, and enable to automate the 
parameterization of an IP within a tool flow. Obviously, 
these elements are used both in soft and customizable IPs, 
but their use depends on the intended design flow. In our 
methodology, parameters/choices are set from the high-
level MARTE description. Models and views are used for 
describing different implementations of the same 
component (e.g. different levels of abstraction) or for 
defining several hierarchical sub-systems, each of them 
implementing different functionalities for a component 
with the same interfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  1. IP-XACT concepts for a component description.



2.3. Design Description. 
 
A design, as depicted in Figure 2, describes an actual top 
level design as a set of component instances, which can be 
configured through configurable elements. The sub-
elements in a design are connected between bus interfaces 
(that conform to predefined bus definitions). There are 
three kinds of connections, named interconnections in IP-
XACT: interconnections, ad-hoc connections and 
hierarchical connections. 
   We make use of design descriptions for two purposes: for 
describing the top level architecture, as described in [16], 
but also to describe the implementation of customizable and 
DPR IPs. In IP-XACT, hierarchical components can be an 
instance of a given top-level design, but make reference to 
reference another design, describing its internal 
implementation sub-components. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.  IP-XACT concepts for a design description. 

 
The user can select which features are to be added to the IP. 
These features include protocol adaptation logic, and DPR 
services (e.g. context saving support) in the form of code 
templates related to IP-XACT component instances. This 
customization will be further details in Section 5. 
 

3.  MAPPING BETWEEN MARTE AND IP-XACT. 
 
In this section, we briefly discuss how the mapping from 
MARTE to IP-XACT is used in our methodology. This is 
an important step, since facilitates the passage from a high-
level specification to an enriched model (IP-XACT). As 
mentioned before, the aspects of deployment phase 
discussed in this work are only concerned with structural 
information of the system. UML for SoC has been used for 
describing the architectural information of a platform. IP-
XACT is introduced in our methodology as an intermediate 
representation that contains rich information about IPs and 
their configuration. 
    Therefore, IP-XACT decouples the MARTE modeling 
from the targeted design flows. Moreover, IP-XACT has 
been especially developed with the IP and SoC industries in 
mind. This fact guarantees that both MARTE models and  

IP-XACT descriptions remain interoperable; if the 
targeted tool and design flow changes, it suffices to change 
the way the meta-data is used in the flow. Figure 5 shows 
an example of a MARTE to IP-XACT mapping.  
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Figure 3. An example of MARTE to IP-XACT mapping. 
 
   In order to perform the aforementioned mapping, a step 
must be defined in which the MARTE specification is 
parsed. Certain elements in the MARTE platform model 
will correspond to IP-XACT objects in the model library. 
The objective of this phase is to identify all the elements in 
the platform specification, generating as an output an IP-
XACT design file.  Components are associated to IPs in 
the model library by using their corresponding VLNVs, as 
depicted in Figure 3. Additionally, the interconnections 
between them must be defined, and the name is taken from 
the corresponding MARTE connector name and the end 
ports in the components the these connectors tie. A 
complete list of the transformation mappings is provided 
in Figure 4. 
   This step is done both at the system and at the subsystem 
(e.g. DPR cores) levels, producing design files for the top 
level implementation, and for the “top level” of each of the 
customizable IPs. This information is exploited, through 
the use of generators, to produce VHDL templates and 
other Xilinx files used by the Xflow of EDK, as it will be 
detailed in the next section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. List of MARTE to IP-XACT mappings. 



4. IP CUSTOMIZATION USING IP-XACT. 
 

In this section, we present one of the main contributions of 
this paper: how IP-XACT can be exploited in a component 
based approach, using code templates, to customize DPR 
IPs. First, we present a generic model for a DPR core, 
detailing its main components; then, we discuss how the 
MARTE and IP-XACT concepts presented in previous 
sections are exploited to customize its functionalities. 
    We have discussed the generation for the top-level 
implementation in [18]. However, the design entry phase of 
the DPR design flow also requires that the DPR IPs to be 
integrated into the top-level platform are synthesized 
independently, whilst maintaining the same interface for 
different implementations of the module. Additionally, the 
DPR IPs for SoC designs might have to be parameterized 
and customized before code generation. Furthermore, the IP 
must be attached to the bus, which is not always 
straightforward, due to bus protocol incompatibilities. 
Therefore, a Dapapath adaptation module must be added 
between the Hw Accelerator and the bus attachment, as 
depicted in Figure 5. 
   The IP contains a task interface which is entirely 
customizable (e.g. by using Xilinx IP core generator whose 
inputs we generate). Moreover, the hardware accelerator 
has to be wrapped as well. We refer to a DPR wrapper in 
the sense that a black box has to be defined which contains 
the static interfaces of the IP, This is a requirement of the 
current Xilinx DPR design flow, since the interfaces of IP 
in the floorplanning phase have to be frozen during the top 
level implementation. At the IP level, all the user logic that 
does not belong to the DPR wrapper is considered to be part 
of the static wrapper. The dynamic wrapper interfaces have 
to be customized as well, depending on the services the IP 
supports; for instance, interfaces to the IPIF/context 
wrapper have to be adapted, or connections for pipelining 
or to FPGA pins must be added.      
 
4.1. DPR IP core modeling in MARTE. 
 
We have chosen to concentrate our efforts in targeting EDK 
compatible IP cores, since we aim at generating DPR 
systems in a Xilinx flow. However, the approach is 
extensible to any kind of RTL description. The model in 
Figure 5 represents subset of features from a more general 
DPR component.  The IP functionalities are chosen by the 
user by setting tagged values. The model presented here 
does not support context saving and the IP is only attached 
to the bus. However, a protocol adaptation component has 
been added between the IPIF and the DPR wrapper. For the 
rest of this section, we focus in describing how the 
components in the MARTE and IP-XACT descriptions are 
exploited as templates by associating them with the 
implementation fileSets. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Modelling of a DPR IP in MARTE. 
 
4.2. IP-XACT related concepts and modeling.  
 
As mentioned in previous sections, the MARTE model for 
the platform description and the DPR cores modeling have 
an underlying IP-XACT representation. Each of the <<Hw 
Resource>> elements in the MARTE model is represented 
by a “component instance” in an IP-XACT design file. 
Similarly, component instances contain “bus interfaces” 
described by “abstract definitions”, and “configurable 
elements” that are mapped to tagged values in the high-
level specification. Each of the components have an 
associated fileSet, that references where the 
implementation files are located and how they to be 
deployed in the flow. 
    Figure 6 depicts an abstract representation of the IP-
XACT component description for the model in Figure 5. 
For each customizable component in a design, IP-XACT 
component and hierarchical design descriptions must be 
defined. The component is stored in the library, which is 
abstracted by the corresponding MARTE models. 
Components in the IP-XACT design have associated 
implementation files; for instance, the IPIF component 
requires logic for implementing the read and write 
interfaces, each located in a VHDL file.  The ports of the 
static wrapper also affect files such as the EDK MPD file, 
which contains the IP external ports description. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. IP-XACT model abstract representation for the DPR IP 



Depending on the choices of the designer (e.g. master/slave, 
burst support), the components are instantiated in the IPIF. 
The IP interconnect interface has to be adapted accordingly; 
for this, abstraction definitions for each interface have been 
defined, and are added to the model following 
parameterization options in the MARTE description. 
    Similarly, the datapath adaptation logic is added if the 
data width of the hardware accelerator is different from the 
bus width. Currently, this logic is not generated 
automatically; the designer of the IP has to create it 
accordingly to the needs of the application, but we envision 
exploring automatic protocol synthesis techniques to create 
the wrapper. This wrapper will be discussed later on the 
context of the intended application. Together with the HW 
accelerator, the protocol adaptation logic comprises the 
dynamic wrapper, or the static interface in the static design. 
 
4.3. IP customization conception flow 
 
The methodology for IP customization is explained in more 
detail in this section. This work is an extension of the 
approach presented in [16], which was used for system 
generation of the top level description of the DPR design. 
As mentioned before, the DPR design flow requires, as 
inputs, the netlists for the top level design and for the 
reconfigurable IPs. In that previous work, we discussed how 
to generate the SoC platform; here the discussion revolves 
around the DPR IPs as hierarchical components. 
   The framework used in our methodology is depicted in 
Figure 7.  The designer of a DPR application starts by 
composing a system using a MARTE description in a tool 
such as Papyrus. An extension to the MARTE Profile for 
DPR has been created, details can be found in [17]. The 
static part of the system is created by integrating non DPR 
components such as the processor, memory controller, and 
communication IPs. The DPR IPs are also defined, with 
special tag values, as described in previous sections. 
   After the system has been composed and the DPR IPs 
defined, the MARTE model is converted into an IP-XACT 
design, retrieving the IP information from an abstract 
model library. The obtained design description is fed to a 
tool, Sodious MDWorkbench [19], a MDE platform which 
enables to define meta-models and to perform model 
transformations. We have created meta-models for the 
different Xilinx files used in the EDK environment, such as 
XBD, MHS, MPD, UCF, PAO, among others. As described 
in our previous work, we use these meta-models to perform 
model to model transformation between the IP-XACT 
description and the aforementioned files. These files are 
then fed to the Xilinx Xflow, that generates the top level 
and IP netlists that are similarly used as inputs to 
PlanAhead for implementing the DPR system. An in-depth 
discussion of the role of the different files is out of the scope 
of this paper; please refer to the Xilinx PSF Guide [18]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. MDE framework  for DPR system and IP composition 
 

5. CASE STUDY: DPR IP INTEGRATION. 
 
We have made use of the methodology previously 
described to implement a simple DPR architecture. The 
system contains two partial reconfigurable regions (PRR) 
in which we have mapped two different pixel based tasks. 
The architecture integrates a few simple components used 
to test the two Partial Reconfigurable Modules (PRMs, 
image inversion and binarization). The partial bitstreams 
are stored in the compact flash, and retrieved by the 
MicroBlaze, that writes the configuration information to 
the ICAP. A program in the Microblaze controls the 
configuration under request by the UART. 
   Figure 8 shows the implementation for the PRMs. The 
program running in the processor reads an image from 
memory and sends it line by line to the IP, where is stored 
in internal FIFOs. The datapath adaptation consists then 
in the module that handles this functionality for the input 
and output pixel information. Together with the hardware 
IP, it comprises the dynamic wrapper, that is at first 
completely implemented for testing, but which is 
implemented as a black box for DPR implementation.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Implemented image processing IP with dynamic wrapper. 



As described in Section 4.2, the basic architecture consists 
of several templates, each associated with one or several 
VHDL files. Figure 9 shows a snapshot of the fileSets in the 
IP-XACT component description.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. Snapshot of the fileSets IP-XACT component description. 
 
Table 1 summarizes the synthesis results for each partial 
reconfigurable module, the wrapper and the incurred 
overhead by using the DPR wrapper. The functionality of 
the system has been tested in an FPGA card incorporating a 
Virtex FX50. 
 

I.I I.B Wrapper Overhead Resources 
      

LUT 1190 2297 90 8.7% 4% 
Slice L 206 422 11 6% 2.8% 
Slice M 94 167 12 16% 7.6% 
Bram36 0 0 2 0% 0% 

 
Table 1: Synthesis results for the two implementation of the DPR IP. 
 
 

6. CONCLUSIONS 
 

In this paper we have presented a design methodology that 
enables the parameterization and customization of DPR IP 
cores from a high-level specification. The presented 
approach is based in two widely used standards, UML 
MARTE and IP-XACT that until recent years had been 
developed in parallel; a great deal of research have been 
carried out to unify both standards, given the opportunities 
offered by the IP-XACT standard for interchanging IP 
descriptions among EDA tools.  
    However, as it is demonstrated in this paper, IP-XACT 
can also be exploited as a means for providing an 
intermediate system description that can be used to pass 
from UML MARTE models to HDL code generation. We 
have showed how the IEEE 1685 standard can be used to 
facilitate the customization of IP core by using sub-
component templates that are linked to MARTE models. 

This approach also promotes IP reuse by automatically 
integrating IP cores into DPR designs. The generated IP-
XACT design description for the customized IPs is then 
used, in an MDE platform environment, to generate 
several files. Among them are the files used by the Xilinx 
EDK Xflow to produce the system and IP cores 
implementations. This step produces the netlists that are 
used as inputs for the Xilinx DPR design flow, effectively 
leveraging the design entry phase of the DPR design flow. 
However, it must be noted that our approach is nor limited 
to EDK: different tools and flows can be addressed by 
modifying the transformation rules. 
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