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Abstract

Pipelined computing applications often have their per-
formance modeled using queueing techniques. While net-
works with infinite capacity queues have well understood
properties, networks with finite capacity queues and block-
ing between servers have resisted closed-form solutions and
are typically analyzed with approximate solutions. It is this
latter case that more closely represents the circumstances
present for pipelined computation. In this paper, we extend
an existing approximate solution technique and, more im-
portantly, provide guidance as to when the approximate so-
lutions work well and when they fail.

1. Introduction

Many applications can be effectively parallelized using
pipelining techniques. Examples include sensor-based sig-
nal processing, biosequence analysis, text search, graphics
processing, etc. When these applications are deployed on
a pipeline of computational resources, queueing theory is a
powerful tool for analyzing the performance of these sys-
tems. With effective performance evaluation possible prior
to system construction, design choices can be made cog-
nizant of the performance implications of those choices.

Traditionally, physically pipelined systems are modeled
as a tandem queueing network. Nodes in the network
represent tasks executing on a computational resource and
queues buffer tasks between the nodes. The challenge in
using queueing theory to model systems of this type is the
explict need to incorporate the effects of bounded queues
that exist between the stages of a computation pipeline. If
an interstage queue is full, the upstream computations must
block, and the majority of analytic results for queueing sys-
tems assume a lossy model, where incoming jobs are dis-
carded. Here, we extend existing models that provide ap-
proximate solutions for blocking queueing networks and as-
sess the conditions under which the approximations used in
the models are reasonable.
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Figure 1 illustrates the type of queueing network being
modeled. An arrival process provides jobs at some mean
rate A\. Each server provides service to jobs with mean rate
;. Upon completion of service, an individual job is either
delivered to the downstream node (with probability d;) or
discarded (with probability 1 — d;). This feature can be
used to model a filter computation, in which the results of
processing at a node determine whether or not the job in
question is to be passed further down the pipeline. Biose-
quence search is an example of this type of application.

Blocking is modeled as follows. Each node has an as-
sociated maximum capacity, K;, representing the physical
queue present in the computational pipeline, and if a node ¢
is at capacity the upstream server at node ¢ — 1 experiences
blocking. Here, we assume a blocking after service model,
in which the upstream node completes service for its job
and then waits for the downstream node to have sufficient
space to accommodate its output. Given the above informa-
tion as input, the analytic model provides an estimate of the
maximum sustainable throughput for the queueing system.
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Figure 1. A tandem queueing network.

In this paper, we briefly review the analytic modeling
techniques of Perros and Altiok [8], which provide an ap-
proximate solution for the case when node service time dis-
tributions are exponentially distributed and when the mean
service rates at nodes are approximately equal. We have
modified the original model to accomodate the deliver prob-
abilities. We then extend this technique to include non-
exponential service time distributions. The primary con-
tribution of the paper is an assessment of when the analytic
model works well and when the fundamental approxima-
tions underlying the technique are not met and the model
therefore yields potentially erroneous performance predic-
tions. We finish the discussion with a summary of related
work and conclusions.



2. Analytic Models

The model of [8] attempts to determine the maximum
throughput supportable by queueing networks of the form
illustrated in Figure 1. Table 1 summarizes notation.

Table 1. Notation and description of terms.

Symbol | Description

N The number of the nodes (server units) in the
tandem network

T} The assumed mean throughput of the queue-
ing network (measured at the input) for the
4" iteration of the algorithm

t; The throughput at node ¢ of the network

A Hypothetical lossy mean arrival rate into
node ¢ of the network, the jobs are assumed
to have an exponentially distributed interar-
rival time

i Mean service rate of node ¢

d; Prob. that a job completing service at node ¢
needs service at (is delivered to) node ¢+ 1

K; The maximum number of jobs that can be
present at any node ¢, including the one (if
any) in service

pi(x) | Prob. of having = jobs at node ¢ in the net-

work

m Prob. of a job leaving node ¢ being blocked
from entering node ¢+ 1 of the network

The analytic model is an iterative approach in which:

(1) an initial throughput assumption is made for the net-
work, Ty;

(2) the implications of that throughput are evaluated at
each node of the network in turn, moving from back
to front;

(3) at node 1, the resulting throughput, ¢;, is compared to
the initial assumption, 7p; and

(4) if convergence has not yet been achieved, a new
throughput assumption, 71, is formulated from T}
and t;.

In step (1), the initial throughput assumption is computed
as the minimum service rate of each of the nodes.

i—1
Ty = min{ul,QgiglN{ui/ Hds}} (1
- s=1

In step (2) for iteration j, starting with 5 = 0, each node
of the network is considered in isolation, using standard
single-server queueing models to predict the queue occu-
pancy distribution p;(z) at node i, which can be used to
predict the upstream blocking probability, m; ;. For exam-
ple, when the service time distribution is exponential with

mean rate u;, the queue occupancy is given by

(1= Ni/pa)(Ni/ )™

pi(z) =

where )\; is the mean rate of a (lossy) arrival process chosen
to support the throughput at node 7, t; = [[;.,.; dsT;.
When the service time distribution is phase-type, the queue
occupancy is determined using the techniques of Neuts [6].
For both cases,

mic1 = wipi(Ki + 1)/ Ai. 3)

Moving from node ¢ to node 7 — 1 (i.e., from the back to
the front of the network), node ¢ — 1’s service distribution
is altered to account for blocking downstream. The altered
distribution is modeled as phase-type in which a job, upon
completion of original service, enters a blocking phase with
probability 7;_1.

In step (3), the resulting throughput at node 1, 1, is com-
pared with the current estimate 7). In step (4), if conver-
gence has not yet been achieved, a new throughput estimate,
T)j4+1, is formulated and the technique iterates from step (2).
Additional details of both the original model of [8] and its
extensions can be found in [5].

Both the original model with exponential service distri-
butions and the extended model with phase-type service dis-
tributions were each tested against a queueing network sim-
ulator using 200 synthetically generated queueing networks.
The parameters for each of these experiments are given in
Tables 2 and 3. For the phase-type distributions, a squared
coefficient of variation less than one, ¢? < 1, implies a dis-
tribution with a tighter tail than an exponential distribution.
This would model, for example, an algorithmic stage in a
pipeline that has closer to a deterministic compute time. A
squared coefficient of variation greater than one, ¢ > 1,
models an algorithmic stage with a highly variable compute
time (i.e., the tail of the distribution is heavier than that of
an exponential distribution).

Figure 2 shows the results of these experiments, com-
paring the throughput of the queueing network as predicted
by the analytic model with that predicted by the queueing
network simulator. Simulation results are plotted with 95%
confidence intervals, which are tight enough as to appear as
a single point at this scale on the graphs.

We conclude from these plots that, generally, the ana-
Iytic model works quite well for the cases explored in the
random experiment. Of the 400 synthetically generated net-
works, only 35 have a discrepancy between the analytic and
simulation models of more than 10% (5 from the exponen-
tially distributed service time experiments and 30 from the
phase-type service time experiments). In the next section,
we specifically explore the circumstances under which the
analytic model works well and also performs poorly.



Table 2. Range of parameters tested for expo-
nentially distributed service times.

Symbol | Range of values
N {2,3,..., 10}
K; {5,10,20,30,40,50,60,70,80,90,100,110,120}
i {10,20, ..., 1000}

Table 3. Range of parameters tested for
phase-type service time distributions.

Symbol | Range of values
N {2,3,..., 10}
K; {5,10,20,30,40,50,60,70,80,90,100,110,120}
i {10,20, ..., 1000}
c? {0.5,0.8,1.1,1.3,1.6,2.0,3.0,4.0,5.0,7.5,10,15,20 }

3. Assessing the Analytic Models

Detailed examination of the randomly generated test
cases leads us to pay particular attention to the following
aspects of the analytic model.

1. Queueing networks for which there is clearly one bot-
tleneck node do not require this level of analysis. The
throughput of the system is dominated completely by
the throughput of the slowest node, and all upstream
nodes effectively serve as extensions of the queue as-
sociated with the bottleneck node.

2. A queueing system becomes non-work-conserving
when the queue associated with a node alternately is
empty (starving the node) and full (blocking the up-
stream node). This circumstance is more likely as: a)
the size of the queue between nodes gets smaller, b)
the service rates for two adjacent nodes are similar to
one another, and c) the variability in the service distri-
bution of a node increases.

3. The quality of the analyic model throughput results are
closely tied to the blocking probability experienced by
upstream nodes.

To explore the above observations, a set of test cases
were developed to examine the associated parameter space
explicitly. Figures 3 and 4 represent results from 2 node
experiments for which each node has an exponentially dis-
tributed service time (i.e., the squared coefficient of varia-
tion, cf = 1,0 < ¢ < 1). In the first experiment (Figure 3),
the service rates for both nodes are equal (11; = 300 jobs/s,
0 < ¢ < 1), the capacity of the upstream node is Ky = 100
(chosen to be large enough as to not impact the throughput),
and the capacity of the downstream node, K1, ranges from
5 to 100. This first experiment is designed to explore the
impact of queue size on the analytic model.
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Figure 2. Throughput of analytical model ver-
sus simulation.

For each of the experiments performed, we plot the
throughput as predicted by the simulation model vs. the
throughput as predicted by the analytic model. The straight
line reference that is added to the plot represents perfect
alignment between the two models. The second plot for
each experiment shows the relative error in the analytic
model as a function of the independent variable being var-
ied for the experiment (e.g., downstream node capacity for
Figure 3(b)). The third plot for each experiment compares
the probability that the upstream node is blocked for each
of the analytic and simulation models. Although not shown
explicitly in the first plot, the low-throughput points corre-
spond to the cases of low downstream node capacity (and
corresponding high upstream blocking probability).

The graphs of Figure 3 correspond to a parameteri-
zation explicitly covered by the original models in [8].
Clearly, there is close correspondence between the ana-
Iytic model predictions and the simulation model predic-
tions, both for overall throughput and blocking probability
for the upstream node. For small downstream queue sizes,
the throughput drops off and the blocking probability in-
creases, as one would expect.
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Figure 3. Throughput and upstream blocking probability predicted by analytical and simulation mod-
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Further examination of the individual cases (out of the
randomly generated tests) with poor correlation between the
analytic and simulation throughputs indicates a pair of cir-
cumstances under which the analytic model inadequately
corresponds to the physical system being modeled. The first
circumstance is the case in which a downstream node is suf-
ficiently slower than the immediate upstream node that, in
effect, the upstream node (and its associated queue) act as
an extention to the queue associated with the downstream
node. The second circumstance is the case in which the ser-
vice process for the upstream node differs sufficiently from
an exponential distribution that a Poisson model for the ar-
rival process for the downstream node is no longer effective.
We will examine each of these circumstances individually.

3.1. Test 1

Figure 4 shows the results of an experiment designed to
explore the first circumstance described above. Here, the
capacity of the downstream node is fixed at Ky = 10,
the mean service rate of the downstream node remains at
p1 = 300 jobs/s, and the mean service rate of the up-
stream node, i, is varied between 20 and 780 jobs/s. The
system throughput closely tracks the upstream throughput
while 1o < w1 (the middle and left of the first plot, Fig-
ure 4(a)), stabilizing near p; as o exceeds p;. While the
throughput results still represent a good match between the
analytic and simulation models, there is a clear discrepancy
between the two for the upstream blocking probability. In
effect, the upstream node’s queue is essentially acting as an
extention of the downstream node’s queue, and the model is
not effectively characterizing this fact.

An explicit check for this condition can be formulated, in
which the throughput is determined for a single-node sys-
tem comprised of the downstream node’s server with a ca-
pacity equal to the sum of the two nodes’ capacities. We call
this check “test 1.” For an exponential downstream server
with with arrival rate A, service rate u, and queue capac-
ities K7 and K, the maximum sustainable throughput is
tmar = (1 — 1_(%%)# If the analytic model’s
predicted throughput for some node ¢ exceeds the limit im-
posed by test 1 (i.e., t; > tymq2), We conclude that the an-
alytic model is giving erroneous results. Cases where this
occurs are marked by an “x” in Figure 4(b), and this mark
will be inserted on the middle graph for all of the remaining
figures whenever test 1 fails.

While [8] dealt with exponentially distributed service
times, we have extended the model to address more gen-
eral service distributions. Figures 5 through 7 show the re-
sults of experiments in which there is increased variability
in the service time of the downstream node. In the exper-
iments of Figures 5 and 6, the service rates for both nodes
are again equal (u; = 300 jobs/s, 0 < ¢ < 1), the capac-
ity of the upstream node is Ky = 100, and the capacity
of the downstream node, K, ranges from 5 to 100. What

differs from the first experiment is the squared coefficient
of variation, c%, for the downstream node, which is set to
2 in Figure 5 and 5 in Figure 6. The results show a close
match between analytical and simulation models for the en-
tire range of queue sizes explored, both for throughput and
for upstream blocking probability.

The sensitivity of the analytic models to dissimilar ser-
vice rates is again illustrated in Figure 7. As in Figure 4, the
service rate for the upstream node is varied over the range
11 € [20,780] jobs/s and the capacity for both nodes is
fixed at Ky = 100 and K; = 10. The results here are
similar to the results of Figure 4. When the upstream ser-
vice rate is low, the analytic model accurately reflects this
fact. When the two service rates are comparable, the ana-
Iytic model again performs well. As the upstream service
rate exceeds the downstream service rate, the model even-
tually fails test 1 as indicated in the relative error plots.

The next set of experiments investigates the case where
the upstream node’s service distribution varies from expo-
nential. Figures 8 through 10 show the results of experi-
ments where the service rates for the two nodes are returned
to be equal (up = p1 = 300 jobs/s), the service distri-
bution of the downstream node is returned to exponential
(c? = 1), the capacity of the downstream node is varied
(K1 € [5,100]), and the squared coefficient of variation of
the upstream node is different for each individual experi-
ment. (¢ € [0.8,1.3]).

Across the board, these experiments show good results
for the analytic model, with a close match between the ana-
Iytic model’s predictions and that of the simulation model.

3.2. Test 2

The second circumstance described above in which the
model fails to adequately represent the system being studied
is when the tail of the service distribution of the upstream
node is sufficiently heavy so as to invalidate the implicit
assumption of a Poisson arrival process at the intermediate
node(s). This is illustrated in Figure 11, which shows the
case where the squared coefficient of variation of the up-
stream node is increased to 2. Here, the tail of the upstream
service time distribution is significantly greater than that of
an exponential distribution.

The results in this last figure clearly show the ana-
Iytic model failing to accurately predict the throughput and
blocking probability. This leads us to a second check on
the analytic model, called “test 2.” Unfortunately, unlike
test 1 which has sound theoretical underpinnings, test 2 is
empirically based. Essentially, test 2 is a restriction on the
range of input values supported by the model. If an up-
stream node with a ¢ > 2 experiences any blocking from
the corresponding downstream node (i.e., 7 > 0), test 2
says the analytic model will fail to accurately represent the
throughput of the network. Note that this is an intentionally
conservative test. Figure 11 indicates acceptable errors for
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all but the lowest downstream queue capacities; however,
test 2 leads us to disregard the analytic model’s predictions.
3.3. Random Experiments

Returning to the random experiments of Figure 2, we
now consider the implications of the two tests developed
above. Table 4 shows the results of applying test 1 to the
5 cases in Figure 2(a) for which the relative error in the
analytic model’s throughput prediction is greater than 10%.
Test 1 catches each of these cases.

Table 4. Test 1 check for experiments with >
10% error in Figure 2(a).

Exp. # | Analytic model tmax Result
throughput (jobs/sec)
(jobs/sec)

24 117.6 105.3 Fail

47 47.6 40.9 Fail

84 138.6 122.9 Fail

116 190.1 177.6 Fail

120 58.8 49.1 Fail

Turning our attention to the remaining 30 cases of greater
than 10% error (in Figure 2(b)), 25 of these 30 networks
failed test 2 and the remaining 5 failed test 1. The tests suc-
cessfully detected every case in which the analytic model’s
performance predictions were greater than 10% error.

We note here that there could still be cases where one
could have false positives from the analytical model. The
analytical model could potentially pass the above tests and
still produce incorrect estimates. Also, test 2 is conservative
in nature and one could potentially be discarding results of
the analytical model for networks where the model works
well. In essence tests 1 and 2 are necessary but not sufficient
checks on the correctness of the analytical model.

4. Related Work

The models presented in this paper rely heavily on pre-
vious work in queueing theory, especially on solutions to
single-server queues with Poisson arrival processes and ei-
ther exponentially distributed service times or phase-type
service times. The case for exponentially distributed service
times is a classic one whose solution is given in [4]. The
case for phase-type service times requires a matrix geomet-
ric solution developed by Neuts [6]. In each of the above
models, the arrival process is assumed to be lossy (i.e., if a
job arrives to find a full queue, that job is discarded). The
two assumptions that make the models in this work approx-
imate rather than exact are: 1) Poisson arrivals at the input
to each node, and 2) the use of a lossy arrival mode to solve
for the queue occupancy distributions.

The seminal work on networks of queues was by Jack-
son [2, 3], in which he showed that, for infinite capacity

queues, the steady state probabilities are found via a prod-
uct form solution in which each queue is treated individu-
ally. This was subsequently expanded by Baskett et al. [1] to
cover a range of service disciplines and queueing protocols.
Two approaches to modeling queueing networks with finite
capacity queues and associated upstream blocking are state-
space models and approximate models. State-space models
have the difficulty that the model does not scale well with
increasing nodes in the network [7]. The approximate mod-
els of Perros and Altiok [8] are the ones we have extended
and assessed here.

5. Conclusions

In this paper we have extended the approximate analysis
of Perros and Altiok [8] for queueing networks with finite
queues and upstream blocking to handle more general ser-
vice distributions. Phase-type distributions with squared co-
efficient of variation less than 1 are often better models of
the computational requirements of pipelined applications,
since many algorithm stages are unlikely to have as heavy a
tail as an exponential distribution. The model consistently
works well under these circumstances.

We have also assessed both the original model and our
extensions to determine conditions under which the approx-
imate modeling assumptions cause the results to be ques-
tionable. Two tests are developed that enable the user to
rule out specific cases where the models are known to fail.
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