
ABC: A Cryptocurrency-Focused Threat
Modeling Framework

Ghada Almashaqbeh1?, Allison Bishop1,2??, and Justin Cappos3

1 Columbia University, NY, USA {ghada, allison}@cs.columbia.edu
2 Proof Trading, NY, USA

3 New York University, NY, USA jcappos@nyu.edu

Abstract. Cryptocurrencies are an emerging economic force, but there
are concerns about their security. This is due, in part, to complex col-
lusion cases and new threat vectors that could be missed by conven-
tional security assessment strategies. To address these issues, we propose
ABC, an Asset-Based Cryptocurrency-focused threat modeling frame-
work capable of identifying such risks. ABC’s key innovation is the use
of collusion matrices. A collusion matrix forces a threat model to cover a
large space of threat cases while simultaneously manages this process to
prevent it from being overly complex. Moreover, ABC derives a system-
specific threat categories that account for the financial aspects and the
new asset types that cryptocurrencies introduce. We demonstrate that
ABC is effective by conducting a user study and by presenting real-
world use cases. The user study showed that around 71% of those who
used ABC were able to identify financial security threats, as compared
to only 13% of participants who used the popular framework STRIDE.
The use cases further attest to the usefulness of ABC’s tools for both
cryptocurrency-based systems, as well as a cloud native security technol-
ogy. This shows the potential of ABC as an effective security assessment
technique for various types of large-scale distributed systems.

1 Introduction

Cryptocurrencies and blockchain technologies are an emerging economic force.
Since Bitcoin emerged in 2009 [63], the number of these “digital currencies”
has grown into the thousands in 2019, with a total market capital exceeding
$380 billion [16]. As the value of these currencies has grown, their goals also
changing. Early systems focused only on providing a virtual currency exchange
medium [26, 63], but nowadays there is increasing interest in providing other
types of distributed services, such as computation outsourcing [18] or file stor-
age [36], on top of this medium. These newer applications suggest increased
adoption of cryptocurrency-based systems in the coming years.

Yet, despite the many advantages they offer — decentralization, transparency,
and lowered service costs — there is still a big gap between the promise of

? Supported by NSF CCF-1423306.
?? Supported by NSF CCF-1423306 and NSF CNS-1552932.

ar
X

iv
:1

90
3.

03
42

2v
2

 [
cs

.C
R

]
 2

3
A

ug
 2

01
9

cryptocurrencies and their performance in practice. A major stumbling block
is the perception that these systems are not secure, and the large number
of security breaches announced in the past few years give credence to these
doubts [2, 4–7, 11–13, 15, 17, 19, 20, 23–25, 29, 31, 33, 34]. Therefore, a better un-
derstanding of the security of cryptocurrencies is needed in order to ensure their
safe deployment in emerging applications, and their continued adoption.

The best practice for designing a secure system requires a threat modeling
step to investigate potential security risks. Such a model can guide developers in
deploying the proper countermeasures during the design phase, and in assessing
the system’s security level in the after-design stage. Although threat modeling
has been thoroughly studied in the literature, existing paradigms primarily tar-
get software applications [51] or distributed systems that have a small number
of participant types [62]. These threat modeling techniques were not designed
to be scalable for a set of diverse, mutually distrustful parties as is found in
cryptocurrencies. Such systems, especially those providing distributed services,
consist of parties that play different roles (miners, clients, and different types
of servers), and an attacker may control any subset of these parties. Adding to
the complexity, the attacker may seek to target any role in the system and may
launch a diverse array of attacks with different intended outcomes. As these sets
grow, the complexity of reasoning about and managing threat cases becomes
unwieldy.

To address these issues, we propose ABC, an Asset-Based Cryptocurrency-
focused threat modeling framework. ABC introduces a novel technique, called a
collusion matrix, that allows users to investigate the full threat space and manage
its complexity. A collusion matrix is a comprehensive investigation and threat
enumeration tool that directly addresses collusion by accounting for all possible
sets of attacker and target parties. ABC reduces the combinatorial growth of
these cases by ruling out irrelevant scenarios and merging threat cases that have
the same effect. This explicit consideration of attacker collusion is particularly
important in permissionless cryptocurrencies that allow anyone to join.

ABC’s models are also tailored to better consider the threat domain of cryp-
tocurrencies. This is done by introducing new threat categories that account for
the financial motivations of attackers and new asset types, i.e., critical compo-
nents, these systems introduce. ABC identifies these categories by listing the
assets in a system, such as the blockchain and the peer-to-peer network, and
outlining what entails secure behavior for each one. Then, the threat categories
are defined as any violation of the security requirements for these assets. This
approach produces a series of system-specific threat classes as opposed to an a
priori-fixed list of generalized ones. Another feature of ABC is acknowledging
that financial incentives and economic analysis can play major roles in other
steps in the design process. These tools can be used in risk assessment and in
mitigating some types of attacks that cannot be neutralized cryptographically.

To demonstrate the framework’s effectiveness, we conducted a user study
and prepared use cases. The study compared the performance of subjects in
building threat models using ABC and the popular framework STRIDE. Among

2

the obtained results, we found that around 71% of those who applied ABC were
able to identify financial threats in a cryptocurrency system, as compared to less
than 13% of those applying STRIDE. In addition, while none of the STRIDE
session participants spotted collusion between attackers, around 46% of those
who used ABC identified these scenarios.

For the use cases, we applied ABC to four real-world systems: Bitcoin [63],
Filecoin [36], CacheCash, and SPIFFE [30]. These cases attest to the usefulness of
ABC’s tools, as they integrated well into CacheCash’s design phase, and revealed
several missing threat scenarios in the public design of Filecoin. Furthermore,
ABC proved to be advantageous in a collaboration between one of this paper’s
authors and a team working on assessing and improving the security of SPIFFE,
a cloud-based identity production framework hosted by the Linux Foundation.
Using ABC, the SPIFFE group was able to reason about all threat cases in a
systematized way, determine the critical threats, and then prioritize mitigation
actions accordingly. This confirms the potential of ABC as an effective tool for
assessing and improving security not only for cryptocurrency-based systems, but
for large-scale distributed systems in general.

2 Related Work

To orient readers to the current state-of-the-art in threat modeling, we summa-
rize here some prior work done in this area. We also highlight relevant works on
threat identification and security analysis in cryptocurrencies.

Threat modeling frameworks. The STRIDE framework, developed by Mi-
crosoft as part of its Security Development Lifecycle (SDL), is one of the earliest
and most popular works in this field [51, 69]. STRIDE is an acronym of the
threat categories the framework covers, namely, Spoofing, Tampering, Repudi-
ation, Information disclosure, Denial of service, and Elevation of privilege. This
framework is a multistep procedure that involves understanding the software
application functionality, capturing its operation flow using data flow diagrams
(DFDs), mapping the components of these DFDs to the threat categories men-
tioned previously, and employing threat tree patterns to derive concrete threat
cases.

Though several solutions have extended STRIDE to accommodate more com-
plex systems [62], and cover other security requirements, e.g., privacy [45,56], its
model does not fit cryptocurrencies. Another study [71], in which the authors ex-
tended STRIDE’s threat categories to handle Bitcoin-like community currencies,
bears out this premise. However, their approach targets only community fund
operation; more modifications would be needed to handle other components of
the currency exchange medium, and other types of distributed services.

Other paradigms have pursued slightly different approaches. KAOS [70] is
a goal-oriented requirements engineering framework that has been extended to
cover security. It analyzes the anti-security goals of a system to identify the
types of threats that represent potential compromises. T-MAP [43] is a value-

3

driven framework that targets commercial off-the-shelf systems. It identifies all
attack paths and assigns them severity weights based on the organization (or
business) policy to help in evaluating security practices. ANOA [41] is a generic
framework to define and analyze anonymity of communication networks, while
the frameworks presented in [38, 50] target the secure design of data routing
protocols. Finally, other works build specialized threat models for specific classes
of distributed systems, e.g., storage systems [48], virtual directory services [44],
and unmanned aerial vehicle systems [52], rather than introducing a framework.

The aforementioned works indicate that different types of systems have dif-
ferent requirements when performing threat modeling. This reinforces the idea
that emerging systems, such as cryptocurrencies, need specialized threat model-
ing tools.

Security analysis of cryptocurrencies. Most of the work done so far in this
category can be divided into two classes. The first class formalizes the secu-
rity properties of consensus protocols and blockchains [46, 65], with the goal
of providing a security notion and a rigorous framework to prove security of
blockchain-based systems, whereas the second class discusses specific security
attacks on cryptocurrencies. For example, in a series of studies on Bitcoin, Bon-
neau et al. [42] present several security threats, Androulaki et al. [39] evaluate its
anonymity property, Gervais et al. [47] study how tampering with the network
links affects participants’ view of the blockchain, and Kroll et al. [55] study the
economics of Bitcoin mining and the effect of miner financial incentives on its
security.

Other works dealing with different types of cryptocurrencies include Luu et
al. [57, 58] who focus on security threats to smart contracts in Ethereum [72],
Kosba et al. [54] who provide a model for decentralized smart contracts that
preserve user’s privacy, and Sanchez et al. [59, 60] who analyze the security of
Ripple [26] and the linkability of wallets and transactions in its network. More-
over, a recent empirical study, by Moser et al. [61], shows that the transactions in
the privacy preserving cryptocurrency Monero [22] are traceable and that their
real inputs can be identified. And another, by Kappos et al. [53], shows that the
anonymity set of the private transactions in Zcash [35] can be shrunk using a
simple heuristic derived from coin usage patterns.

While these attack descriptions are very useful, they only outline specific
threat scenarios for a given system. Our goal, however, is to develop a frame-
work that allows reasoning about the full set of potential attacks facing any
cryptocurrency-based system.

3 Stepping through the ABC Framework

Having highlighted the need for a cryptocurrency-specific threat modeling frame-
work, we now present the ABC model that answers to this need. As a system-
atized approach, applying ABC starts by understanding the functionality of the
cryptocurrency system under design with a focus on its asset types and the finan-

4

cial motivations of the participants (Section 3.1). This is followed by identifying
the impactful threat categories and mapping them to the system assets (Sec-
tion 3.2). After that, ABC directs system designers to extract concrete attack
scenarios using a new tool called a collusion matrix, which helps in exploring and
analyzing the full threat space (Section 3.3). Lastly, ABC acknowledges that fi-
nancial incentives affect other design steps, including risk assessment and threat
mitigation (Section 3.4).

To make the discussion easier to follow, we illustrate the ABC process by
describing its application to the following simplified system, which was inspired
by Golem [18]:

CompuCoin is a cryptocurrency that provides a distributed computation
outsourcing service. Parties with excessive CPU power may join the system as
servers to perform computations on demand for others. Clients submit computa-
tion jobs to servers, wait for the results and proofs of correctness, and then pay
these servers with cryptocurrency tokens. The mining process in CompuCoin is
tied to the amount of service provided to the system. That is, the probability of
a server being selected to mine the next block on the blockchain is proportional
to the amount of computation it has performed during a specific period.

The full threat model for CompuCoin is available online [32]. Several excerpts
from this model are embedded in the discussion of ABC steps that follows.

3.1 System Model Characterization

Understanding the system is an essential step in the threat modeling process.
A misleading or incomplete system description can lead a designer to overlook
serious threats and/or incorporate irrelevant ones. Therefore, an accurate system
model must outline the use scenarios of the system, the assumptions on which
it relies, and any dependencies on external services. In addition, the model must
be aware of all participant roles, and any possible motivation each might have to
attack the system. For the latter, evaluators need to consider how the financial
interests of these participants shape their behaviors.

Moreover, a system model must define the critical components that need to
be protected from attackers. These components represent the assets that would
compromise the whole system if attacked. To capture the features of the system,
ABC identifies these assets based on functionality. In detail, ABC divides the
system into modules, and labels the valuable components of each module as
assets, which could be concrete or abstract resources [62]. For example, the
blockchain and the currency can be considered concrete assets, while preserving
user privacy would be an abstract asset.

Finally, a system model includes graphic illustrations of its work flow. For
distributed systems, it is useful to draw network models [62] in which system
modules are represented by graphs showing all participants and assets, and the
interactions between them. These graphs are helpful when enumerating the con-
crete threat scenarios as we will see in Section 3.3.

5

Functionality description. Outlined in
CompuCoin description introduced earlier.

Participants. Clients and servers.

Dependencies. May rely on a verifiable
computation outsourcing protocol.

Assets. Computation service, service rewards (or
payments), blockchain, currency, transactions, and
the communication network.

Service module network model

Server
(Bob)

Computation
request

Client
(Alice) Exchange

computation result
for a payment

Miners Blockchain

Claim payments

Fig. 1: System model characterization of CompuCoin.

Running example application. Figure 1 illustrates how this step would
look in CompuCoin. It shows the various components of the system model, in
addition to a network model of the computation outsourcing service. To cover
the full functionality of the system, other network models would be needed to
capture components, such as the mining and consensus processes. Furthermore,
the asset list in this figure is not exhaustive, and is limited by the rather brief
description provided for CompuCoin.

As shown in the figure, anyone can join CompuCoin as clients and servers,
with servers also filling the role of miners. Dependency on other systems may
include reliance on a verifiable outsourcing computation protocol, e.g. [64]. In
terms of assets, one may define three in CompuCoin: the Service promised to
clients, the Payments used to compensate for the service, and the Currency
Exchange Medium that covers four sub-assets (in light of the extended review
of Bitcoin [42]): the blockchain, currency, transactions, and the communication
network that connects the parties together. Here one may merge the currency
with the transactions in one asset, as transactions are usually the currency tokens
that state the coin’s ownership. Another option is to merge currency with the
payment asset to cover all currency flow in the system. However, we believe that a
fine-grained division provides a more comprehensive treatment when identifying
threats.

3.2 Threat Category Identification

After understanding the system model, the next step is to identify the broad
threat categories that must be investigated. For each system component, sys-
tem analysts outline all threat classes that may apply. Here ABC steps away
from the conventional practice of using an a priori-fixed list, and instead uses
an adaptive approach inspired by requirements engineering [45]. This approach
defines threats as violations of system security goals. Given that assets are the
target of security breaches, ABC defines these threat classes as violations of as-
set security requirements. This allows deriving system-specific threat categories
because ABC identifies the assets in a way that aligns with the functionality of
the system under design.

6

Table 1: CompuCoin threat categories.

Asset Security Threat Category

Service

Service corruption (provide corrupted service for clients).

Denial of service (make the service unavailable to legitimate users).

Information disclosure (service content/related data are public).

Repudiation (the server can deny a service it delivered).

Service
Service slacking (a server collects payments without performing all the promised
work).

payments Service theft (a client obtains correct service for a lower payment than the agreed
upon amount).

Blockchain

Inconsistency (honest miners hold copies of the blockchain that may differ be-
yond the unconfirmed blocks).

Invalid block adoption (the blockchain contains invalid blocks that do not follow
the system specifications).

Biased mining (a miner pretends to expend the needed resources for mining to
be elected to extend the blockchain).

Transactions

Repudiation (an attacker denies issuing transactions).

Tampering (an attacker manipulates the transactions in the system).

Deanonymization (an attacker exploits transaction linkability and violates users’
anonymity).

Currency Currency theft (an attacker steals currency from others in the system).

Network Denial of service (interrupt the operation of the underlying network).

Accordingly, in this step, an evaluator examines each asset and applies the
following procedure to identify its threat classes:

– Define what constitutes secure behavior for the asset, and use that knowledge
to derive its security requirements. These requirements include all condi-
tions that, if met, would render the asset secure. For example, CompuCoin’s
servers provide a computation outsourcing service and collect payments in
return. One may consider the service payment asset secure if: a) servers are
rewarded properly for their work, and b) that they earned the payments they
collected.

– Define the threat categories of an asset as violations of its security require-
ments. Tying this to the above example, the service payment asset would
have the following threat classes: service slacking, where a server collects pay-
ments without performing all the promised work, and service theft, where a
client obtains service for a lower payment than the agreed upon amount.

The previous steps are highly dependent on how system analysts define the
security properties of an asset, especially if there is no agreed-upon definition in
the literature. For example, several works studied the security of the blockchain
and the consensus protocol [42, 46, 65]. Yet, there is no unified security notion
for the service asset because each type may have different requirements.

7

Running example application. Applying this step to CompuCoin pro-
duced the threat categories listed in Table 1 (the detailed process of deriving the
security requirements and negating them to produce the listed threats for each
of these assets is presented in Appendix A). We found this table useful when
building threat models for all the use cases introduced in Section 5, where we
mapped the listed categories to the assets in each system. In this mapping pro-
cess, we found that some threat types were not applicable due to the absence of
some assets. Notably, Bitcoin’s only assets are the ones related to the currency
exchange medium. On the other hand, other systems required replicating some of
these categories among all instances of an asset, e.g., in Filecoin all service asset
threats were replicated for the two service types this system provides, namely,
file storage and retrieval. This shows how the system characteristics affect the
threat category identification step in ABC.

3.3 Threat Scenario Enumeration and Reduction

Once the threat categories have been identified, the next step is to enumerate
concrete attack scenarios under each threat type. It is important in this step to
be as comprehensive as possible by considering all potential attackers and target
parties, as well as the set of actions attackers may follow, and the capabilities
they must posses, to achieve their goals. This also involves considering collusion
between several participants who may cooperate to attack the system.

Detecting collusion is particularly important in cryptocurrencies. The pres-
ence of monetary incentives may motivate attackers to collude in more ways than
traditional distributed systems. The popular centralization problem caused by
mining pools attests to this fact, as when these pools collude they can perform
devastating attacks. Even miners may collude by accepting, or rejecting, updates
on the network protocol which leads to hard forks in the system. ABC can detect
these and other collusion cases at early stages of the system design.

To achieve this, ABC introduces collusion matrices that instruct analysts
to enumerate all collusion cases, and reason about the feasibility of all threat
scenarios in the system. A collusion matrix is two-dimensional, with the rows
representing potential attackers and the columns representing the target parties.
For the rows we list all participant roles in the system, both individually and
in every possible combination. We also add a category called “external” that
represents all entities outside the system. The same is done for the columns,
with the exception that “external” is excluded. By definition, an external party
is not part of the system, and hence, can not be a target. Each cell in these
matrices represents a potential threat case to be investigated.

An example of a collusion matrix for the service theft threat in CompuCoin
is shown in Figure 2. The dashed ellipse in the accompanying network model
encloses a service session, which is an interaction between a server and a client.
Any entry with multiple parties on the attacker side in this matrix indicates
collusion. Note that a participant label may represent slightly different roles de-
pending on where it is placed. For example, in Figure 2 the label “server” on
the target side corresponds to a single server (i.e., Bob) since a service session

8

Client

Client and Server

Server

External

Client and External

Server and External
Client, Server, and

External

Client Server Client and Server

Targets

A
tt
ac
ke
rs

This is AliceThis can be Alice
and/or all clients

in the system

This is BobThis can be Bob
and/or all servers

in the system

Server
(Bob)

Client
(Alice)

Service request

Exchange service
and payments

External CompuCoin

Fig. 2: Collusion matrix of service theft threat in CompuCoin.

involves only one server. However, the label “server” on the attacker side repre-
sents all servers in the system, including Bob. Hence, the cell in grey shade in
Figure 2 does not suggest that a server colludes to attack itself, but instead, it
represents the case where other servers collude with Alice against Bob.

For each threat category mapped to the assets in the system, a separate
collusion matrix is created and analyzed as follows:

1) Enumeration: In this step, system analysts examine each cell and enumerate
all strategies that attackers with specific capabilities can use against the target
parties, and documenting the process. It is useful to consider the network model
of the system components as they show the interactions between the participants
and the system assets.

2) Reduction: While examining each cell, system analysts reduce the number
of threat cases by:

– Eliminating cells representing scenarios that will not produce a threat to the
system. This consists of crossing out the eliminated cells and documenting
the rationale for elimination. For example, in Figure 2, the cells that have
the client as a target are irrelevant to the service theft threat. This is because
a client does not provide a service to others. Other cases can also be crossed
out if they are neutralized by system assumptions or by early design choices.
For example, requiring all transactions to be signed by their originators rules
out transaction repudiation and tampering attacks.

– Merging together scenarios (and the corresponding cells) that have the same
effect, or those that do not become stronger with collusion. For example, in
Figure 2, the grey shaded cell in which Alice is colluding with other servers
to avoid paying Bob is reduced to the case that Alice is a sole attacker. This
is because only Alice pays for the service she receives from Bob, while other
servers are not part of the protocol4.

4 The case that these clients drop/withhold these payments in collusion with Alice is
part of other threats, such as DoS attack.

9

Target

Attacker
Client Server Client and Server

External

Clients cannot be
targets because
they do not serve
others.

Servers and external
cannot attack because
they do not ask/pay for
service.

Reduced to the case
of attacking servers
only, clients do not
serve others (cannot
be targets).

Server

Server and External

Client (1) ​Refuse to pay after
receiving the service.
(2) ​Issue invalid payments.

Client and External Reduced to the case of
an attacker client. A
client does not become
stronger when colluding
with other servers or
external entities.

Server and Client

Client, Server, and
External

Fig. 3: Analyzing the collusion matrix of the service theft threat in CompuCoin.

3) Documentation: System analysts should document all threat scenarios that
remain after the reduction step. That is, each documented case should outline
the attack description, the target parties and assets, the attacker(s), the flow of
actions, all preconditions that make the attack feasible, and the reasons behind
merges and deletions (if any).

The overall number of matrices and the size of each matrix depend on the
system parameters, such as number of participant roles and assets. The above re-
duction step eliminates a substantial number of cells in a documented, principled
way, saving time and effort.

Running example application. The CompuCoin threat model has 11 col-
lusion matrices [32]. We present one of them here: the service theft threat col-
lusion matrix as illustrated in Figure 3. As shown, 21 cells can be reduced to
just 2 threat scenarios (merged and ruled-out cells are displayed in pink and
black shades, respectively). In this matrix, ten cases have been ruled out. These
include all cells under the column with the “client” header, for the reasons ex-
plained previously, and the first three cells under the column with the “server”
header. This is because “external” and/or “server” cannot be attackers because
they do not ask/pay for the service5.

Ten other merged cases are shown in Figure 3. This includes all cells under
the column with the “client and server” header, which are reduced to attacking
only servers. This is again because clients do not serve others. The rest of the
merges cover the last three cells in the column with the “Server” header. In these
cells, a client is colluding with an external entity and/or other servers to make
the target server lose payments. Such collusion will not make a client stronger as
all these parties can do is drop/withhold payments, an option already covered
under DoS threat. Hence, all these cells are reduced to the case of a solo client
attacker.

5 One may say that an external may join the system as a client to perform the attack.
This case is covered under the client role in the matrix.

10

3.4 Risk Assessment and Threat Mitigation

The outcome of the threat modeling process, i.e., the documented list of impact-
ful threat cases, gives the designers a guiding map to secure the system. During
this process, it is useful to prioritize threats based on the amount of damage
they can cause and the likelihood that an attacker has the required capabilities
to carry out them. This falls under the purview of risk management, a separate
task from threat modeling, carried out using frameworks like DREAD [51] or
OCTAVE [37].

ABC integrates with risk management by leveraging existing techniques for
threat mitigation. For example, many threat vectors can be addressed using ra-
tional financial incentives that are often called detect-and-punish mechanisms.
That is, when a cheating incident is detected, the miners punish the attacker
financially. Others can rely on designing algorithms that when executed in a
malicious way consume more resources, i.e., incur a larger cost, than an hon-
est execution. These approaches can use a game theoretic approach [68] to set
the design parameters in a way that makes cheating unprofitable. By modeling
interactions between the players as an economic game, the financial gain of all
player strategies can be computed. Then, the parameters are configured to make
honest behaviors more profitable than cheating.

The same procedure can be used to quantify the damage these financial
threats may cause. In other words, a threat that could give the attacker a big
payoff should be prioritized over a threat that yields minimal profits. This re-
inforces the idea that cryptocurrencies require an expanded model for exploring
risks and countering them.

Running example application. To illustrate this step in CompuCoin, we
consider the distilled threat scenarios found in Figure 3. Both threats can be
neutralized financially by designing proper techniques to make the client lock
the payments in an escrow and create a penalty deposit before asking for any
service. The client loses the penalty deposit if it should cheat, perhaps by issuing
invalid payments that carry its signature. The deposit amount needs to be at
least equal to the maximum additional payoff a cheating client may obtain as
compared to an honest client. This makes cheating unprofitable, and hence,
unappealing to rational clients.

4 Evaluation

To evaluate the effectiveness of ABC, we set up an empirical experiment that
compares how it performs against STRIDE [51], a widely used threat model-
ing framework. We chose STRIDE for this comparison because it is a popular
example of the type of a model a system designer will turn to in the absence
of a cryptocurrency-specific framework [71]. The experiment took the form of a
user study in which participants were asked to build threat models for a simple
cryptocurrency system using one of these two frameworks. Our primary goal
was to test whether financial incentives and collusion could influence the type

11

of threats discovered. Thus, our evaluation focuses on answering the following
questions:

1. Does a threat modeling framework affect how subjects characterize a system
model?

2. Do the threat categories of each framework influence the broad threat classes
identified by the subjects?

3. Do participants build more accurate threat models when using ABC than
when using STRIDE?

4. Do participants find the ABC/STRIDE method easy to use in completing
the study?

In what follows, we discuss the study methodology and some of the insights
drawn from the findings.

4.1 Methodology

We recruited 53 participants, primarily masters students in systems security
programs. We used five subjects as a pilot group to test and refine our materials.
The remaining 48 participants were divided randomly into two groups of 24, one
of which built the threat model with STRIDE, whereas the other used ABC.

Each testing session spanned three hours and was divided into two parts:
a group tutorial and individual completion of threat models. The group tuto-
rial started with a 20 minute overview of cryptocurrencies, followed by a one-
hour training in the framework to apply. The ABC tutorial contained a sum-
mary of the steps found in this paper, and for STRIDE, we prepared a tutorial
based on material found in [21, 45, 51, 69]. The participants were then given a
25 minute break to reduce any fatigue effects. The session resumed with a 15
minute overview of ArchiveCoin, the system for which subjects will build a threat
model. ArchiveCoin is a simplified Filecoin [36]-inspired cryptocurrency system
that focuses mainly on the service and its rewards in order to fit the study session
period.

During the remaining hour of the study session, individuals worked indepen-
dently to complete a threat model. Given that the allocated time was short, we
asked the subjects to look into just one threat category in Step 3, namely, the
service theft of file retrieval. This category was not used in the clarifying exam-
ples of the tutorials to avoid biasing the results. Participants performed Steps
1 and 2 (system model characterization and threat category identification), and
then submitted their answers. Only at this point were they given the materials
for Step 3, in which they were asked to elicit threat scenarios for service theft
of file retrieval. This was done so that participants who missed this threat when
answering Step 2 could not alter their responses. At the end, the participants
were asked to fill out a short questionnaire in which they rated how easy or
hard it was to apply the threat modeling framework they employed. Our study
instrument and all supporting materials are available online [32].

12

Fig. 4: Subject scores for Step 1. Diamonds indicate the mean.

4.2 Findings

In this section, we present the study results using the four questions outlined
previously as a guideline.

Effect on System Model Characterization In the first step of each threat
modeling framework, the subjects were asked to characterize the system model
by defining its modules, its assets, and the participant roles, in addition to
drawing either a network model of the system, in case of ABC, or a data flow
diagram (DFD), in case of STRIDE. To quantify the influence of the framework
on this step, we compute the subject scores using reference threat models we built
for ArchiveCoin prior to the study6. We report these scores after normalization,
meaning that we divide them by the maximum score value one may obtain when
answering everything correctly.

The results for Step 1 are found in Figure 47. As shown, ABC scored higher
than STRIDE, with total average values of 0.92 and 0.69, respectively. Analyzing
the responses for the sub-steps in Step 1 revealed several interesting observations.
The first one is related to identifying the financial assets and modules in the sys-
tem (depicted in Figure 5). As the figure shows, several subjects who applied
STRIDE did not identify the payments (or currency) as an asset. Instead, their
focus was on the user files stored in the system. Similarly, most of them did not

6 We built two reference models, one using STRIDE and one using ABC to evaluate
the responses of each framework session. Nonetheless, both models produced the
same list of elicited threat cases in the last step.

7 This figure is a box plot [14], which displays the distribution of the data points by
showing the maximum and minimum values (the whiskers above and below the box),
the median (horizontal line inside the box), and the data points that span the first
to third quartiles (the box itself). In case most of these points are very close this
box is suppressed into a line.

13

Fig. 5: Subject frequency of identifying payment related modules and assets.

identify the payment process as a system module, and focused only on file stor-
age and retrieval processes. On the other hand, most of the subjects in the ABC
session identified these financial related assets and modules. These results indi-
cate that employing conventional threat modeling frameworks, instead of ones
that are customized for monetary-incentivized systems, could lead evaluators to
neglect the financial aspects of the system. This, in turn, could cause important
threat cases to be overlooked, and thus, leave the system vulnerable to attacks.

The second observation is related to how subjects defined the participant roles
in the system. As shown in Figure 4, STRIDE achieved an average score of 1 in
this category as compared to 0.89 for ABC. All STRIDE session subjects defined
the participant roles correctly, which in that model, included only clients and
servers. For ABC, although its tutorial mentioned that an “external” entity must
be considered among the participant roles, not all the subjects in that session
recorded this role in their responses. This points to an important observation.
Evaluators may only consider the insider attackers that interact with the system,
and forget that external entities could be also motivated to, and capable of,
an attack. Considering external attackers affects not only what concrete threat
scenarios are elicited in Step 3, but also what threat categories are identified in
Step 2. Therefore, more emphasis needs to be placed on this role early on in the
threat modeling process.

Lastly, the third observation is related to how the framework influenced the
way subjects represented the system modules graphically. Figure 4 shows that
the average scores for the network model/DFD sub-step were found to be 0.98
and 0.44 for ABC and STRIDE, respectively. STRIDE session subjects struggled
to draw a DFD for ArchiveCoin because such a representation is more suitable
for software applications than distributed systems. On the other hand, ABC’s
use of network models made this task easier for its session subjects, and almost
all of them sketched diagrams correctly. As mentioned previously, this graphic
representation helps in eliciting the concrete threat scenarios in the system (Step
3), and hence, inaccurate diagrams may affect the outcome of this process.

14

ABC STRIDE
0

0.2

0.4

0.6

0.8

1

No
rm

ali
ze

d S
co

re

Fig. 6: ABC and STRIDE scores for Step 2. Diamonds indicate the mean.

Effect on Threat Category Identification In Step 2 of both frameworks,
the subjects were asked to define the broad threat categories to be investigated.
As part of the study material, participants who applied STRIDE were given
its threat category list, along with the component mapping table found in the
STRIDE user guide [21]. Similarly, participants who applied ABC were given the
list found in Table 1 (covering only the service and service reward assets). The
subjects in both groups defined the categories to be considered for ArchiveCoin
by mapping these lists either to the system assets (in case of ABC), or to the
DFD components (in case of STRIDE). The reference models we built indicated
that the mapping outcome for both frameworks would include the following
threat classes: service corruption, DoS, information disclosure, service slacking
and theft for both service types that ArchiveCoin provides (file storage and
retrieval).

Based on the scores for the threat identification step found in Figure 6, the
cryptocurrency-tailored categories of ABC made it easier for the study partic-
ipants to identify the threat categories in question as compared to STRIDE.
This is despite the subjects having little experience with cryptocurrency-based
systems. The average score for ABC subjects is around 0.51, compared to 0.29
for STRIDE (note these scores are normalized as mentioned before). The gen-
eralized categories used by STRIDE fit software applications well, but they do
not suit monetary-incentivized distributed systems. System analysts, using these
generalized categories, would need to expend more time and effort in order to
identify the more specific threat classes of interest.

To provide more insights about this step, we analyzed the number of subjects
who identified each threat category that need to be investigated. The results are
depicted in Figure 7. We found that STRIDE’s subjects are ahead of ABC’s
session participants for both DoS and information disclosure threats. As shown
in Figure 7, around 88% and 83% of STRIDE subjects identified these categories,
respectively, while around 50% and 42% of ABC’s subjects did so. Although we
do not have a precise justification for this outcome, we think that this can be
attributed to the threat category table of STRIDE, which thoroughly explains

15

Fig. 7: Subject frequency of threat category identification.

these categories and provides detailed attack examples. Hence, we believe that
the ABC tutorial needs to stress these threats and explain them in greater depth.

In contrast, ABC is ahead of STRIDE for all financial-related threats, i.e.,
service slacking and theft, as well as the service corruption threat. For the service
theft of file retrieval, which is the category that we asked the participants to
investigate in Step 3, only three participants in the STRIDE session spotted this
threat, while 17 subjects in the ABC session did so, or around 13% and 71%,
respectively. Furthermore, none of STRIDE participants spotted the service theft
of file storage and slacking of file retrieval, while only one participant spotted
service slacking of file storage. On the other hand, 67%, 17%, and 50% of ABC
participants identified these categories, respectively. This, again, shows that the
ABC threat classes guided the subjects toward service and payment related
threats in a better way than the general categories included by STRIDE.

Threat Model Accuracy To quantify accuracy, we compute the recall and
precision values for the concrete threat scenarios found by each subject as com-
pared to the reference threat models we built for ArchiveCoin. The recall is
computed as TP/(TP + FN), and precision is computed as TP/(TP + FP),
where a true positive TP is a correctly identified threat, false negative FN is an
undetected threat, and false positive FP is an incorrectly defined threat. The
recall (precision) indicates how many valid (invalid) threats a subject defined.
Both quantities take values between 0 and 1.

Based on the results of Step 3 in each framework (i.e., eliciting concrete threat
scenarios), we found that participants who applied ABC produced a larger num-
ber of valid threat cases than the STRIDE session subjects, with average recall
values of 0.48 and 0.4, respectively. At the same time, participants using ABC
identified a lower number of irrelevant cases than those who applied STRIDE.

16

1 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No
rm

al
ize

d
Sc

or
e

ABC STRIDE

Fig. 8: Total normalized scores (diamonds indicate the mean).

The former scored an average precision value of 0.57, as opposed to 0.48 for the
latter8.

We believe that the result above can be attributed to several factors. First,
ABC directed participants to consider the financial aspects of the system, which
affected the elicited threat scenarios. Second, the use of the collusion matrices
helped ABC participants reason about the threat space in an organized way that
reduced random speculations, as opposed to the STRIDE threat tree patterns
that work well when applied to software applications. Third, ABC’s collusion
matrices guided participants to spot threat cases caused by collusion, as opposed
to STRIDE’s tree patterns that focus only on solo attackers. The results show
that none of the subjects in the STRIDE session identified a possible collusion
case between a client and servers, while 11 subjects in the ABC session identified
this collusion case9. This confirms the importance of considering collusion when
investigating threat cases, and shows the usefulness of ABC matrices in handling
this task.

All these factors affected the overall correctness of the threat models built by
the subjects. As shown in Figure 8, the ABC session scored an average of 64%
as compared to 50% for STRIDE. This is expected based on the reported results
for the modeling steps, where ABC scores were ahead of those from STRIDE.

Framework Ease-of-Use As mentioned previously, at the end of each session,
we asked participants to report on how easy the framework in question was to
apply. Ease-of-use was measured on a Likert scale in which 1 indicates the lowest
value and 5 indicates the highest value. The average values are 3.9 for ABC and
3.8 for STRIDE10. This result becomes somewhat more significant when we point

8 One participant in the ABC session has 0 false negative and 0 true positive values,
so we excluded him/her when we computed the average.

9 Most of them, however, did not provide a clear description of the attack scenario.
Hence, these incomplete descriptions were not counted as correct threats when grad-
ing Step 3.

10 Three participants did not complete the questionnaire in the STRIDE session.

17

out that the participants already had some exposure to STRIDE and its threat
tree patterns. Even though it is a new framework that introduced several new
concepts to the participants, ABC still achieved a comparable ease of use level.
This suggests that participants were able to grasp its concepts through just a
single hour of training, and therefore ABC shows potential as a usable method
for threat modeling.

4.3 Threats to Validity

We acknowledge that a few limitations must be kept in mind when considering
the study results. Empirical studies of threat modeling usually span a longer time
frame, often on the orders of months, e.g., [66]. However, the fact that we were
able to glean several important observations suggests that there may be lessons to
be learned from short focused studies. In addition, we feel the design of our study
might serve as a guide for determining promising areas for extended research
before a large commitment of time and resources is made. Another constraining
factor could be the age and experience level of our subjects. Different responses
might have been obtained if we tested system security experts. However, we
believe that the inexperience of our participants matches the cryptocurrency
space well, which attracted users and researchers from various fields, even those
from outside systems security. Therefore, our results give indications on how
they might perform when investigating the security of cryptocurrencies.

5 Experiences

To demonstrate how ABC would function when applied to complex real-world
systems, we developed use cases in which we built threat models for three cryp-
tocurrencies, Bitcoin [63], Filecoin [36], and our system CacheCash. Further-
more, we report on a non-cryptocurrency use case that targets a cloud native
security technology called SPIFFE, a project worked on by one of our authors.
Each of these cases represents a different stage in a system design lifetime. Bit-
coin and SPIFFE are well-established systems, Filecoin is under development
and close to being launched, and CacheCash is still in its early development
stages. The analyses for Bitcoin and Filecoin stopped before the risk manage-
ment/mitigation phase. However, CacheCash and SPIFFE analyses involve the
risk mitigation step as we describe later.

5.1 Bitcoin Analysis (Steps 1-3)

Bitcoin is by far the most valuable cryptocurrency with a capital market share
of around $245 billion as of late June 2019 [16]. As shown in Table 2, the Bitcoin
threat model has significantly fewer collusion matrices and threat cases than
other systems11. This is because it provides only a currency exchange service,

11 The full threat model for Bitcoin is available online [32]

18

Table 2: Threat model comparison.

Aspect Bitcoin Filecoin CacheCash SPIFFE /
SPIRE

ABC steps covered Steps 1 - 3 Steps 1 - 3 Steps 1 - 4 Steps 1 - 4

Completion time (hr) 10 47 Not tracked Not tracked

No. of collusion matrices 5 14 9 4

Total threat cases 105 882 525 1860

Distilled threat scenarios 10 35 22 65

which reduces the number of assets. Furthermore, it involves only two types
of participants, miners and clients, which reduces the size of the collusion ma-
trices. These factors, in addition to our familiarity with Bitcoin design details,
contributed in reducing the completion time of Bitcoin’s threat model as shown
in the table. Moreover, at the time we were working on this model, we had al-
ready completed the design of ABC. This suggests that deep understanding of
the system model, and the availability of suitable tools impact not only the accu-
racy of the results, but also the time and effort expended in the threat modeling
process.

We drew two main observations about the threat model we generated for Bit-
coin. First, all the known threats to Bitcoin, such as double spending, Eclipse
attacks [49], Goldfinger attack [55], and delaying blocks and transaction de-
livery [47], were mapped to the collusion matrices produced by ABC. Second,
collusion between participants can play a major role in Bitcoin’s security. That
is, several threats are neutralized by the assumption that at least 50% of the
mining power is honest. Yet, mining pools have been formed to concentrate min-
ing power. At the time of this writing, around 95% of the mining power is in
the hands of just 10 mining pools [8]. If the managers of these pools decide to
collude, they could break the honest majority barrier and take the system down.
In fact, serious security attacks can be performed with less amount of mining
power. Sompolinsky et al. [67] attest that a selfish mining attack, or blocks with-
holding, in which an attacker controls around 30% of the mining power, would
be able to undermine the fairness of the mining reward distribution.

Furthermore, miner collusion may take different forms, such as rejecting spe-
cific updates on the network protocol. Cryptocurrencies are still in the develop-
ment stage, and so their protocols continue to receive new features and updates.
These updates can create forks in the network [40], and should a subset of the
miners agree not to adopt the modified protocol, a new version of the currency
may be spun off. This happened in Bitcoin, where two new cryptocurrencies split
from its network including Bitcoin Cash [9] and Bitcoin Gold [10].

Usually, the >50% threat, or miners’ collusion in general, is argued about
informally using incentive compatibility. This idea asserts that rational miners
are more interested in keeping the system running to preserve the value of their

19

Client

Storage Miner

Blockchain

Ask

Bid Deal

Files Proof-of-
storage Payments

(a) Data storage service.

Client

Retrieval Miner

Blockchain

AskBid Deal

File
(in parts)

Claim
payment

Micorpayments

set up a
payment
channel

(b) Data retrieval service.

Fig. 9: Filecoin network model.

rewards. However, this claim is hard to verify and remains as an open ques-
tion [42]. In addition, this assumption might be valid when all parties belong
to the same system. Yet, miners could be working in several cryptocurrencies
and it could be the case that destroying one to strengthen the other would be
more profitable. Nonetheless, such observations highlight two key points. First,
it indicates the importance of validating all the security assumptions a system
makes in its design. And second, it points to the need for rational economic
incentives to address some types of security threats that cannot be addressed
by using only cryptographic approaches. The design of ABC accounts for such
observations as mentioned earlier in this paper.

5.2 Filecoin Analysis (Steps 1-3)

Filecoin [36] is a cryptocurrency-based distributed file storage and retrieval sys-
tem. Any party may join as a storage or retrieval miner to offer service to oth-
ers. Filecoin operates distributed retrieval and storage markets where clients
and miners can submit storage/retrieval bids and offers. Once these offers are
matched, the service-payment exchange process, in which clients pay the min-
ers in the Filecoin currency in exchange for receiving correct service, may start.
The mining process in Filecoin is tied to the storage service miners put into the
system. Recently, the Filecoin team raised around $250 million through an ICO
(initial coin offering) [1] in preparation for an official launch.

Filecoin is a more complicated system than Bitcoin as it provides two types
of services on top of the currency exchange medium (these are captured by the
network models shown in Figure 9). In addition, its protocol involves three par-
ticipant roles: clients, retrieval miners, and storage miners, with the latter filling
the traditional roles of miners in maintaining the blockchain. This complexity
is reflected in the number of collusion matrices and threat cases produced as
shown in Table 2. Moreover, all threat categories that target the service asset
were replicated for each service type, which contributed to the large size of the
threat model. These factors affected the completion time to build the model,
which was 4.7x the time needed to build Bitcoin’s model. This cost in time

20

Client

CachesContent Publisher

(2) Request content(3) Request and
payment tickets

(4) Service-payment

exchange

Miners

(5) Claim payments(1) Setup the service

Fig. 10: CacheCash network model.

commitment is a natural result of working with newly developed and complex
systems that provide a rich set of features.

In threat modeling Filecoin’s whitepaper, we found three unaddressed issues,
mostly dealing with collusion cases that were not considered. Additionally, there
are many places where the system is underspecified and so it is not possible to
reason about whether or not it meaningfully addresses a threat.

Ethics and disclosure. We reached out to the Filecoin team, which mentioned
efforts they have undertaken to resolve these problems. We withhold details
about these issues until later as part of the responsible disclosure process.

5.3 CacheCash Analysis (Steps 1-4)

CacheCash is a cryptocurrency that provides a distributed content delivery ser-
vice. It allows content publishers to construct dynamic networks of caches to
serve their clients. This is done by allowing anyone to set up a new cache, and
then collect cryptocurrency tokens from publishers for serving their clients (as
captured by the network model shown in Figure 10). To handle the functionality
of the currency exchange medium, CacheCash uses a modified version of the
Bitcoin protocol.

We developed ABC during the early stages of our work on designing CacheCash.
As the work progressed, we realized that most of the threat cases we encounter
are related to the financial aspects of the system and the possible collusion
between participants. Such aspects, as mentioned previously, are not explicitly
addressed by traditional threat modeling frameworks. At that time we realized
that none of these frameworks suited our needs, which lead to developing ABC.

As shown in Table 2, CacheCash’s threat model is smaller, in terms of the
number of collusion matrices and threat cases, than the one developed for File-
coin. This is because CacheCash provides a single type of service on top of the

21

currency exchange medium, as compared to two in Filecoin. This is also re-
flected in the lower number of distilled threat cases than what Filecoin’s model
produced.

Beyond threat modeling, we used ABC while designing threat mitigation
techniques in the CacheCash system. During that time, we observed the impor-
tance of rational financial incentives in this process. This includes employing
detect-and-punish mechanisms in which the penalty deposit of a party is re-
voked upon detecting that it is cheating, or designing algorithms that, when
implemented in a malicious way, can cost the attacker more in resources than
would working honestly. Furthermore, we realized the value of game theory and
economic analysis in assessing the effectiveness of these economic threat mitiga-
tion approaches, and in quantifying the risk, or amount of damage, that financial
attacks may cause. To date, we found ABC useful for CacheCash in both the
pre-design threat modeling step, and the after-design security analysis of the
system modules.

As CacheCash’s design is not public yet, its full threat model will be released
at the public unveiling of the system in early 2020.

5.4 SPIFFE/SPIRE Analysis (Steps 1-4)

The Secure Production Identity Framework for Everyone (SPIFFE) is a technol-
ogy that targets the problem of obtaining identities in cloud-based distributed
systems. SPIFFE, which is a project under the umbrella of the Linux Foundation,
allows a service to acquire a secure identity that can be used to authenticate itself
and authorize its access to other services and system resources. Thus, it solves
the scalability problem of conventional security practices when working across
heterogeneous environments and organizational boundaries. The SPIFFE Run-
time Environment (SPIRE) is the production-ready implementation of SPIFFE
APIs. Its work model, depicted in Figure 11, consists of a central server that
mints identity documents for applications (or workloads), and node agents that
perform workload attestation and distribution of IDs.

The SPIFFE/SPIRE team collaborated with one of the authors of this paper
in using ABC to evaluate the framework’s security properties and to understand
the potential risks in various practical deployment scenarios. The complete pro-
cess can be found in [27, 28]. This use case is different from the previously dis-
cussed ones because it does not involve any form of explicit payment exchange
between the participants. Thus, it attests to the applicability of ABC for not
only cryptocurrencies, but also for large-scale distributed systems in general.

Through their analysis, the SPIFFE team members produced four threat
categories: misrepresentation of identity, identity theft, compromise/remote code
execution, and DoS. They also outlined the specific capabilities, or strength
classes, an attacker may need to perform a given attack. Such an attacker could
be the SPIRE server, a node agent, a workload (on the same node or on a
different node), or even an external entity. Listing the attacker strength classes
helped in both enumerating the possible threat scenarios, as well as in estimating
the likelihood and severity of each distilled threat case.

22

...

Node API

Node

SPIRE Agent

Workload 1

Workload 2

Workload ...

Workload
API

Node

SPIRE Agent

Workload 1

Workload 2

Workload ...

Workload
API

Node

SPIRE Agent

Workload 1

Workload 2

Workload ...

Workload
API

SPIRE Server

Fig. 11: SPIFFE/SPIRE network model.

As shown in Table 2, although the threat model of SPIFFE has the least
number of collusion matrices, it produced the largest number of threat cases
(around 17.7x, 2x, 3.5x of what Bitcoin, Filecoin, and CacheCash produced,
respectively). The lower number of matrices is due to the fact that all other
systems have the currency exchange medium, which adds another layer beneath
the distributed service they provide. SPIFFE, on the other hand, provides only
an identity production service that can be run as an additional layer on top of
any cloud native application. However, SPIFFE has 4 participant roles (on the
attacker side it would be 5 when counting the external entity). This made its
collusion matrices larger, and hence, resulted in more threat cases than the other
systems.

Similar to the CacheCash use case, ABC was used during the risk manage-
ment and threat mitigation step. The team members computed a score for each
of the distilled threat scenarios that estimates the likelihood that an attacker
possesses the required capabilities, and the severity of the attack to the system.
Studying the list of scored threat scenarios, the model outlined 54 unaddressed
threat cases, most of which have very low scores, and produced several insights
that guided the team on where to focus their efforts. Prior to the threat mod-
eling process, the team envisioned several threat mitigation mechanisms that
could complicate the system design. Once they determined that the impact of
such attacks is very low, the higher score attacks were considered instead. These
scenarios required even simpler mitigation techniques. For example, one type
of DoS attacks can be mitigated using a rate limit control mechanism that the
team integrated with the system [3].

Accordingly, this case shows how ABC can be very useful in assessing the
security level of an already deployed system, defining which threat cases are
already neutralized, and mitigating high profile, previously unaddressed, attacks.

23

6 Conclusions

In this paper, we introduce ABC, a cryptocurrency-focused threat modeling
framework. Its design is motivated by the observation that traditional threat
modeling frameworks do not fit cryptocurrencies, thus leaving them vulnerable
to unanticipated attacks. ABC introduces collusion matrices, a technique that
allows designers to investigate hundreds of threat cases in a reasonable amount
of time. This is in addition to a flexible mechanism to derive system specific
threat categories that focus on the assets to be protected and account for the
financial motivations of the attackers. Both the user study and the use cases
confirm that our framework is effective in unraveling hidden threat cases. The
evaluated cases cover various types of cryptocurrency-based systems and a cloud
native security technology under the Linux Foundation. This shows the potential
of ABC to improve the security of a wide array of distributed systems.

References

1. $257 Million: Filecoin Breaks All-Time Record for ICO Funding. https://

www.coindesk.com/257-million-filecoin-breaks-time-record-ico-funding/.
2. $400,000 stolen in Lumens BlackWallet theft. https://www.zdnet.com/article/

400000-stolen-in-lumens-blackwallet-theft/.
3. Add ratelimiter for SPIRE node API. https://github.com/spiffe/spire/pull/

577.
4. Benebit The Biggest ICO Exit Scam In History Nets Up to $4 Million.

https://www.coinbureau.com/ico/benebit-biggest-ico-exit-scam-history-
nets-4-million/.

5. Binance cryptocurrency sell-off disaster blamed on mass phishing cam-
paign. https://www.zdnet.com/article/binance-cryptocurrency-sell-off-
disaster-blamed-on-mass-phishing-campaign/.

6. Bitcoin Cash exploit cripples network during scheduled hardfork upgrade. https:

//cryptoslate.com/bitcoin-cash-exploit-cripples-network-hardfork/.
7. Bitcoin Gold suffers double spend attacks, $17.5 million lost. https:

//www.zdnet.com/article/bitcoin-gold-hit-with-double-spend-attacks-
18-million-lost/.

8. Bitcoin mining pools. https://blockchain.info/pools.
9. BitcoinCash. https://www.bitcoincash.org/.

10. BitcoinGold. https://bitcoingold.org/.
11. The Bitfinex Bitcoin Hack: What We Know (And Don’t Know). https://

www.coindesk.com/bitfinex-bitcoin-hack-know-dont-know/.
12. Bitfloor Hacked, $250,000 Missing. https://bitcoinmagazine.com/articles/

bitfloor-hacked-250000-missing-1346821046/.
13. Bitstamp Claims $5 Million Lost in Hot Wallet Hack. https://www.coindesk.com/

bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/.
14. Box plot diagrams. https://www.itl.nist.gov/div898/handbook/eda/section3/

boxplot.htm.
15. CoffeeMiner hijacks public Wi-Fi users’ browsing sessions to mine cryptocur-

rency. https://www.zdnet.com/article/how-to-hack-public-wi-fi-to-mine-
for-cryptocurrency/.

24

https://www.coindesk.com/257-million-filecoin-breaks-time-record-ico-funding/
https://www.coindesk.com/257-million-filecoin-breaks-time-record-ico-funding/
https://www.zdnet.com/article/400000-stolen-in-lumens-blackwallet-theft/
https://www.zdnet.com/article/400000-stolen-in-lumens-blackwallet-theft/
https://github.com/spiffe/spire/pull/577
https://github.com/spiffe/spire/pull/577
https://www.coinbureau.com/ico/benebit-biggest-ico-exit-scam-history-nets-4-million/
https://www.coinbureau.com/ico/benebit-biggest-ico-exit-scam-history-nets-4-million/
https://www.zdnet.com/article/binance-cryptocurrency-sell-off-disaster-blamed-on-mass-phishing-campaign/
https://www.zdnet.com/article/binance-cryptocurrency-sell-off-disaster-blamed-on-mass-phishing-campaign/
https://cryptoslate.com/bitcoin-cash-exploit-cripples-network-hardfork/
https://cryptoslate.com/bitcoin-cash-exploit-cripples-network-hardfork/
https://www.zdnet.com/article/bitcoin-gold-hit-with-double-spend-attacks-18-million-lost/
https://www.zdnet.com/article/bitcoin-gold-hit-with-double-spend-attacks-18-million-lost/
https://www.zdnet.com/article/bitcoin-gold-hit-with-double-spend-attacks-18-million-lost/
https://blockchain.info/pools
https://www.bitcoincash.org/
https://bitcoingold.org/
https://www.coindesk.com/bitfinex-bitcoin-hack-know-dont-know/
https://www.coindesk.com/bitfinex-bitcoin-hack-know-dont-know/
https://bitcoinmagazine.com/articles/bitfloor-hacked-250000-missing-1346821046/
https://bitcoinmagazine.com/articles/bitfloor-hacked-250000-missing-1346821046/
https://www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/
https://www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/
https://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
https://www.zdnet.com/article/how-to-hack-public-wi-fi-to-mine-for-cryptocurrency/
https://www.zdnet.com/article/how-to-hack-public-wi-fi-to-mine-for-cryptocurrency/

16. CryptoCurrency Market Capitalizations. https://coinmarketcap.com/.
17. Enigmas Hack: $500,000 of Ether Stolen, Accounts Compromised.

https://cointelegraph.com/news/enigmas-hack-500000-of-ether-stolen-
accounts-compromised.

18. Golem. https://golem.network/.
19. Hackers Hijack Another Ethereum ICO, Small Number of Users Af-

fected. https://www.bleepingcomputer.com/news/security/hackers-hijack-
another-ethereum-ico-small-number-of-users-affected/.

20. Hackers Stole $32 Million in Ethereum. https://thehackernews.com/2017/07/
ethereum-cryptocurrency-hacking.html.

21. Microsoft Threat Modeling Tool 2016 User Guide. https://www.microsoft.com/
en-us/download/details.aspx?id=49168.

22. Monero. https://www.getmonero.org/.
23. Monex to revamp Coincheck cryptocurrency exchange in mere months. https:

//www.zdnet.com/article/monex-to-revamp-coincheck-cryptocurrency-
exchange-within-two-months/.

24. One of the world’s biggest bitcoin exchanges has been hacked. http:

//www.businessinsider.com/south-korean-bitcoin-exchange-bithumb-
hacked-ethereum-2017-7.

25. Poloniex Loses 12.3% of its Bitcoins in Latest Bitcoin Exchange Hack.
https://www.coindesk.com/poloniex-loses-12-3-bitcoins-latest-bitcoin-
exchange-hack/.

26. Ripple. https://ripple.com/.
27. Scrutinizing SPIRE to Sensibly Strengthen SPIFFE Security: Part I, Methodology.

https://blog.scytale.io/scrutinizing-spire-security-9c82ba542019.
28. Scrutinizing SPIRE to Sensibly Strengthen SPIFFE Security: Part II, Findings.

https://blog.scytale.io/scrutinizing-spire-security-9c82ba542019.
29. South Korean cryptocurrency exchange hack sees $40m in altcoin stolen.

https://www.zdnet.com/article/south-korean-cryptocurrency-exchange-
hack-sees-40m-in-altcoin-stolen/.

30. SPIFFE. https://spiffe.io/.
31. Steemit Hacked for $85,000 as Users Complain of Weak Security. https://

news.bitcoin.com/steemit-hacked-weak-security/.
32. Supplemental Material. https://ssl.engineering.nyu.edu/papers/abc-

material.zip.
33. Understaning the DAO Attack. https://www.coindesk.com/understanding-dao-

hack-journalists/.
34. Veritaseum Founder Claims $8 Million in ICO Tokens Stolen. https:

//www.coindesk.com/veritaseum-founder-claims-8-million-ico-token-
stolen/.

35. Zcash. https://z.cash/.
36. Filecoin: A Cryptocurrency Operated File Storage Network, 2017. https://

filecoin.io/filecoin.pdf.
37. Alberts, C. J., and Dorofee, A. Managing information security risks: the

OCTAVE approach. Addison-Wesley Longman Publishing Co., Inc., 2002.
38. Andel, T. R., and Yasinsac, A. Adaptive threat modeling for secure ad hoc

routing protocols. Electronic Notes in Theoretical Computer Science 197, 2 (2008),
3–14.

39. Androulaki, E., Karame, G. O., Roeschlin, M., Scherer, T., and Capkun,
S. Evaluating user privacy in bitcoin. In Financial Cryptography and Data Security
(2013), pp. 34–51.

25

https://coinmarketcap.com/
https://cointelegraph.com/news/enigmas-hack-500000-of-ether-stolen-accounts-compromised
https://cointelegraph.com/news/enigmas-hack-500000-of-ether-stolen-accounts-compromised
https://golem.network/
https://www.bleepingcomputer.com/news/security/hackers-hijack-another-ethereum-ico-small-number-of-users-affected/
https://www.bleepingcomputer.com/news/security/hackers-hijack-another-ethereum-ico-small-number-of-users-affected/
https://thehackernews.com/2017/07/ethereum-cryptocurrency-hacking.html
https://thehackernews.com/2017/07/ethereum-cryptocurrency-hacking.html
https://www.microsoft.com/en-us/download/details.aspx?id=49168
https://www.microsoft.com/en-us/download/details.aspx?id=49168
https://www.getmonero.org/
https://www.zdnet.com/article/monex-to-revamp-coincheck-cryptocurrency-exchange-within-two-months/
https://www.zdnet.com/article/monex-to-revamp-coincheck-cryptocurrency-exchange-within-two-months/
https://www.zdnet.com/article/monex-to-revamp-coincheck-cryptocurrency-exchange-within-two-months/
http://www.businessinsider.com/south-korean-bitcoin-exchange-bithumb-hacked-ethereum-2017-7
http://www.businessinsider.com/south-korean-bitcoin-exchange-bithumb-hacked-ethereum-2017-7
http://www.businessinsider.com/south-korean-bitcoin-exchange-bithumb-hacked-ethereum-2017-7
https://www.coindesk.com/poloniex-loses-12-3-bitcoins-latest-bitcoin-exchange-hack/
https://www.coindesk.com/poloniex-loses-12-3-bitcoins-latest-bitcoin-exchange-hack/
https://ripple.com/
https://blog.scytale.io/scrutinizing-spire-security-9c82ba542019
https://blog.scytale.io/scrutinizing-spire-security-9c82ba542019
https://www.zdnet.com/article/south-korean-cryptocurrency-exchange-hack-sees-40m-in-altcoin-stolen/
https://www.zdnet.com/article/south-korean-cryptocurrency-exchange-hack-sees-40m-in-altcoin-stolen/
https://spiffe.io/
https://news.bitcoin.com/steemit-hacked-weak-security/
https://news.bitcoin.com/steemit-hacked-weak-security/
https://ssl.engineering.nyu.edu/papers/abc-material.zip
https://ssl.engineering.nyu.edu/papers/abc-material.zip
https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/veritaseum-founder-claims-8-million-ico-token-stolen/
https://www.coindesk.com/veritaseum-founder-claims-8-million-ico-token-stolen/
https://www.coindesk.com/veritaseum-founder-claims-8-million-ico-token-stolen/
https://z.cash/
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf

40. Antonopoulos, A. M. Mastering Bitcoin: Programming the open blockchain.
O’Reilly Media, Inc., 2017.

41. Backes, M., Kate, A., Manoharan, P., Meiser, S., and Mohammadi, E.
Anoa: A framework for analyzing anonymous communication protocols. In IEEE
Computer Security Foundations Symposium (2013), pp. 163–178.

42. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., and
Felten, E. W. Sok: Research perspectives and challenges for bitcoin and cryp-
tocurrencies. In IEEE S&P (2015), pp. 104–121.

43. Chen, Y., Boehm, B., and Sheppard, L. Value driven security threat mod-
eling based on attack path analysis. In 2007 40th Annual Hawaii International
Conference on System Sciences (HICSS’07) (2007), IEEE, pp. 280a–280a.

44. Claycomb, W. R., and Shin, D. Threat modeling for virtual directory services.
In IEEE ICCST (2009), pp. 149–154.

45. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., and Joosen, W. A
privacy threat analysis framework: supporting the elicitation and fulfillment of
privacy requirements. Requirements Engineering 16, 1 (2011), 3–32.

46. Garay, J., Kiayias, A., and Leonardos, N. The bitcoin backbone protocol:
Analysis and applications. In EUROCRYPT (2015), pp. 281–310.

47. Gervais, A., Ritzdorf, H., Karame, G. O., and Capkun, S. Tampering with
the delivery of blocks and transactions in bitcoin. In ACM CCS (2015), pp. 692–
705.

48. Hasan, R., Myagmar, S., Lee, A. J., and Yurcik, W. Toward a threat model
for storage systems. In ACM workshop on Storage security and survivability (2005),
pp. 94–102.

49. Heilman, E., Kendler, A., Zohar, A., and Goldberg, S. Eclipse attacks on
bitcoin’s peer-to-peer network. In USENIX Security Symposium (2015), pp. 129–
144.

50. Hollick, M., Nita-Rotaru, C., Papadimitratos, P., Perrig, A., and
Schmid, S. Toward a taxonomy and attacker model for secure routing protocols.
ACM SIGCOMM Computer Communication Review 47, 1 (2017), 43–48.

51. Howard, M., and Lipner, S. The security development lifecycle, vol. 8. Microsoft
Press Redmond, 2006.

52. Javaid, A. Y., Sun, W., Devabhaktuni, V. K., and Alam, M. Cyber security
threat analysis and modeling of an unmanned aerial vehicle system. In 2012 IEEE
Conference on Technologies for Homeland Security (HST) (2012), IEEE, pp. 585–
590.

53. Kappos, G., Yousaf, H., Maller, M., and Meiklejohn, S. An empirical anal-
ysis of anonymity in zcash. In 27th {USENIX} Security Symposium ({USENIX}
Security 18) (2018), pp. 463–477.

54. Kosba, A., Miller, A., Shi, E., Wen, Z., and Papamanthou, C. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts. In 2016
IEEE symposium on security and privacy (SP) (2016), IEEE, pp. 839–858.

55. Kroll, J. A., Davey, I. C., and Felten, E. W. The economics of bitcoin
mining, or bitcoin in the presence of adversaries. In WEIS (2013).

56. Luna, J., Suri, N., and Krontiris, I. Privacy-by-design based on quantitative
threat modeling. In IEEE CRiSIS (2012), pp. 1–8.

57. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A. Making smart
contracts smarter. In ACM CCS (2016), pp. 254–269.

58. Luu, L., Teutsch, J., Kulkarni, R., and Saxena, P. Demystifying incentives
in the consensus computer. In ACM CCS (2015), pp. 706–719.

26

59. Moreno-Sanchez, P., Modi, N., Songhela, R., Kate, A., and Fahmy, S.
Mind your credit: Assessing the health of the ripple credit network. arXiv preprint
arXiv:1706.02358 (2017).

60. Moreno-Sanchez, P., Zafar, M. B., and Kate, A. Listening to whispers
of ripple: Linking wallets and deanonymizing transactions in the ripple network.
Privacy Enhancing Technologies, 4 (2016), 436–453.

61. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S.,
Hogan, K., Hennessey, J., Miller, A., Narayanan, A., et al. An empirical
analysis of traceability in the monero blockchain. Proceedings on Privacy Enhanc-
ing Technologies 2018, 3 (2018), 143–163.

62. Myagmar, S., Lee, A. J., and Yurcik, W. Threat modeling as a basis for
security requirements. In Symposium on requirements engineering for information
security (2005), pp. 1–8.

63. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system.
64. Parno, B., Howell, J., Gentry, C., and Raykova, M. Pinocchio: Nearly

practical verifiable computation. In IEEE S&P (2013), pp. 238–252.
65. Pass, R., Seeman, L., and Shelat, A. Analysis of the blockchain protocol in

asynchronous networks. In EUROCRYPT (2017), pp. 643–673.
66. Scandariato, R., Wuyts, K., and Joosen, W. A descriptive study of microsofts

threat modeling technique. Requirements Engineering 20, 2 (2015), 163–180.
67. Sompolinsky, Y., and Zohar, A. Secure high-rate transaction processing in

bitcoin. In Financial Cryptography and Data Security (2015), pp. 507–527.
68. Tadelis, S. Game theory: an introduction. Princeton University Press, 2013.
69. Torr, P. Demystifying the threat modeling process. IEEE Security & Privacy 3,

5 (2005), 66–70.
70. Van Lamsweerde, A. Elaborating security requirements by construction of inten-

tional anti-models. In Proceedings of the 26th International Conference on Software
Engineering (2004), IEEE Computer Society, pp. 148–157.

71. Vandervort, D., Gaucas, D., and St Jacques, R. Issues in designing a bitcoin-
like community currency. In Financial Cryptography and Data Security (2015),
pp. 78–91.

72. Wood, G. Ethereum: A secure decentralised generalised transaction ledger.

A Deriving ABC Threat Categories

In this section, we show how the threat categories listed in Table 1 were derived.
We apply the procedure outlined in Step 2 of the ABC framework (Section
3.2) to the assets of CompuCoin, which include the service (e.g., computation
outsourcing in case of CompuCoin), service rewards or payments, blockchain,
transactions, currency, and communication network. For each asset, we outline
its security properties in order to identify any factors that might violate these
properties. These factors are labeled as threat categories.

Starting with the service asset, our analysis outlines the following:

1. Security properties: A secure service can be defined as the action of serving
clients correctly at anytime, while providing confidentiality and binding the
servers to the service they provide. Hence, the security properties of a service
asset may include integrity, availability, confidentiality, and non-repudiation.

27

2. Threat categories: By negating the above properties, we find that the service
asset has the following threat categories:
– Service tampering/corruption: An attacker provides clients with invalid

service or corrupts the correct service delivered by others.
– Information disclosure: An attacker reveals the contents of service-related

messages, such as the service content/outcome, the service requests sent
by clients, replies sent by servers, etc.

– Repudiation: A server denies providing a specific service or a client denies
receiving it.

– DoS: An attacker makes the service unavailable to legitimate users.

Next, we analyze the service payment (or rewards) asset as follows:

1. Security properties: One may consider the service payment asset secure as
long as: a) servers are rewarded properly for the service they provide, and
b) servers earn the payments they collect.

2. Threat categories: Negating the above security requirements produce the
following threat categories:
– Service slacking: A server collects payments without performing all the

promised work.
– Service theft: A client obtains service for a lower payment than the agreed

upon amount.

For the blockchain asset, our analysis produces the following:

1. Security properties: The blockchain security properties are tied to the secu-
rity of the underlying consensus protocol. These properties have been thor-
oughly studied in the literature [42, 46, 65]. We adopt the ones introduced
in [65] with slight modifications based on the work presented in [42], which
include:
– Consistency: At any point in time, honest miners hold copies of the

blockchain that have a common prefix and may differ only in the last
y blocks, where y is a block confirmation parameter. A block then is
confirmed once it is buried under y blocks on the blockchain.

– Future-self consistency: At any two points in time, t1 and t2, the blockchain
maintained by an honest party may differ only in the last y blocks. Con-
sistency and future-self consistency properties achieve blockchain persis-
tence or immutability.

– Fairness: Miners collect mining rewards in proportion to the resources
they expend in the mining process.

– Correctness: All the blocks within the longest branch in the blockchain
are valid. (Note that correctness and fairness represent the chain quality
property outlined in [46,65].)

– Growth: As long as the system is functional, new valid blocks will be
added to the blockchain.

2. Threat Categories: By negating the above properties, we can distill the fol-
lowing threat categories for the blockchain asset:

28

– Inconsistency: Honest miners do not agree on the prefix of the blockchain
copies they hold beyond the unconfirmed blocks. This also covers the case
of an honest miner who does not agree with itself on the blockchain prefix
it holds over time, e.g., alternating between two branches that compete
in being the longest.

– Invalid block adoption: The longest chain contains corrupted blocks that
either have an invalid format or contain invalid transactions.

– Biased mining: A miner pretends to expend the needed resources to be
selected to extend the blockchain and collect the mining rewards.

– Chain freezing: The blockchain does not grow at a regular rate, but
instead freezes for several contiguous rounds. This threat category is
a form of DoS attack, and hence, we cover it under DoS against the
communication network asset.

Next we analyze the transaction asset as follows:

1. Security properties: Secure transactions can be characterized as correct,
tamper-proof, and source-binding, i.e., cannot be denied by the originator. In
addition, these transactions need to be accessible to the system users at any
time so they can send/receive/view transactions as needed. Moreover, these
transactions must not reveal any information about the source, destination,
and amount of transferred funds. Accordingly, we outline the following secu-
rity properties for the transaction asset: non-repudiation, integrity, validity,
availability, and anonymity. Note that the validity property is already cov-
ered by the correctness aspect of the blockchain, where a valid blockchain
contains only valid transactions. Furthermore, the availability property is
covered under the communication network asset.

2. Threat categories: Based on the previous discussion, and again by negating
the aforementioned security properties, the threat categories for the trans-
action asset would be:
– Repudiation: An attacker denies issuing transactions.
– Tampering: An attacker manipulates the fields of a transaction.
– Deanonymization: An attacker violates users’ privacy by exploiting the

public nature of the blockchain to link transactions and payments, and
use this knowledge to track the activity of these users in the system and,
possibly, reveal their real identities.

Next we analyze the currency asset as follows:

1. Security properties: The security properties of the currency asset are inter-
twined with the properties of the transaction asset. This is because the cur-
rency takes the form of digital tokens, which are the transactions exchanged
in the system. Thus, they inherit all the transaction security properties.
What remains is to deal with the currency ownership, meaning that only
the owner can spend these tokens.

2. Threat categories: Beside the categories outlined above for the transaction
asset, we have the following threat category for the currency asset:

29

– Currency theft: An attacker steals currency from others in the system.
This includes all currency theft attacks that are not covered by other
assets. For example, biased mining, where a miner steals others rewards
indirectly, is currency theft, but it is already covered by the blockchain.
The same holds true for the service payment related threats.

Finally, we analyze the communication network asset as follows:

1. Security properties: The communication network is the backbone of any cryp-
tocurrency system, and one that is unreliable can lead to numerous prob-
lems. First, it can create delays in propagating newly mined blocks that
could produce an inconsistent blockchain. Second, it can cause delays in re-
laying transactions, which could reduce the transaction throughput of the
system and affect its availability aspect. Third, it can slow down setting up
new miners who need a longer time to discover other peers and download
copies of the blockchain. Fourth, it opens the possibility of being controlled
by external parties that could intercept the communication links and isolate
nodes in the network. Consequently, a secure cryptocurrency system needs
a reliable and robust communication network. We merge all these aspects
into one security property, namely, availability.

2. Threat categories: The communication network asset has one threat category,
which is DoS.

Table 1 summarizes all the threat categories derived in this appendix. As
mentioned previously, this table is by no means comprehensive. Additional threats
can be added based on the asset types of the system, or more refined definitions of
the asset security properties. This detailed treatment was provided as a thorough
example to clarify the application of Step 2 in the ABC framework. Nonethe-
less, we found this table sufficiently detailed when building threat models for
the systems reported as use cases in Section 5, including Bitcoin, Filecoin, and
CacheCash, as well as for the user study tutorial as reported in Section 4. For
this reason, Table 1 can be viewed as a base threat list that can be extended, or
even reduced, based on the system under design.

30

	ABC: A Cryptocurrency-Focused Threat Modeling Framework

