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Abstract— The parameter estimation of a traffic model based on the
fractional Brownian motion (fBm) is studied. The model has three pa-
rameters: mean rate m, variance parameter o and the Hurst parameter
H. Explicit expressions for the maximum likelihood (ML) estimates m
and @ in terms of H are given, as well as the expression for the log-
likelihood function from which the estimate I is obtained as the max-
imizing argument. A geometric sequence of sampling points, t; = o,
is introduced, which fits neatly to the self-similar property of the pro-
cess and also reduces the number of samples needed to cover several
time scales. It is shown that by a proper ‘descaling’ the traffic process is
stationary on this grid leading to a Toeplitz-type covariance matrix. Ap-
proximations for the inverted covariance matrix and its determinant are
introduced. The accuracy of the estimations is studied by simulations.
Comparisons with estimates obtained with linear sampling and with the
wavelet-based A-V estimator show that the geometrical sampling indeed
improves the accuracy of the estimate H witha given number of samples.

I. INTRODUCTION

One of the simplest and most studied models for aggregated
data traffic is the fractional Brownian motion (fBm) model
[1], which is a model for truly self-similar Gaussian traffic.
Though the model has its limitations and, in particular, breaks
down at small time scales, it has gained popularity because
of its simplicity. In its basic form the model contains only
three parameters, the mean rate m, the variance parameter a
and the Hurst parameter H describing the scaling behaviour
of the traffic. A small number of traffic parameters is a very
desirable feature from the point of view of the applicability
of the model for traffic engineering purposes. The estimation
of even a small number of parameters poses a problem for
long range dependent traffic. Some early work [1] suggested
that to obtain a reasonable accuracy a very large number of
sample points may be required. The problem arises e.g. in
the estimation of the Hurst parameter H. As H describes the
scaling behaviour of the traffic variability, the sample points
have to cover several time scales, i.e., the total time range
must be several orders of magnitude greater than the finest
time resolution in the measurement.

In this paper we show that by an appropriate choice of
the sampling instants, the number of sampling points can
be considerably reduced. In particular, we will introduce a
grid of geometrically distributed sampling points ¢; = '~ !,
1 = 1,...,n where « is some constant (smaller than one).
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The idea here is that such a sampling grid covers several time
scales with fewer points. The second point is that the geo-
metrical grid, being “self-similar”, fits well with the traffic
process and gives rise to a simple structure in the covariance
matrix.

Throughout this work we apply the maximum likelihood
estimation (MLE) method [2]. MLE method has previously
been applied to this problem by Deriche and Tewfik [3] and
Ninness [4] using ordinary linear sampling. Explicit formu-
las for the estimators of m and a are given along with the
log-likelihood function for determining the estimator for H.
A major difficulty in this method is the calculation of the in-
verse and determinant of the covariance matrix appearing in
the likelihood function. An approximate calculation is fa-
cilitated if the process is stationary whence the matrix is of
Toeplitz type. For the original fBm process the increment pro-
cess is stationary. We show that another stationary process is
obtained from the fBm process by ‘descaling’ and changing
the process index to logarithmic time, i.e., on the geometrical
sampling grid the descaled process is stationary.

We compare the effectiveness of the ML estimator based on
ordinary evenly spaced sampling grid with that obtained with
a geometrical grid, and also with the wavelet based parameter
estimation method proposed by Abry and Veitch in [5], [6], by
simulations. The simulations indicate that in the estimation of
H the geometrical grid gives an advantage. (In this study we
will concentrate on the estimates of the Hurst parameter H
only. For the parameters a and m, see [7].)

The rest of this paper is organized as follows. In section II
we review the fractional Brownian motion traffic model with
its three parameters. The general problem of the estimation
of these parameters by the maximum likelihood method is
considered in section III. The idea of geometrical sampling
and the descaled process, along with an approximate form
of the MLE, are introduced in section IV. For comparison,
in section V we present the MLE method for the case of or-
dinary linear sampling and a brief overview of the wavelet
based Abry-Veitch estimator. In section VI, we present re-
sults for estimating the Hurst parameter with the described
methods from simulated realizations of the process. Section
VII concludes the paper.



II. FRACTIONAL BROWNIAN TRAFFIC

A normalized fractional Brownian motion with Hurst pa-
rameter H € [0.5, 1), denoted by Z(t), (¢t € IR), is character-
ized by the following properties [8]:

1. Z(t) has stationary increments;

Z(0) =0,and E[Z(¢)] = 0 for all ¢;

. Var[Z(t)] = E [Z(t)?] = |t|*" forall t;

Z(t) has continuous paths;

Z(t) is a Gaussian process, i.e., all its finite-dimensional
marginal distributions are Gaussian.

In the special case H = 0.5, Z(t) is the standard Brownian
motion. It follows from the above properties that Z(t) is a
self-similar process whose scaling behaviour is defined by the
Hurst parameter H as follows

TN

Z(at) ~ " Z(t). 1)

The covariance structure of the process is given by
1
Cov [Z(t1), Z(t2)] = 5 (e + 27—t — 77}, @

Furthermore, in the case H > 0.5 the strongly correlated sta-
tionary sequence Z(n + 1) — Z(n), the increment process of
Z(t) (often called fractional Gaussian noise), is ergodic [8].
Fractional Brownian motion is a popular model for long-
range dependent traffic. Norros [8] has suggested the follow-
ing model
X(t) = mt + VaZ(t), 3)

where X (t) represents the amount of traffic arrived in (0, ).
The model has three parameters, m, a and H with the follow-
ing interpretations and intervals for allowed values: m > 0
is the mean input rate, @ > 0 is a variance parameter, and
H € [0.5,1) is the self-similarity parameter of Z(t).

III. EXACT GAUSSIAN MLE

Assume the traffic has been observed at n time instants
forming the vector t = (¢1,...,t,)" where (-)* denotes the
transpose, and let X = (X (¢1),..., X (t,))* be the vector of
observed traffic values at these instants. Since X (¢) is Gaus-
sian, the joint probability density function of X is

h(x) = (271-)—% |I‘|—% e—%(x—m)trfl(x—m)’ 4)

where x = (21,...,2,)" € R", m = mt, and |T| is the
determinant of the covariance matrix

T = Cov [X,X'] = E[XX'] ~EX]E[X']. (5)

Since I is a simple linear function of a, i.e., I'(a) = al'y,
where

Ty =E[2Z] = [Cov [Z(t:), Z(t))]]; j=y.. n» (6
the log-likelihood function is given by

log h(X;m,a, H) = —glogQﬂ' %)

1 n 1 _
—Eloga ITw| — Q_a(X - mt)' T (X —mt).

The ML estimates 1 and a are given by taking the derivative
of the log-likelihood function with respect to m and a respec-
tively, and setting it to zero. By doing this, we get

. ttT1X

T o Rry ®)
1 tt T X)2

d — - (Xt I\;{l X) _ ( H71 ) .
n tt r,t

Inserting the estimates from (8) into (7), essentially we have
to minimize

L(X;H) = log|Ty| &)
(t' Ty X)Q]

+ nlog |[(X'T'X) —
g[( H ) ttI‘Blt

The first term is a decreasing function of H, and the second
term is an increasing function of H. The minimum is obtained
for some value H which is the ML estimate. The minimiza-
tion can be done by setting the derivative of L(X; H) with
respect to H to zero. Using the notations u = (t' T';' t)X
and v = (t' T';' X)t, and the relationships

0 0
— A" = AT [ ZA)ATY 1
7 (w4)a™ @
0 0
—log|A|] = Tr(A'=A 11
gploslal = (A A) (1)
valid for any matrix A depending on a parameter 6 [9], H can
be calculated as the solution of (with I'";, = B%I‘ H)
O (X,H) = T(T;'T! 12
9H (X,H) = Ty Ty) (12)
L VAW (DT (Ve

(v+w'Ty (v—u)

Note, that solving (12) we do not need to calculate the deter-
minant of I'gy.

IV. GEOMETRICAL SAMPLING

The Hurst parameter H describes the scaling behaviour of
the traffic. Therefore, in order to determine its value from
measured traffic, the sample points have to cover several time
scales, i.e. the total time of the measurements has to be many
orders of magnitude greater than the smallest interval between
the sampling points. With the ordinary linear sampling, i.e.
sampling points at constant intervals, this leads to the require-
ment of very large number of sampling points. Obviously,
because of the correlations, there is a lot of redundancy in
measured traffic values at these points. In order to use the
measurements more efficiently we introduce a geometric se-
quence of sampling points, t; = o', i = 1,...,n, with some
a between zero and one.

In addition to distributing the sampling points in a better
way on different time scales, geometric sampling fits neatly
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Fig. 1. The approximation g(z) & z for H = 0.6, 0.7, 0.8 and 0.9.

with the self-similar behaviour of the fBm traffic. We show
first that by a simple transformation we can obtain from the
fBm process another process which is a stationary process
of logarithmic time. As a geometric sequence corresponds
to equidistant points in logarithmic time, the samples of the
modified process constitute a stationary sequence. This leads
to a simple Toeplitz-type structure of the covariance matrix
and allows us to develop approximations to the inverse and
determinant of the covariance matrix. (Similar ideas were
presented in [10], [11] where the notion of scale-stationarity
was used. The ML estimation technique was also investigated
to some extent, but no approximations were used to make the
method practically tractable.)

A. Descaled process

There is a one to one correspondence between self-similar
and stationary processes: Y = {Y'(¢),t > 0} is self-similar
with parameter H if and only if {e 7t Y (e?), —co < t < o0}
is stationary [12]. This transformation can be achieved by first
descaling the process and then distorting the time axis expo-
nentially. The descaled process {t 7Y ()} can be obtained
from the original Y process by multiplying it with the term
t—H and the time distortion can be achieved by changing the
process’ index to logarithmic time, i.e., u = — logt, where u
is the new process index. (The minus sign here is appropriate
for us when dealing with the interval ¢ € (0, 1].)

If we descale the process X () by the factor t ~# and use u
as the process index, we finally have

X (u) £ me V" 4 \/aZ (u), (13)
where Z(u) Li-Hy (t) is the descaled fractional Brownian
motion with the following property:

Z(’U, — log Oé) = efH(“*IOE OZ)Z(e*u+10goz)
ot B Z(at) ~t 7 Z(t)

= Z(u),

(14)
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Fig. 2. Error of approximation g(z) ~ « for H = 0.6, 0.7, 0.8 and 0.9.

where we have used the self-similar property of Z(t),
Z(at) ~ off Z(t). Thus the process Z(u) is stationary and
has the following covariance structure:

Cov [Z(ul),Z(ug)] = (15)

%eH(UQ—ul) { 1 _+_ €—2H(uz—u1) _ (1 _ 6_(“2—u1)) QH}‘
We see that the descaled process Z (u) is short range depen-
dent.

Note, that our geometrical grid is now equally spaced with
regard to u. The covariance matrix I' of the descaled samples
X = (X(u1), X (u2),...,X(upn))" with u; = —logt; =
(1 —7) log a can be written as

[ =E[XX'|=a-E[22)]. (16)
Thus, if we use the notation Z; = Z(u;) the process Z =
(Z1,Zs, ..., Zy) is a stationary process in discrete time with
zero mean and unit variance and its auto-correlation function
p(k) can be defined as

p(i—j) = loleifj‘ {1 + o2Hli=il (1 - ali*j‘)ZH
2

(17)
and thus

B. Descaled MLE

When doing the maximum likelihood estimation of the
model parameters m, a and H, one can utilize the stationarity
and short range dependent properties of the descaled process.
Using the ‘descaling matrix’ D = diag(t; ?,...,t) we
can easily derive r=DT D, and from this we get

;' = DI';'D. (19)



The determinant |I' 7 | can be also calculated as

0| = oD Dy (20)

C. Approximate MLE

In practice, the exact MLE poses computational problems
because of the computation time needed in case of large data
sets. To avoid these problems, one can use approximate meth-
ods to calculate the estimates. In [2], several possible ap-
proaches to approximating the Gaussian likelihood function
are discussed, among them the well known Whittle’s approx-
imate MLE.

In our case we focus on the properties of the covariance
matrix I'g, trying to take advantage of its special structure
and to find efficient approximations for its inverse and deter-
minant.

Using the notations

g(z) = 1 (1+x2H—(1—x)2H),

5 21

the elements of the autocorrelation matrix T’ g can be written
as

[Crli; = o Hlizilgali=il), 4,j=12,...,n. (22)

It is interesting to note, that g() is very nearly linear for z €
(0,1). Fig. 2 shows the function g(z) and the difference of
g(z) — x for different values of H. It can be seen from the
plot that the largest absolute difference is less than 0.02 for
each value of H. This observation gives us the idea to use
the approximation g(z) ~ x. So 'z can be approximated as
I'z ~ R, where R is a Toeplitz-type matrix of the form

[R];; =171,

1-H

i,j=1,2,...n, (23)

withy = «
The inverse and the determinant of R can be easily calcu-
lated as [13]

1
— -1 0 0
Y
1 y+= -1
1 1
Ro=gv— 0 -1 4= o |-
" y
7 -1
1
0 0 -1 -
Y
(24)
IR|=(1-9")""". (25)
Using the fact that t* DR™'!Dt = 1 and t* DR'D =
(1,0,...,0), to get an estimate for H we have to minimize
the function
-1
LXH) = “—log(a™(1-a22H)) (26)

n
+ log (X'DR'DX - X?).

Note that due to the relatively simple structure of R~ the
matrix product term in (26) can be calculated as

1

X'DR™'DX = >
l—n

n—1 ~ B 9 ~
> (K- %) +X2 @D
i=1

It should be noted that though the linear approximation to
g(z) is rather accurate, the resulting inverse matrix R~! of
(24) is rather poor an approximation to T for large n. Nev-
ertheless, the use of R~! in the log-likelihood function (26),
as we will see, yields a good estimate for H.

V. ALTERNATIVE METHODS

Two alternative estimation methods are presented here for
comparison to our proposed estimator. The first one is the
same MLE technique in time domain but using linear sam-
pling scheme, and the second is the wavelet based parameter
estimation method proposed by Abry and Veitch [5], [6].

A. Linear sampling

Let X = (X (t1), X (¢2),...,X(t,))* be the vector of ob-
served traffic values at instances

ti=—, i=1,2,...,n. (28)

The increment sequence (Y7,Y2,...) with Y; = X (¢;) —

X (t;—1) (substituting X (to) = X (0) = 0) is a strongly cor-
related stationary sequence with

1
Cov[Yy,Y;] = —an’2H<|i—j+1|2H+|i—j—1|2H

2

- 2|z'—j|2H), i,i=1,2,...,n.  (29)

The formulas for the exact Gaussian MLE for this in-
crement process are nearly the same as in Section III, we
only need to replace the covariance matrix I' with ¥ =
[Cov [Yi, Yj]]i,j=1,2,...n, and the vector t with the vector
(1/n,1/n,...,1/n)t. After some minor simplifications we
have to minimize

L(Y;H) = log|Xy] (30)

fsty (1P271Y)°

The minimum is obtained for some value H which is the ML
estimate.

Howeyver, to calculate the inverse and the determinant of
Y the same problems arise as in the case of geometrical
sampling with the covariant matrix I'gy.

B. Wavelet based estimator

Here we use the notations of Veitch and Abry [6]. The
continuous wavelet decomposition consists of the collection
of coefficients

{Tx(a,t) = (X,9q4), a € RT,t € R} 31)
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Fig. 3. Filter bank

that compares the signal X to be analyzed with a set of ana-
lyzing functions (or wavelets)

1 u—1 +
:%'QZJO( p >,a€IR,tE]R} (32)

This set of analyzing functions is constructed from a reference
pattern v, called the mother-wavelet.

Because the wavelet transform represents in a plane the in-
formation contained in a signal, it is a redundant transform.
A mathematical theory, the Multiresolution Analysis, proves
that it is possible to keep, among the {T'x (a,t)}, only a dis-
crete set of coefficients while still retaining the total informa-
tion in X . The discrete (or nonredundant) wavelet transform
consists of the collection of coefficients

{{aX(J,k), ke 7},

{dx (G, k),j=1,....,J, k€ Z}}.

{%,t(u)

X(t) = (33)

The {dx (j, k) } constitute a subsample of the {T'x (a, t)}, lo-
cated on the so-called dyadic grid dx (j,k) = Tx(27,27k).
These coefficients can be computed by a fast recursive filter-
bank based pyramidal algorithm (see Fig. 3) with low compu-
tational cost [14]. (The coefficients of the low-pass (LP) and
band-pass (BP) filters are derived from the chosen wavelet.)

When X is a self-similar process, the wavelet coefficients
dx(j,k) exactly reproduce the self-similarity through the
scaling property [15], i.e.,

dx (j, k) £ 270+05) 4. (0, k) (34)

forall j and k. If we add the requirement that X has stationary
increments, we have

E [dx (j, k)?] = 2740 C(H, ), (35)

with a constant C' independent of j.

The quasi-decorrelation of the dx (j, k) coefficients allows
us to effectively use the simple ‘time average’ as an estimate
of E [dx (j,)?]

1 & _
Hj = n_ ZdX(.]ak)2a

J k=1

(36)

where n; is the number of coefficients at octave j (i.e., es-
sentially n; = 277n where n is the length of the data).

This quantity is an unbiased and consistent estimator of
E [dx(j,-)*] [16].

The power-law form in (35) suggests that the scaling ex-
ponent 2H + 1 could be extracted simply by considering the
slope in a plot of log,(4;) against j. However, care should
be taken since nonlinearity is introduced by the log,, which
biases the estimator. The fundamental approach underlying
the Abry-Veitch estimator proposed in [6] is a weighted lin-
ear regression of log, (f4;) on j.

VI. SIMULATION
A. Data sets

For small (up to 10%) sample sizes the fBm samples were

generated using the fact Z ~ I‘}LI/Z

N (or, correspondingly,
Z ~ E;I/zN for the linear sampling) where N is a vec-
tor of independent standard Gaussian variables. To gener-
ate larger data sets, the conditioned Random Midpoint Dis-
placement (RMD) algorithm presented in [17] was used. This
method provides a fast and accurate approximation of frac-
tional Brownian motion. (The RMD-mn simulator is avail-
able over the Internet [17].)

In the simulation presented here the model parameters were
setasm = 1,a = 1 and H = 0.8 as an example, but similar
results were obtained for different values of the parameters.

B. Parameter o

Parameter o controls the number of samples and the total
sample time. With a given number of samples the ratio of the
total measurement time to the shortest time interval between
sample points (resolution) is greater if « is smaller. To cover
many time scales a small « is desirable. On the other hand,
the resolution of the measurement can not be arbitrarily fine
because of practical limitations (e.g., the smallest time differ-
ence our measurement equipment can record is given, or its
time stamp precision is finite).

The parameter o for the geometrical grid was chosen so
that the difference between the nearest two measurement time
instants (the ‘resolution’ of the measurement) was 1074,

C. Results

Fig. 4 shows the results for the estimates of H as a function
of the number of sample points using both geometrical and
linear sampling. In the geometrical case (9) was minimized
while for the linear sampling we minimized the formula (30).
The 95% confidence interval was obtained by repeating the
simulations 100 times and calculating the sample variance of
the estimates.

The results show that the estimates using geometrical sam-
pling have much smaller variance and are unbiased for sample
sizes larger than 25. For the linear sampling the variance of
the estimates for a given sample size is always higher than
in the geometrical case. For example, the variance for 800
samples using linear sampling is nearly the same as for only
50 geometrically sampled points. This dramatic reduction in
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the number of samples highlights the main difference between
geometrical and linear sampling: having the same total mea-
surement interval and the same resolution, the number of sam-
ples needed is much less in the geometrical case. (Or equiva-
lently, having the same measurement interval and number of
samples, the resolution is higher in our method and thus the
variance of the estimates is smaller.)

Next, our method was compared to the wavelet-based
Abry-Veitch estimator. Fig. 5 shows similar results as previ-
ously, namely, than the estimates using geometrical sampling
have much smaller variance and bias than the wavelet based
method. For a given variance of H the reduction in the num-
ber of samples is about one order of magnitude in favor of
MLE using geometrical sampling.

VII. CONCLUSION

In this paper we have introduced the idea of using geo-
metrical sampling for the ML estimation of the parameters of
fractional Brownian traffic. Intuitively, the geometrical sam-
pling distributes the sampling points advantageously at dif-
ferent time scales, whereas linear sampling stresses the finest
time scale and contains redundant information.

We have derived expressions for the estimators of m and a
and the log-likelihood function from which the estimator of
H can be derived for the geometrical sampling. Approxima-
tions were developed for the inverse and the determinant of
the covariance matrix, needed for the calculation of the esti-
mates. With these approximations the evaluation of the log-
likelihood function is fast and the maximization with respect
to H can easily be made.

The experiments with simulated traffic showed that the ge-
ometrical sampling does indeed give a better estimate for H
leading to a reduction of sample points. In one example the
number of required points was reduced from 800 to 50.

It should, however, be noted that the experiments were
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Fig. 5. Estimates of H using MLE with geometrical sampling, and the

wavelet-based Abry-Veitch estimator.

made only with simulated traffic with exact ‘measurements’.
If the measured values are noisy then the descaling factor may
amplify the noise of the points near the origin. The wavelet
based Abry-Veitch estimator, for example, shows good per-
formance in terms of robustness and computational cost. Sim-
ilar investigations are necessary for our method and are the
topic of future study.

Though the geometrical sampling has been shown to give
better results than the linear sampling, it is not claimed that it
constitutes the optimal sampling scheme. So there remains
the theoretical question what is the best way of locating a
given number of sampling points in the interval [0, 1] with
the constraint that the smallest distance between any pair of
points is greater than or equal to a given minimum resolution.
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