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Abstract—Delineation approaches provide significant benefits
to various domains, including agriculture, environmental and
natural disasters monitoring. Most of the work in the literature
utilize traditional segmentation methods that require a large
amount of computational and storage resources. Deep learning
has transformed computer vision and dramatically improved ma-
chine translation, though it requires massive dataset for training
and significant resources for inference. More importantly, energy-
efficient embedded vision hardware delivering real-time and
robust performance is crucial in the aforementioned application.
In this work, we propose a U-Net based tree delineation method,
which is effectively trained using multi-spectral imagery but can
then delineate single-spectrum images. The deep architecture that
also performs localization, i.e., a class label corresponds to each
pixel, has been successfully used to allow training with a small
set of segmented images. The ground truth data were generated
using traditional image denoising and segmentation approaches.
To be able to execute the proposed DNN efficiently in embedded
platforms designed for deep learning approaches, we employ
traditional model compression and acceleration methods. Exten-
sive evaluation studies using data collected from UAVs equipped
with multi-spectral cameras demonstrate the effectiveness of the
proposed methods in terms of delineation accuracy and execution
efficiency.

Index Terms—CNN, Accelerated CNN, Deep learning, U-net,
Image segmentation

I. INTRODUCTION

Remote sensing is an important tool in automated and pre-
cision agriculture, forestry inspection and management. In the
agricultural sector, remote sensing facilitates soil management,
decease and weed detection [1]], pest management, evaluation
of vegetation health and vigor, among other needs. Tree crown
delineation isolates regions of interest for extracting vegeta-
tion indices locally, providing higher resolution ranges that
facilitate the accurate detection of potential diseases linked to
water stress. Multiple studies address the problem using high-
resolution RGB images [2] or multi-spectral intensity imaging
data featuring characteristic bands of the light spectrum [3]-
[5l. Normalized difference vegetation index (NDVI) employs
red and near-infrared to characterize vegetation [6]. Light
detection and ranging (LIDAR) data [[7]], [8]] are also employed.
All the remote sensing data originate from unmanned aerial
vehicles [9], [[10], drones or satellites [11]. Several algorithms
are present in the literature addressing the problem of tree de-
tection and delineation for feature extraction and segmentation.
Current tree segmentation approaches are primarily based on
user-defined algorithms that describe the appearance of trees

in a hierarchical sequence of rules. These approaches may be
broadly categorized [12], [[13]] as either local maxima-minima
[5)], contour detection [[14]], [15], region growing [16]], [L7],
template matching, [[18] valley following [2], edge detection
approaches [3|] and watershed routines [4], [7], [19], [20].
A recent comparative study [21] suggests that there is no
definitive approach given the variety of forest formations and
species, concluding that crown segmentation in a multi-layered
closed canopy is significantly improved using 3D segmentation
from LIDAR data than relying on the surface RGB images.
Further improvements are expected when combining them.
Deep learning and learning-based approaches [S], [8]], [22]]
also exhibit commendable results. A recent semi-supervised
approach [8]], employing a convolutional neural network
(CNN), combines LIDAR and RGB data, yielding similar
outcomes with classical unsupervised algorithms. CNNs were
also used with multi-spectral imaging data [[10]], [22]. In [22],
a deep network was employed to differentiate trees, bare soil
and weeds. Li et al. [23]] developed a CNN framework to detect
oil palm trees. Even though they provide accurate results, they
need a large amount of training data. Training should be per-
formed in a sliding window setup to predict the class of each
pixel. The process receives as input a local neighbourhood.
As a result, the training set is much larger than the number
of images. The process is slow since it has to be executed for
each patch separately. A trade-off comes at play concerning the
patch size. Larger patches tend to require more max-pooling
layers that reduce the accuracy, while small patches miss the
correlation between features and context information. To this
end, variants of a more elegant scheme, the fully convolutional
network (FCN), need to be employed. We utilize the U-Net, a
modified version of the FCNs where high-resolution features
from the contracting path are combined with the expanding
path. A typical convolutional neural network is followed by a
series of convolutional layers where the pooling operators are
replaced by upsampling operators increasing the resolution.
Feature maps from the downsampling path are concatenated
with the upsampled output allowing for the network to local-
ize. As a result, a symmetric U-shaped architecture is formed.
The U-Net allows for training with relatively small dataset
while generating more precise segmentations as the authors in
[24] highlight. Motivated by the aforementioned open issues
and challenges, we propose a U-Net based tree delineation
method, using multi-spectral imagery. We generate a small
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Fig. 1: Sample of raw input images. One image per spectral band,
taken at the same time using a multispectral camera. (a) GRE - Green
550nm (b) RED - Red 660nm (c) REG - Red Edge 735nm (d) NIR
- Near Infrared 790nm

groundtruth dataset using traditional image preprocessing and
segmentation approaches, effectively training the deep net-
work. Several acceleration approaches were employed, facili-
tating the deployment on Edge-TPU devices mounted on UAV
and drone chassis. More specifically, the contributions of the
proposed approach can be summarized in the following points:
1) We generate groundtruth segmentation data using as input
multi-spectral imagery ranging in four light spectrum bands
2) We denoise, align and process the multi-spectral images
to generate groundtruth data. 3) We accurately perform tree
crown detection even when we use the data from a single band,
using a U-Net based architecture trained with the generated
segmentation masks. 4) We present qualitative, quantita-
tive and performance evaluation of the presented approaches.
5) We implemented the presented approaches to be executed
on a Google Coral Edge. The rest of this paper is organized
as follows: Section [[] analyses the methodology, section [II]
presents the results of our approach, while conclusions are
drawn in Section [Vl

II. DEEP ARCHITECTURES FOR TREE CROWN DELINEATION

This section analyzes the processing pipeline of our ap-
proach. Subsection [[I-A] describes the extraction of tree seg-
mentation masks. The generated masks are employed to train
a U-Net that is subsequently deployed on Google Coral Edge
devices mount on UAVs and drone frames. An overview of the
architecture and training process of the proposed deep network
is depicted in Figure [

A. Tree characterization through analysis of multispectral
imagery

Band alignment: As input for the primary step of our
approach, multi-spectral intensity images are used. The green
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Fig. 2: Baseline segmentation for an input image with road. Com-
posite pseudo-RGB input (a), overlay of input and ground truth (b),
automatically generated ground truth labels (c).

channel corresponds to 550nm, referred to as GRE, the red
channel to 660nm referred to as RED, the red edge channel to
735nm referred to as REG. Finally, the near-infrared channel
corresponds to 790nm, referred to as NIR. Initially, the four
channels are unregistered (see figure [T) so we employ simple
motion homography [25] to align the images.

Usually, image registration is not straight forward and
requires many resources, especially when, as in our case,
there are significant differences between the input images.
To efficiently and accurately align them, we process them
successively in pairs, based on the similarity of the spectral
response of each band: (RED to GRE), (GRE to REG) and
finally (REG to NIR). Combining successive pairing with
motion homography yields satisfactory results.

Composite image creation: After alignment, the un-
matched regions are cropped and a 4-dimensional composite
image is created. Another composite pseudo-RGB image is
formulated, to emulate RGB image input. This pseudo-RGB
images uses the GRE, RED and REG bands, and is used as
training input to the neural network.

Distance calculation: After the above preprocessing
steps, we proceed to generate the ground truth labels. The first
step is to calculate the distance of each pixel of the composite
image from the reference point. The reference point (RP) is
the point in the multi-spectral intensity space (GRE, RED,
REG, NIR) that shows the maximum correlation with the



spectral response of the trees to be delineated. This point can
be extracted from spectral data available from the literature,
or experimentally estimated from the input data. In this work,
we used the RED-normalized RP (1.29, 1.00, 3.13, 2.76).

Local minimum filtering: Subsequently, a minimum filter
is applied to mark regions that contain a tree with high
probability, as regions that contain a point very close to the RP
have a very high probability of belonging to a tree. Roughly,
the probability that the center pixel of a region A of area S,
belongs to a tree is given by
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so a minimum filter is a good choice for marking tree regions.

Denoising: After applying the local minimum filter, a
median filter, of disc-shaped kernel size k, is applied to remove
unneeded details and smooth out the outcome. The kernel size
is correlated to the expected or the desirable minimum radius
of tree features. After experimentation with kernel sizes, a
kernel of k = 5 pixels, corresponding to a real length of about
50cm, was found to be adequate.

Thresholding: Markers are identified at locations that the
probability is lower than an experimentally defined threshold
0,,. The best results were found for #,, = 0.15, but results
around that number showed little variation, as most pixels are
clearly in one class or the other; the in-between values are
outliers and represent a small percentage of the image, the
most important of which are around the edge of the tree crown
or in shaded areas.

Watershed segmentation: Finally, a watershed algorithm
is employed for the final segmentation outcome, to
highlight the tree crown.

The outcome of this procedure is presented in Figure
Algorithm [T] highlights the processing steps.

P(A)

D

Algorithm 1: Generation of ground truth labeled im-
ages.

Result: Per pixel classification: O - not a tree, 1 - tree

Band alignment;

Composite image creation;

Distance calculation;

Local minimum filtering;

Denoising;

Threshold classification;

Watershed segmentation;

B. U-Net architecture, training and inference

Deep architectures are able to learn complex non-linear
relationships found in the data and, in our case, to translate the
input image to a segmentation map. The U-Net architecture
builds upon the concept of fully connected convolu-
tional neural networks and has been successfully employed
to segment biomedical images. The motivation behind fully
connected CNNSs is to accelerate the segmentation process so
as to be executed on edge devices. In the U-Net architecture
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Fig. 3: U-Net architecture
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Fig. 4: Processing pipeline

(Figure [3) the input data are fed to successive down-scaling
layers (left branch) to reduce the spatial resolution of the
feature maps and then to corresponding up-scaling layers
(right branch), increasing the spatial resolution of the feature
maps. Each layer consists of two 3x3 unpadded convolutions
succeeded by a rectified linear unit (ReLU) activation function,
a 2x2 max pooling with stride 2. After each down-sampling,
the number of feature channels equals twice the number of
channels of the previous layer. In the up-scaling part, every
layer performs of a 2x2 convolution. The number of feature
channels equals half the number of channels of the previous
layer. The result is concatenated with the corresponding part
of the down-scaling path. Finally, two 3x3 convolutions are
performed, succeeded by a ReLLU. The cropping is necessary
due to the loss of border pixels in every convolution. At
the final layer, a 1x1 convolution is used to map each 64-
component feature vector to the desired number of classes. At
the final layer, a 1x1 convolution is used to map each feature
vector to the desired number of classes. In total the network
has 23 convolutional layers. The outcomes of the primary
baseline segmentation step are used as input for the training
of the U-Net architecture. Each training example consists
of the composite pseudo-RGB image and the corresponding
segmentation map. A composite image is used as input for



the deep architecture, referred to as multi-spectral setup for
the rest of the paper. A second setup involves only the GRE
channel to be used as input data. The latter will be referred
to as the one-band setup for the rest of the paper. In the
following sections, we present a qualitative, a quantitative
and performance evaluation for both strategies in terms of
execution times.

C. Squeezing the proposed U-Net architecture

Post-training quantization is an important step to reduce
requirements in CPU, processing power, and model size with
little degradation in model accuracy. Quantization is performed
on an already-trained float TensorFlow model and applied
during TensorFlow Lite conversion facilitating the execution
of the trained U-Net on the Edge-TPU. The model parameters
are quantized to 8bit integers. The motivation is that such
simplifications facilitate the real-time condition with accept-
able losses. We create the Quantized FlatBuffer format using
a TFLite Converter object from the saved Keras model and
set the inference output type to be an unsigned 8-bit integer.
The converter uses images from the dataset to calibrate the
model on inputs. Finally, the saved model is compiled as an
Edge-TPU executable.

III. EXPERIMENTAL EVALUATION
A. Dataset acquisition and training

This subsection describes the dataset collection and the
training process. We present two different setups, a multi-
spectral setup and a one-band setup, and we investigate the
effect of dataset size on the reported accuracy, to demonstrate
that the U-Net exhibits high accuracy even with small datasets.

1) Dataset: We created a dataset from multi-spectral im-
ages collected with Pix4d Parrot Sequoia cameras attached on
a CO class drone. The drone collected 400 images on 4 flight
hours over olive groves located in western Greece. An example
of the collected images is presented in Figure [I]

2) Multi-spectral setup: For the training of the U-Net pairs
of multi-band images and ground truth segmentation maps
are utilized. The multi-band images are generated by the
process presented in subsection [[I-A] In total, 85 random
pairs were used, randomly split in training and test sets at
a ratio 80%-20%. Sparse categorical cross-entropy was used
as a cost function with Adam optimizer with a learning rate
of 1073, Training took place for 70 epochs in an in an
Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz with 16GB
RAM utilizing 4 cores.

3) One-band setup: A second training setup takes place
with pairs of one-band images and ground truth segmentation
maps. The motivation behind utilizing the one-band setup is
to lower the preprocessing execution time and facilitate the
execution in edge devices and allow for real-time inference.

4) Size of training dataset and number of epochs: We
investigated several training setups evaluating the test accuracy
with respect to a different number of epochs and sizes for the
training dataset. Figure [5}a presents the training loss and test
accuracy for different dataset size. Figure [5}b demonstrates
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Fig. 5: (a) Training and validation loss for the two training setups:
multispectral and one-band. (b) Accuracy as tested on the extended
(100 images) dataset vs training data set size (average over 5 training
sessions for each set).
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Fig. 6: (a) Confusion matrix for multi-band, reported accuracy 89%.
(b) Confusion matrix for the one-band set, reported accuracy 84%.

that U-Net allows for even small datasets to yield relatively
high accuracy.

5) Acceleration approaches: Several adaptations were
taken into account for deployment to Edge-TPU. The resulting
model was converted using TensorFlow Lite to an optimized
FlatBuffer format, without quantization, and a Quantized Flat-
Buffer format. The Quantized model was then compiled for
use on Edge-TPU devices using the edgetpu_compiler.
The resulting FlatBuffer model was nearly 0.25 times the size
of the base model, while the Quantized model was 0.1 times
the size of the original model as presented in Table[l] For the
evaluation, two setups were deployed: i) An Intel(R) Core(TM)
i7-7600U CPU @ 2.80GHz with 16GB RAM and ii) A Google
Coral DevBoard Edge-TPU device with quad Cortex-A53,
Cortex-M4F CPU, Integrated GC7000 Lite Graphics, Google
Edge TPU coprocessor as an ML accelerator, 1 GB LPDDR4
main memory.

B. Results

Traditional image processing: The output of our tradi-
tional image processing and watershed based segmentation
approach is presented in Figure [2] and Figure [7] By close
examination we can derive that tree crowns were successfully
segmented from soil and road surrounding (Figures [2] and [7).
The generated pairs of composite or single-band images with
the corresponding segmentation maps were used to train the
U-Net. It is important to highlight that the amount of data
required to train the models contains 68 training examples,
which is assumed to be a small dataset.



TABLE I: Comparison of trained models in terms of execution times (inference) and accuracy

Inference times measused in ms

Accuracy (%)

Model Intel(R) Core(TM) Google Coral

i7-7600U CPU @ 2.80GHz Edge TPU Multispectral input | GRE input band only
Base model 96 89 84
Quantized-CPU 5600 740 38 33
Quantized-TPU 28

Groundtruth Composite
input image

image

Base
model

Quantized
model

Fig.
predictions for base model, FlatBuffer model and Quantized model.

TABLE II: Total execution time

[ [[ Operation [ Time (ms)
Training Preprocessing (per image) 5450
Training (per epoch) 12200
One band | Multi spectral
Preprocessing (per image) 110 3920
Inference 1/O operations 20
Inference Table 1

U-Net segmentation: For the U-Net based segmentation,
a two-step procedure takes place. A preprocessing step pre-
pares the captured image before the U-net extracts the segmen-
tation maps. The preprocessing step for the multispectral-input
case involves aligning, cropping and then rescaling the input
images, while for the one-band-input case it only involves the
rescaling of the input image to the input size of the U-net.

The output of the U-Net segmentation is presented in
Figure [7] Qualitative evaluation in terms of visual inspection
reveals that the deep architecture adequately segments the tree
crowns from the surrounding background. Confusion matrices
(Figure [6) demonstrate an overall accuracy of 89% for the
multi-spectral composite image input and 84% for the one-
band image input. Such observations facilitate the deployment
of the trained models on the Google Coral Edge TPU. Perfor-
mance evaluation in terms of inference times is presented in
Table [} Table [l shows the total execution time for training
and inference procedure. Inference times were calculated on

7: Prediction masks for U-Net trained on multispectral and one-band images. Image input (top); ground truth (second row) and

relevant procedures without taking into account I/O operations,
generation of composite images and other configuration calls.
In the case of the base model that meant measuring time
spend on the Keras’ API call to model .predict (image).
This call generates output predictions for the input samples
from the loaded model. In the other models, we measured
the time spend to load the image into the tensor and calling
the TFLite Interpreter’s method interpreter.invoke ()
which is the analogue of Keras’ predict for this model format.

Quantized-TPU model executed on Coral Edge requires
only 28ms to segment a single image and is the most efficient
inference procedure from those that were considered. A large
spike in inferencing time is observed for the Quantized model
when running on PC-CPU; this is due to the fact that TFLite’s
routines are unoptimized for x86_64 architectures. The Coral
Dev Board’s CPU has an arm architecture which is supported
by TensorflowLite’s fully optimized routines.

It is evident that the model trained for multi-spectral in-
put cannot achieve high performance due to the large pre-
processing overhead of preparing the images for inference.
On the other hand, using the one-band procedure, we can
see that the total execution time is less than 150ms, when
executed on a Coral Edge-TPU, allowing the segmentation of
7 frames per second. This can be brought up to 35 frames
per second, by training the U-net for larger one-band image
inputs eliminating, thus, the need to preprocess the images
at all. Furthermore, the prediction accuracy in the one-band



quantized model remains above 80%, declining only slightly
in comparison to the multi-spectral quantized model. It is,
therefore, feasible to use the one-band procedure for on-the-fly
tree crown delineation, using only raw one-band input images
from UAVs.

IV. DI1SCUSSION AND CONCLUSION

In this work, we presented a U-Net based tree delineation
method. Multi-spectral imagery was captured with drones
inspecting olive groves, employing cameras mounted on the
chassis. Groundtruth segmentation data were generated using
a pipeline of traditional image processing and watershed seg-
mentation approaches. The deep architecture was trained with
a relatively small dataset of pairs of multi-spectral one band
spectral images and segmentation maps. The trained mod-
els were further accelerated with quantization and flatbuffer
techniques allowing the execution of the U-Net inference on
embedded devices like the Google Coral Edge TPU Board.
The experimental evaluation demonstrated that the loss of
prediction accuracy was minimal with a significant boost of
overall performance, facilitating real-time execution.
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