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Abstract

In this paper, we present a frequency domain neural net-
work for image super-resolution. The network employs the
convolution theorem so as to cast convolutions in the spatial
domain as products in the frequency domain. Moreover, the
non-linearity in deep nets, often achieved by a rectifier unit,
is here cast as a convolution in the frequency domain. This
not only yields a network which is very computationally ef-
ficient at testing but also one whose parameters can all be
learnt accordingly. The network can be trained using back
propagation and is devoid of complex numbers due to the
use of the Hartley transform as an alternative to the Fourier
transform. Moreover, the network is potentially applicable
to other problems elsewhere in computer vision and image
processing which are often cast in the frequency domain.
We show results on super-resolution and compare against
alternatives elsewhere in the literature. In our experiments,
our network is one to two orders of magnitude faster than
the alternatives with an imperceptible loss of performance.

1. Introduction

Image super-resolution is a classical problem which has
found application in areas such as video processing [7],
light field imaging [3] and image reconstruction [9].

Given its importance, super-resolution has attracted am-
ple attention in the image processing and computer vision
community. Early approaches to super-resolution are of-
ten based upon the rationale that higher-resolution images
have a frequency domain representation whose higher-order
components are greater than their lower-resolution ana-
logues. Thus, methods such as that in [29] exploited the
shift and aliasing properties of the Fourier transform to re-
cover a super-resolved image. Kim et al. [15] extended the
method in [29] to settings where noise and spatial blurring
are present in the input image. In a related development,
in [4], super-resolution in the frequency domain is effected
using Tikhonov regularization.

Alternative approaches, however, effect super-resolution
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by aggregating multiple frames with complementary spa-
tial information or by relating the higher-resolved image to
the lower resolution one by a sparse linear system. For in-
stance, Baker and Kanade [1] formulated the problem in a
regularization setting where the examples are constructed
using a pyramid approach. Protter et al. [22] used block
matching to estimate a motion model and use exemplars to
recover super-resolved videos. Yang et al. [31] used sparse
coding to perform super-resolution by learning a dictionary
that can then be used to produce the output image, by lin-
early combining learned exemplars.

Note that, the idea of super-solution “by example” can
be viewed as hinging on the idea of learning functions so
as to map a lower-resolution image to a higher-resolved one
using exemplar pairs. This is right at the center of the phi-
losophy driving deep convolutional networks, where the net
is often considered to learn a non-linear mapping between
the input and the output. In fact, Dong et al. present in
[6] a deep convolutional network for single-image super-
resolution which is equivalent to the sparse coding approach
in [31]. In a similar development, Kim et al. [14] present a
deep convolutional network inspired by VGG-net [26]. The
network in [14] is comprised of 20 layers so as to exploit the
image context across image regions. In [13], a multi-frame
deep network for video super-resolution is presented. The
network employs motion compensated frames as input and
single-image pre-training.

2. Contribution

Here, we present a computationally efficient frequency
domain deep network for super-resolution which, at input,
takes the frequency domain representation of the lower res-
olution image and, at output, recovers the residual in the
frequency domain. This residual can then be added to the
lower resolution input image to obtain the super-resolved
image. The network presented here is somewhat related to
those above, but there are a number of important differences
with respect to other approaches. Its important to note that:

• Following our frequency domain interpretation of deep
networks, the convolutions in other networks are
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Figure 1. Diagram of our network with a single-layer. The input feature map obtained by transforming the image into the frequency domain
is point-wise multiplied with the weighting matrices. After the weighting operation, the result is convolved and added to obtain the output
frequency feature map that can then be transformed into the spatial domain to recover the predicted residual. Note that, in our network, the
weighting matrices are the same size as the input feature map.

treated here as multiplications. This has the well
known advantages of lower computational cost and
added computational efficiency.

• Following the frequency domain treatment to the prob-
lem as presented here, the non-linearity in the network
is given by convolutions in the frequency domain. This
contrasts with the work in [23], which employs spec-
tral pooling instead.

• In contrast with deep network architectures elsewhere,
where the non-linearity is often attained using an acti-
vation function such as a rectified linear unit (ReLU)
[10], we can learn the analogue convolutional parame-
ters in the frequency domain in a manner akin to that
used by CNNs in the spatial domain.

• We use residual training since its not only known to
deal with the vanishing gradients well and often im-
prove convergence, but its also particularly well suited
to our net. This is following the notion that the lower
resolved image lacks the higher frequencies in high-
resolution imagery and, thus, these can be learned by
the network based on the residual.

• Finally, we employ the Hartley transform as an alter-
native to the Fourier transform so as to avoid the need
to process imaginary numbers.

3. Spatial and Frequency Domains
3.1. Convolutional Neural Networks

Note that most of the convolutional neural networks
nowadays are variants of ImageNet [16]. Moreover, from a
signal processing point of view, these networks can be con-
sidered to work on the “spatial” image domain1. In these
networks, each layer is comprised of a set of convolutional
operations followed by an activation function.

To better understand the relationship between these net-
works in the spatial domain and ours, which operates in the
frequency domain, recall that the two-dimensional discrete
convolutions at the ith layer can be expressed as

(f ∗gj)[u, v] =
M∑

m=−M

N∑
n=−N

f [m,n]gj [u−m, v−n] (1)

where f denotes the feature map delivered by the previous
layer, i.e. that indexed i − 1, in the network and gj is the
convolutional kernel of order (2M + 1)× (2N + 1) in the
corresponding layer. In the equation above, we have used u
and v as the spatial coordinates (rows and columns) in the
image under consideration.

At each layer, this convolutional stage is followed by an
activation function which induces the non-linearity in the

1Here, we adopt the terminology often used in image processing and
computer vision when comparing spatial and frequency domain represen-
tations. We have done this so as to be consistent with longstanding work
on integral transforms such as Fourier, Cosine and Mellin transforms else-
where in the literature.
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Figure 2. Simplified diagram of our network with multiple layers. Each of these layers accounts for a product-convolution-addition step as
presented in Figure 1. Here, the lower-resolved image is transformed into the frequency domain and then, after the final additive layer, the
predicted residual is transformed back into the spatial domain. The residual and input images are then added to obtain the higher-resolved
output image.

behavior of the network. Nonetheless there are a number
of choices of activation function, i.e. sigmoid, binary, iden-
tity, etc., the most widely used one is ReLU, which can be
expressed mathematically using a product with a Heaviside
function as follows

ReLU[u, v] = max(0, (f ∗ gj)[u, v]) (2)
= (f ∗ gj)[u, v] HS((f ∗ gj)[u, v])

where HS(x) is the Heaviside function which yields 1 if
x > 0, 0.5 if x = 0 and 0 if x < 0. In the expressions
above, and so as to be consistent with Equation 1, we have
used (f ∗ gj)[u, v] as the input to the rectifier unit.

3.2. Fourier Transform

Equations 1 and 2 hint at the use of the convolution theo-
rem of the Fourier transform to obtain an analogue of spatial
domain CNNs in the frequency domain. Further, the convo-
lution theorem as widely known for the Fourier transform
has similar instantiations for other closely related integral
transforms. For now, and for the sake of clarity, we will fo-
cus on the Fourier transform. Later on in the paper, we will
elaborate further on the use of the Hartley transform as an
alternative to the Fourier transform in our implementation.

The convolution theorem states that given two functions
in spatial (time) domain, their convolution is given by their
point-wise multiplication in the frequency domain. For the
sake of consistency with Equations 1 and 2, let f and gj be
the two spatial domain functions under consideration and
denote the Fourier transform operator as F , then we have

F{f ∗ gj} = F{f} · F{gj} (3)

where · denotes point-wise product.
Moreover, the converse relation also holds, whereby a

product in the spatial domain becomes a convolution in the

frequency domain. i.e.

F{(f ∗ gj) · hj} = F{f ∗ gj} ∗ F{hj} (4)
=

(
F{f} · F{gj}

)
∗ F{hj}

where we have employed hj to denote a generic activation
function which, in our case can also be learnt. Note that the
second line in the equation above follows from substituting
Equation 3 into the first line.

4. Network Structure
Note that, in the Equation 4, the term F{gj} acts as a

“weighting” operation in the frequency domain. That is,
through the point-wise product operation, it curtails or am-
plifies the frequency domain components of F{f}. These
frequency weighting operations take place of the original
convolution operation in spatial domain convolutional neu-
ral networks such as ImageNet [16]. Similarly, the non-
linear operator given by the rectifier units in CNNs is now
substituted, in the frequency domain, by a convolution. This
can be viewed as a smoothing or regularization operation in
the frequency domain.

In Figure 1, we show a single-layer instantiation of our
frequency domain network. Note that, at input, the image is
transformed into the frequency domain. Once this has been
effected, the frequency weighting step takes place, i.e. the
pointwise multiplication operation, and then a convolution
is applied. Once the outputs of all the convolutional outputs
are obtained, they are summed together by an additive layer
and the inverse of the frequency domain transform is ap-
plied so as to obtain the final result. Its worth noting that we
have not incorporated a spectral or spatial pooling layer in
our network. This is not a major issue in our approach since
these pooling layers are often used for classification tasks
[16] whereas in other applications, such as super-resolution,
pooling is seldom used [6].



4.1. Weighting

As mentioned above, the productQ = F{f}·F{gj} can
be viewed as a frequency weighting operation equivalent
to the convolution operation in time domain. As before,
consider a feature map f at a given layer in the network and
the jth convolutional kernel gj .

For the layer under consideration, the product Q will
take the frequency domain of the feature map F{f} as an
input and point-wise multiply it by a wight matrix given by
the values of F{gj}. In practice, both, F{f} and F{gj}
can be viewed as matrices which are the same size. This
is important since it permits us to pose the problem of per-
forming the forward pass and backpropagation steps in a
manner analogous to that used in CNNs operating in the
time domain.

To see this more clearly, denote as Fi the input matrix
corresponding to F{f} to the ith layer of our frequency
domain network. Similarly, let the jth weight matrix corre-
sponding to the coefficients of F{gj} be Wj . The output
of the product of the two matrices is another matrix, which
we denote Q and whose entries indexed l, k are given given
by

Q(l, k) = F i(l, k)Wj(l, k) +Bj(l, k) (5)

where F i(l, k) and Wj(l, k) are the entries indexed l, k of
the matrices Fi and Gj , respectively, and we have intro-
duced the bias matrix Bj with entries Bj(l, k).

Moreover, the Fourier transform of an image, being real
and non-negative, is conjugate-symmetric2. This is impor-
tant since, by noting that Wj should be Hermitian, we can
reduce the number of learnt weights by half.

4.2. Smoothing

As shown in Figure 1, once the weighting operation is ef-
fected, a convolution in the frequency domain, analogous to
the rectification operation in the spatial domain is applied.
This is inspired upon Equation 4, which hints at the notion
that we can express the ReLU as a product between a Heav-
iside function and its argument. Again, in practice, this can
be expressed as follows

Rj(l, k) =

M∑
m=−M

N∑
n=−N

Q(l −m, k − n)Cj(m,n) (6)

Where Q(l − m, k − n) is the corresponding entry of the
matrix Q as presented in the previous section and Cj(m,n)
are the coefficients of the matrix C containing the values of
F{hj}.

From the equation above is straightforward to note that
the entries of the matrix R are a linear combination of the

2It can be shown in a straightforward manner that this symmetry prop-
erty also applies to the Hartley transform.
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Figure 3. Loss comparison as a function of low-to-high resolution
factors. All the loss function values, i.e. l1, l2, Exp-l2, are com-
puted in frequency domain and normalized to unit at their extrema.

values of Q where the matrix C can be viewed as a ker-
nel that can be learnt. Thus, here, we consider the entries
Cj(m,n) of Cj as parameters that can be updated at each
back-propagation step. This, in turn, allows us to learn both,
the weights in Wj as well as the parameters in Cj .

4.3. Additive Layer

Recall that, in applications such as super-resolution, fre-
quency domain approaches aim at recovering or predicting a
whole frequency map corresponding to either the enhanced
or super-resolved image. As a result, instead of a prediction
layer, our network adds the output of all the network fea-
ture maps into a single one at output and then applies a final
frequency weighting operation. This additive layer can be
expressed as follows

P =

( L∑
i=1

αiS
i

)
�WL (7)

where L is the number of layers in the network, � denotes
the Hadamard (entrywise) product, WL is the final fre-
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Figure 4. Cross-validation performance of our network as a func-
tion of testing time. The text over a point denotes the number of
layers L, smoothing matrix size N and the number of weighting
matrices per layer K, respectively. All the variants of the network
were tested on the Set14 dataset with an upscaling factor of 2.
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Figure 5. Frequency domain feature maps for each layer in our network. Here we also show the input image and predicted residual in the
spatial domain.

quency weighting matrix, P is the prediction of our network
in the frequency domain and αi is the weight that controls
the contribution of the ith layer feature map to the output.

In the equation above, Si is given by summing over all
the matrices Rj for each layer i. In our network, we do not
require this sum to have independent weights since these
can be absorbed, in a straightforward manner, into the ma-
trices Cj . Thus, for this layer, in practice, we only learn the
matrix WL.

In Figure 2 we show the simplified diagram of our com-
plete network. Note that the output of each layer is a fre-
quency feature map which is the same size as the input. The
output of each layer is then added and weighted by the ad-
ditive layer. We then compute the spatial domain residual
by applying the inverse transform to the frequency domain
output of our network and add the predicted residual to the
input image so as to compute the super-resolved output.

5. Implementation and Discussion

5.1. Hartley vs Fourier Transform

As mentioned earlier, the implementation of our net-
work makes use of the Hartley transform [11] as an alter-
native to the Fourier transform. The reasons for this are
twofold. Firstly, the Hartley transform is closely related
to the Fourier transform and, hence, shares analogue prop-
erties. Secondly, the Hartley transform takes at input real
numbers and delivers, at output, real numbers. This has the
advantage that, by using the Hartley transform, we do not
need to cater for complex numbers in our implementation.

Here, we have used the fast Hartley transform introduced
by Bracewell [5]. The Hartley transform can be expressed
using the real R{·} and imaginary I{·} parts of the Fourier

transform as follows

H{f} = R{F{f}} − I{F{f}} (8)

where we have used f for the sake of consistency with pre-
vious sections. Moreover, the Hartley transform is an in-
volution, that is, the inverse is given by itself, i.e. f =
H{H{f}}.

It is worth noting that, from Equation 8, its straightfor-
ward to show that, since the Fourier transform is linear as
are the matrices Wj , the weighting operation in our net-
work applies, in a straightforward manner to the Hartley
transform without any loss of generality. In the case of the
Hartley transform, the convolution theorem has the same
form as that of the Fourier transform [5], and, hence, we
can write Equation 4 as follows

H{(f ∗ gj) · hj} =
(
H{f} · H{gj}

)
∗ H{hj} (9)

5.2. Training

For training our network, we have used the mini-batch
gradient descent method proposed by LeCun et al. [18].
When training our network, the layers at the end, i.e. those
closer to the final additive layer, tend to have a gradient that
is small in magnitude as compared to the first layers. The
reason being that, due to the architecture of our network, as
shown in Figure 2, the first layers (those closer to the input)
will accumulate the gradient contributions of the deeper lay-
ers in the network. This is a problem akin to that in [6],
which was tackled by the VDSR [14] approach by apply-
ing gradient clipping in the back propagation step [20]. As
a result, we follow [14] and normalize the gradient at each
layer to a fixed range (−θ, θ). Thus, the parameters at the
layer can only change within a fixed range (−γθ, γθ). In
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Figure 6. Smoothing matrices across the 6 layers in our network
trained on the full dataset with an upscaling factor of 2. In the
figure, the columns account for different layers.

our implementation, we set θ = 103 and γ = 10−5 for all
layers.

5.3. Residual and Choice of Loss Function

For our loss function, we consider a number of alterna-
tives. These are the L1 (l1), L2 (l2) and L2 with exponential
decay (Exp-l2) loss functions. These are defined as follows

l1
def
= ||I− I∗||1 (10)

l2
def
= ||I− I∗||22 (11)

Exp-l2
def
= eβωx ||I− I∗||22 (12)

where || · ||p denotes the p-norm under consideration, β
is a hyper-parameter, I is the matrix corresponding to the
ground-truth high resolution image in the frequency domain
and I∗ accounts for the frequency domain image recovered
by our network. This is yielded by the sum of the predic-
tion P of our network as given in Equation 7 and the input
to our network in the frequency domain, i.e. F1, which can
be expressed as

I∗ = P+ F1 (13)

It is worth mentioning in passing that, in accordance with
the observations made in [14], we also find that the use of
residual learning improved the accuracy and converge speed
of our network in the frequency domain. In Figure 3, we
show a comparison of the three loss functions under con-
sideration. In the figure, we show the loss values, normal-
ized to unity, as a function of the low-resolution image scale
factor of I with respect to I. In the figure, we have set
β = 0.01. Note that the L2 loss is almost linear with re-
spect to the scale factor. Moreover, in our experiments, we

found that the L2 loss performed the best with respect to
both, convergence and speed. As a result, all the experi-
ments shown hereafter employ the L2 loss.

6. Experiments
6.1. Datasets

Recall that DRRN[27] and VSDN[14] use 200 images
in Berkeley Segmentation Dataset[19] combined with 91
images from Yang et al. [31]. This set of images has also
been used for training in other approaches [17, 25]. These
methods often use techniques such as data augmentation,
i.e. application of transformations such as rotation, scaling
and flipping transformations to generate novel images so as
to complement the ones in the dataset. It is important to
note, however, that these rotation, scaling and flipping in
the spatial domain become frequency shift and scaling op-
erations. Moreover, the dataset above, comprised of 291
images and their augmentation is, in practice, too small to
allow for cross-validation of parameters.

Thus, here we have opted for a two-stage process using
5000 randomly selected images from the Pascal VOC2012
dataset [8] for training and Set5 [2], Set14 [32] and B100
[19] for testing. The first stage corresponds to a cross-
validation process of the parameters used in our network
employing 800 images out of the 5000 in our dataset for
training and Set14 for testing. Also, for cross-validation,
we have resized the image to 360 × 480 and used a scale
factor of 2 on the dataset so as to obtain the images that are
used as input to our network. After cross-validation, and
once the parameters have been selected, the second stage is
to proceed to train and test our network on the whole dataset
and the three testing sets. In all our experiments, we have
taken the color imagery and performed super-resolution on
the Y channel in the YCbCr space [21].

6.2. Parameter Selection

We have selected, through cross-validation, the number
of layers L in the network, the size of the matrices Cj and
the number of weighting matricesK per layer. In all our ex-
periments we have used squared matrices Cj ,i.e. N = M ,
and chosen a base line network with L = 4,N = 3,K = 5.
We have then progressively increased L, N and K so as to
explore the trade-off between timing and performance.

In Figure 4, we show the PSNR as a function of tim-
ing for the combinations of L, K and N used in our cross-
validation exercise. For the sake of clarity, the time axis
is shown in a logarithmic scale. Note that, in general, the
networks with 4 or 6 layers seem to deliver the best trade-
off between performance and timing. In the figure, L = 4,
N = 5 and K = 5 performs the best while L = 6, N = 2
and K = 5 also performs well. Thus, and bearing in mind
that a deeper network is expected to perform better in a
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Figure 7. Qualitative comparison for an upscaling factor of 3 on “Lena”, “Barbara” and a sample image from the B100 dataset. Here we
show a detail of the results yielded by our method and those delivered by LapSRN [17], SelfEx [12], SRCNN [6].

Bicubic A+[28] SRCNN[6] VDSR[14] LapSRN[17] Ours
Dataset Scale PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

2 33.66/0.930 36.54/0.954 36.66/0.954 37.53/0.958 37.25/0.957 35.20/0.943
Set5[2] 3 30.39/0.868 32.58/0.908 32.75/0.909 33.66/0.921 34.06/0.924 31.42/0.883

4 28.42/0.810 30.28/0.860 30.48/0.862 31.35/0.883 31.33/0.881 29.35/0.827
2 30.24/0.868 32.28/0.905 32.42/0.906 33.03/0.912 32.96/0.910 31.40/0.895

Set14[32] 3 27.55/0.774 29.13/0.818 29.28/0.820 29.77/0.831 29.97/0.836 28.32/0.802
4 26.00/0.702 27.32/0.749 27.49/0.750 28.01/0.767 28.06/0.768 26.62/0.727
2 29.56/0.843 31.21/0.886 31.36/0.887 31.90/0.896 31.68/0.892 30.58/0.877

B100[19] 3 27.21/0.738 28.29/0.783 28.41/0.786 28.82/0.797 28.92/0.802 27.79/0.772
4 25.96/0.667 26.82/0.708 26.90/0.710 27.29/0.725 27.22/0.724 26.42/0.696

Table 1. Quantitative evaluation of our method as compared to state-of-art super-resolution algorithms. Here we show the average
PSNR/SSIM for upscale factors of 2, 3 and 4 for each of the three testing datasets.



larger dataset, for all the experiments shown here onwards,
we set L = 6, N = 5 and K = 5.

6.3. Network Behavior

Now, we turn our attention to the behavior of the network
in terms of the weighting and smoothing matrices. In Fig-
ure 5, we show the feature maps in the frequency domain
as yielded by each of the network layers, i.e. the matri-
ces Fi. From the figure, we can appreciate that the feature
map for the first layer mainly contains the low frequency
information corresponding to the input image. As the lay-
ers go deeper, the feature maps become dominated by the
high frequency components. This is expected since the aim
of prediction in our net is given by the residual, which, in
frequency domain, is mainly comprised by higher order fre-
quencies.

In Figure 6, we show all the smoothing matrices in our
network after the training has been completed. Surprisingly,
note that matrices in each layer all appear to behave slightly
different. In the first layer, the matrices are very much a
delta in the frequency domain, while as the layer index in-
creases, they develop non-null entries mainly along the cen-
tral column and row. This follows the intuition that, for the
first layer, the convolution would behave as a multiplica-
tive identity removing lower-order frequency components,
whereas, for further layers, the main contribution to its out-
put is given by the central rows and columns.

6.4. Results

Finally, we present our results on image super-
resolution. To this end, we first show some qualitative re-
sults and then provide a quantitative evaluation of our net-
work performance and testing timing.

In Figure 7, we show a detail of the results yielded by
our network and a number of alternatives on the “Barbara”,
“Lena” images and a sample image from the B100 dataset.
In all cases, we have applied an upscale factor of 3 and
show, on the left-hand panel the full ground truth image.
Note that our method yields results that are quite compara-
ble to the alternatives. Moreover, for the detail of the “Bar-
bara” image, the aliasing does not have a detrimental effect
on the results. This contrasts with LapSRN, where the scarf
stripes are over enhanced.

In Table 1 we show the performance of our network as
compared to the alternatives. Here, we have used the aver-
age per-image peak signal-to-noise ratio (PSNR) [24] and
the structural similarity index (SSIM) [30]. We have cho-
sen these two image quality metrics due to a couple of rea-
sons. Firstly, these have been used extensively for the eval-
uation of super-resolution results elsewhere in the literature.
Secondly, the PSNR is a signal processing approach based
upon the mean-squared error whereas the SSIM is a struc-
tural similarity measure. From the table, we can observe

that despite LapSRN is the best performer, our method is
often no more than 2 decibels below LapSRN in terms of
the PSNR and within a 0.05 difference in the SSIM.

Further, in Figure 8, we show the average per-image test-
ing time, in milliseconds, for the three test datasets under
consideration and three upscale factors, i.e. 2, 3 and 4. For
all testing datasets our network far outperforms the alter-
natives, being approximately an order of magnitude faster
than LapSRN and more than two orders of magnitude faster
than SRCNN.

7. Conclusions
In this paper, we have presented a computationally

efficient frequency domain neural network for super-
resolution. The network can be viewed as a frequency do-
main analogue of spatial domain CNNs. To our knowledge,
this is the first network of its kind, where rectifier units in
the spatial domain are substituted by convolutions in the
frequency domain and vice versa. Moreover, the network
is quite general in nature and well suited for other applica-
tions in computer vision and image processing which are
traditionally tackled in the frequency domain. We have pre-
sented results an comparison with alternatives elsewhere in
the literature. In our experiments, our network is up to more
than two orders of magnitude faster than the alternatives
with an imperceptible loss of performance.
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