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Abstract—Infectious disease prevention and control are 
important in improving, promoting and protecting the health of 
communities. Epidemiological data analysis plays a crucial role 
in disease prevention and control. Conventional methods such 
as moving average or autoregressive analysis normally require 
the assumption of stationarity, which is often violated in 
epidemiologic time series. This paper proposes the fusion of 
neural networks, fuzzy systems and genetic algorithms, with 
the aim to strengthen the modeling power for epidemiological 
dynamics. We deploy an additive fuzzy system into a neural 
network architecture in order to incorporate recurrent nodes 
to enable the fuzzy system to handle temporal data. The genetic 
algorithm is employed to optimize the fuzzy rule structure 
before supervised training is applied to adjust parameters. As 
epidemiological time series exhibit complex behavior and 
possibly cyclic patterns, the addition of recurrent nodes to the 
fuzzy system improves the modeling capability. The proposed 
model dominates the benchmark feedforward neural network 
and adaptive neuro-fuzzy inference system model regarding 
modeling performance. Through real applications for 
epidemiologic time series modeling, the fusion of soft 
computing techniques offer accurate forecasts that have 
considerable meaning in planning infectious disease-control 
activities.  
Index Terms—epidemiological modeling; disease trend detection; 
neural network; fuzzy system; standard additive model (SAM); 
Recurrent SAM; genetic algorithm 
 

I. INTRODUCTION 
Careful examination regarding the dynamics and 

variations of notifiable diseases is crucial in epidemiological 
researches in the increasing global infectious disease risks. 
The pandemic H1N1 influenza A occurred from April 2009 
to August 2010 is a typical example, which killed 18,500 
people worldwide [1]. The number of deaths associated with 
the pandemic is actually much higher than that laboratory-
confirmed number. There were approximately 60.8 million 
cases and 12,469 deaths occurred in the United States alone 
between April 2009 and April 2010, the estimation 
performed by the U.S. Centers for Disease Control and 
Prevention [2]. The pandemic particularly affected young 
individuals, causing a substantial number of years of life 
lost, between 334,000 and 1,973,000, from May to 
December 2009 in the U.S. [3, 4].  

Epidemiology is the essential means used by public health 
practitioners to understand causes of disease and to develop 
control measures. Epidemiology is able to render early 
detection of infectious cases and rapid public health 

intervention so that the public’s health can be protected and 
improved. Public health authorities rely on epidemiological 
studies to deliver better health outcomes, improve longevity 
of people, reduce mortality rate in the communities. The 
quality of health care provided to the public can be 
constantly improved and ensuring people living healthier 
and more independent lives. Time series analysis is an 
important and useful tool to delineate disease patterns in the 
population over time, examine and quantify the evolution of 
the infectious diseases. It provides a quick and feasible 
means for analyzing disease trends, detecting sudden 
changes in disease occurrence and distribution, and 
determining relative disease burdens to plan disease-control 
activities. Watier and Richardson [5] modeled the time series 
of reported cases of Salmonella typhimurium in France 
where nonlinearity is present using the seft-exciting 
threshold autoregressive model. Koelle and Pascual [6] 
identified the respective contributions of extrinsic and 
intrinsic factors in the historical cholera mortality data in 
Dhaka in Bangladesh using another nonlinear time series 
model. Interannual fluctuations and long-term changes in 
transmissibility were addressed properly through 
reconstruction of the pattern of decaying immunity from 
time series data on cases and population sizes. Cazelles et al. 
[7] alternatively detected the shifts in the periodic 
components in time series of the weekly measles 
notifications in the city of York (UK) using wavelet 
analysis. The wavelet approach was additionally employed 
to examine the transient relationship between cholera 
incidence in Ghana and the El Niño Southern oscillation and 
also to explore the transient nature of the spatial synchrony 
between dengue incidence in Bangkok and that in the rest of 
Thailand.  

Epidemiologic time series are noisy, dynamic and non-
stationary so that traditional time series methods usually 
demonstrate inadequate handling capability. Researchers 
therefore advocate the use of soft computing techniques, e.g. 
neural network (NN), fuzzy systems (FS), to model such 
nonlinear data. NN and FS are both universal approximators 
but either of these methods exhibits advantages and also 
disadvantages. The fusion of these two techniques thus has 
soon emerged. This fusion can be divided into two main 
streams. The first is to use NN to estimate parameters of FS 
and another is to implement FS in adaptive NN [8, 9]. We 
focus on the later in this study.  

Building FS in adaptive NN is motivated by a number of 
reasons. Firstly there are some disadvantages of FS such as 
the difficult determination of the correct set of rules and 
membership functions, and also the limitation in learning 
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and generalization capability. With fuzzy systems, there are 
no standard methods to transform human knowledge to 
fuzzy rules [10]. Furthermore, the learning and 
generalization capabilities of NN are essential to be 
integrated into a FS to enable it to deal with nonlinear, time 
variant problems more effectively [9, 11]. FS thus can be 
equipped with the diverse and powerful learning capacity of 
NN. As a FS is represented by a network, it is intuitively 
plausible to include extensions or modifications that adapt 
specific applications: advanced features available in NN can 
be utilized in FS such as the possibility to include recurrent 
cycles, which enable embedding temporal knowledge or 
relations [11, 12]. This feature is not possible in 
conventional fuzzy logic [9]. In general, deployment of FS 
in adaptive NN helps integrate advantages of NN and 
eliminate disadvantages of FS.  

Fuzzy inference systems are commonly categorized in 
three types: Tsukamoto, Mamdani, and Takagi-Sugeno-
Kang (TSK) models [10, 13]. With the Tsukamoto and TSK 
models, equivalent adaptive network architectures and 
learning procedures have been suggested by Jang [10]. 
There, however, has not yet been an equivalent adaptive 
neural network designed for the Mamdani models in the 
literature. This study proposes an equivalent adaptive 
network for the Standard Additive Model (SAM) that 
belongs to the Mamdani fuzzy system category. 
Subsequently, to demonstrate advantages of the SAM-
equivalent NN, we incorporate recurrent nodes into it to 
formulate the so-called Recurrent SAM (RSAM) that is 
capable of handling temporal relations. Given that the 
epidemiological time series show strong cyclic or periodic 
oscillations, they are modeled effectively by the proposed 
RSAM. The next section presents SAM and its proposed 
equivalent adaptive NN. Section III is devoted to the RSAM 
structure and the integration of genetic algorithm to optimize 
the RSAM rule structure for better modeling. Experimental 
results and discussions are presented in Section IV followed 
by conclusions.  
 

II. ADDITIVE FUZZY SYSTEM AND THE PROPOSED 
EQUIVALENT NEURAL NETWORK 

A. The additive fuzzy system 
The additive fuzzy system (Fig. 1) or SAM introduced by 

Kosko [14-16] is characterized by the Mamdani fuzzy rules, 
sum-product inference, and CoG defuzzifier. 

 
Fig. 1. The parallel structure of SAM 

The additive fuzzy system ܨ: ܴ௡ → ܴ௣  stores ݉  if-then 
rules pertaining to different weights ݓ and can be used to 
uniformly approximate functions, which are continuous and 
bounded measurable on a compact domain. Any choice of 
the if-part fuzzy sets ܣ௝ ⊂ ܴ௡ that have joint set function ௝ܽ: 

ܴ௡ → [0, 1]  and factors: ௝ܽ(ݔ) = ௝ܽ
ଵ(ݔଵ) … ௝ܽ

௡(ݔ௡) can be 
employed. From the vector input ݔ ∈ ܴ௡, any choice of the 
then-part fuzzy sets ܤ௝ ⊂ ܴ௣  can be deployed as only the 
centroid ௝ܿ  and volume ௝ܸ  of ܤ௝  of the system are used to 
calculate the output (ݔ)ܨ  
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B. SAM-equivalent NN structure 
The following 7-layer neural network (Fig. 2) is proposed 

to be equivalent to the SAM with ݊  inputs and ݉  fuzzy 
rules.  

 
Fig. 2. SAM-equivalent NN structure 

Let us denote )(k
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io  are input and output values of 
the ith node in the kth layer. 
Layer 1: 

)()1()1( txuo iii  , where ݅ = 1,2, … ,݊.  
Layer 2: Various kinds of fuzzy sets can be used in this layer. 
There is no loss of generality to assume the Gaussian 
function is used: 
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Two conditions for the equivalence are established as 
follows: 

a) The number of nodes in Layer 3 of the adaptive 
network is equal to the number of fuzzy rules in SAM.  



 
 

b) Membership functions of the adaptive network and of 
the if-part of SAM are of the same type. It is important to 
note that the membership function ܽ௡௠  of the adaptive 
network is corresponding to the component ݊-th of the if-
part of the rule ݉-th in SAM.  

C. Supervised learning in SAM 
Kosko [16] applied the gradient descent learning law for a 

parameter  in SAM: 

 







Ett t)()1(   

where t is the learning coefficient. The aim is to minimize 
the square of errors:  
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Then the learning laws for the SAM parameters are as 
follows: 
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To derive the learning laws for parameters of if-part fuzzy 

sets, we first state the derivative:  
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Then the learning laws for parameters of this fuzzy set are:  
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The learning laws for other kinds of membership functions 
are shown in [17, 18]. 
 
III. RECURRENT STANDARD ADDITIVE MODEL (RSAM) AND 

INTEGRATION OF GA 
A. RSAM configuration 

The successful design of the equivalent neural network 
model with SAM helps to flexibly extend conventional SAM 
to incorporate various advanced features of neural networks.  

 
Fig. 3. Recurrent Standard Additive Model (RSAM) 

This section presents a proposal of Recurrent SAM 
(RSAM) (Fig. 3) that incorporates recurrent nodes into 
SAM. The proposal herein is inspired from the recurrent 
characteristic of the recurrent fuzzy neural network proposed 
by Lee and Teng [19] or Sun and Wang [20].  
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













2

22
)2(

)(
)(exp

ij

ij
)(

ij
ij σ

mu
o , where ni ,...,2,1 , mj ,...,2,1   

The input of nodes in this layer is:  
)1()2()1(2 )(  too ijiji

)(
ij tu   

where ij is the weights of current nodes. The input of nodes 
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information of the model. This is an extension compared to 
the SAM system.  
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Layer 3: Denote )(xa j  as: 
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Layer 7: The final output )(xF  of RSAM is then defined: 
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B. Supervised learning in RSAM 
Similar to the SAM, the tuning laws applied to the rule 

weights, the volumes and the centroids of the then-part fuzzy 
sets also use formulae (4), (5) and (6) except (ݔ)݌ and (ݔ)ܨ 
are now replaced by (10) and (11) rather than (1) and (2). 
The major difference in learning laws between SAM and 
RSAM occurs in the learning of parameters of the if-part 
fuzzy sets. 

The following presents the learning laws for parameters 
of if-part fuzzy sets in RSAM where the Gaussian 
membership function is utilized as an example. The learning 
laws for other kinds of membership functions can be 
deployed by similar procedure.  

In RSAM, the Gaussian fuzzy set is formulated as in (9):  
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On the other hand, the chain rule allows:  
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where E is the error function denoted in (3). So that: 
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Then the tuning law for parameters of the if-part fuzzy sets:  
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Note the difference between (12), (13) in RSAM and (7), (8) 
in SAM. The formula (14) is the current parameter needing 
to be trained that exists only in RSAM and makes the 
difference between RSAM and SAM. When this parameter 
equals zero then RSAM diminishes to SAM. Therefore SAM 
is a special case of RSAM. 
C. Fusion of soft computing techniques: Integration of 
Genetic Algorithm (GA) to optimize RSAM structure 

The exponential rule explosion is a typical curse of a 
fuzzy system using factorable if-part fuzzy sets in high 
dimensions [21]. A fuzzy system with more rules can better 
approximate nonlinear functions but it would lead to 
overfiting and more training computational cost compared to 
the one with less rules. In Nguyen at al. [22] we employed 
GA to optimize the fuzzy rule structure of SAM for function 
approximation and found the efficiency of GA optimizer. 
Likewise, we use GA to optimize the structure of RSAM 
fuzzy rules in this research. The RSAM is the fusion of 
neural network and fuzzy system. This fusion is further 
integrated with GA so that the proposed model is henceforth 
called Neuro-Fuzzy-Genetic Fusion (NFGF) which is 
graphically presented in Fig. 4.  

 
Fig. 4. Integration of GA to optimize RSAM rule structure 
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The GA [23] is an algorithm operating based on a 
population of individuals, which interact together and 
evolved through generations following the Darwinian 
principle of survival of the fittest. The GA can solve 
problems where objective functions are complicated and 
cannot be addressed by conventional methods [24, 25].  

Using the GA method, rule nodes in the NFGF model 
that play insignificant roles in the approximation will be 
removed and the number of rule nodes therefore is declined. 
A fuzzy system with less fuzzy rules can be trained and 
convergent faster compared to the one with more rules.  

Depending on the problem being solved, the GA fitness 
function designed may vary. In this paper, the fitness 
function is constructed to simultaneously minimize RMSE 
and the number of fuzzy rules as follows  

(݉)ݐ݅ܨ = ln(ܴܧܵܯ) +
log௡(݉)

݊  

where ܴܧܵܯ = ଵ
௡
∑ ௜ݕ) − ଶ௡((௜ݔ)ܨ
௜ୀଵ , ݊  is the number of 

data patterns used for learning and	݉ is the number of fuzzy 
rules.  

The fuzzy rules are coded “0” and “1” where the “0” 
means that the corresponding rule should be eliminated 
whilst the “1” means the fuzzy rule should be used. Three 
basic genetic operators including: selection, crossover and 
mutation are performed repeatedly through a determined 
number of evolutionary generations. The individual in the 
last generation with the lowest fitness value is selected in 
order to construct the optimal rule structure for RSAM. 
 

IV. EPIDEMIOLOGICAL TIME SERIES MODELING 
A. Datasets and model calibrations 

The data used in this study are the occurrence of 
notifiable infectious diseases in the United States and in the 
New York City.  

Prevalent notifiable diseases including tuberculosis (TB) 
and varicella (chickenpox) are investigated due to their high 
risks of infection and the large number of reported cases 
throughout the U.S. The monthly TB time series data 
spanning from January 1993 to December 2010 are derived 
from the summary of notifiable infectious diseases of the 
Morbidity and Mortality Weekly Report published by the 
U.S. Centers for Disease Control and Prevention. For the 
New York City alone, the historical monthly reported 
number of chickenpox cases from 1931-1972 are also 
obtained from the Time Series Data Library available on 
DataMarket.com [26].  

All data are transformed using natural logarithm to 
diminish sensitivity of the modeling to outliers. Lags of time 
series are utilized as independent variables. For the monthly 
epidemiologic time series demonstrate strong periodic 
patterns, we coded months from 1 to 12 as an additional 
input for the forecasting models. Balkin and Ord [27] 
determined the number of maximum lags depending on the 
frequency of the data, i.e. yearly data with 4 lags, quarterly 
data with 6 lags and monthly data with 15 lags. From the 
determined maximum number of lags, as with Balkin and 
Ord [27], we herein employ a forward stepwise regression 
procedure to eliminate less significant inputs. The use of the 

forward stepwise regression helps to reduce the number of 
independent variables so the forecasting mechanism can 
operate better to avoid excessive number of modifiable 
parameters. Each experimental dataset is divided into two 
parts: training (80%) and testing (20%) datasets. After 
training, the testing dataset is used to test the performance of 
the forecasting models. The direct strategy is applied to 
forecasting rather than recursive one to avoid accumulative 
error, especially for long forecasting period.  

The experiments are to compare performance of the 
proposed NFGF model versus the benchmark feedforward 
neural network (FFNN) models and the widely used 
adaptive neuro-fuzzy inference system (ANFIS) proposed in 
[10]. The major difference between NFGF and ANFIS is in 
the recurrent nodes and utilization of GA although both 
ANFIS and NFGF are fuzzy models. FFNN is one of the 
popular neural network models where the data are input and 
transferred forwardly without loops or cycles. We deploy the 
FFNN with two hidden layers for comparisons. The number 
of nodes in the hidden layers are assigned 10, 30 and 50 
corresponding to three models denoted as NN(10-10), 
NN(30-30) and NN(50-50). As parameters of the NN models 
are initialized randomly, we repeat running these models 10 
times and then average out the forecasting results. The 
comparisons of the fusion against NN and ANFIS highlight 
the importance of the recurrent nodes embedded in the 
proposed models and the efficiency of the GA employment 
in optimizing the rule structure.  

In the fuzzy approximation, there is no theorem stating 
which membership function is the best for an if-part fuzzy 
set or how many rules should be used in a fuzzy system. 
Furthermore, there is no recognized approach for 
initialization in order to obtain global optima. Different 
initialization leads to different optimal convergence. For the 
sake of comparisons, we use the Gaussian fuzzy set for both 
RSAM and ANFIS. The weights of RSAM fuzzy rules and 
the volumes of the then-part fuzzy sets are all set at 0.5 
whereas the width of the if-part fuzzy sets is set equal to the 
standard deviation of each series. The centers of the if-part 
and centroids of the then-part fuzzy sets are assigned by 
centers of resulting clusters obtained based on the Adaptive 
Vector Quantization clustering method under the 
unsupervised competitive learning law (see [14, 21]). The 
GA population of 20 individuals is initialized for the GA 
optimizer, which is evolved through 1,000 generations. One 
individual in the initial population is characterized by all “1” 
for its genes so that every rule has an equal chance to 
contribute to the final NFGF model.  

Along with RMSE, two other prediction performance 
criteria are also utilized that are Correlation Coefficient (CC) 
and coefficient of determination (ܴଶ). Both are expressed in 
percentage through the following formulae:  

ܥܥ =
∑ ௜ݕ) − ෤௜ݕ)(തݕ ෤)ேݕ−
௜ୀଵ

ටൣ∑ ௜ݕ) ത)ଶேݕ−
௜ୀଵ ∑ ෤௜ݕ) − ෤)ଶேݕ

௜ୀଵ ൧
 

ܴଶ = 1−
∑ ௜ݕ) − ప෥)ଶேݕ
௜ୀଵ
∑ ௜ݕ) − ത)ଶேݕ
௜ୀଵ

 



 
 

where ݕ௜, ݕ෤௜, ݕത, ݕ෤ are the ݅th actual value, the ݅th forecasted 
value, the mean of actual values, and the mean of forecasted 
values, respectively. CC is applied to examine how well 
trends in the predicted values track trends in actual values. 
CC approaching 100% is an indication that the predicted 
values from a forecast model ‘fit’ well the real data. ܴଶ 
refers to the fraction of variance explained by a model. Thus 
ܴଶ values close to 100% are desirable. 
B. Results and discussions 

The time series representing the number of TB cases in 
the U.S. shows clear seasonal patterns and slight downward 
trend during the investigated years from 1993 to 2010 (see 
Fig. 5a-5b).  

 

 
Fig. 5a. Monthly number of cases of TB in the U.S. (1993-2010) 

 

 
Fig. 5b. Box plot of the TB time series presented in Fig. 5a 

 
As shown in the box plot Fig. 5b, the number of TB 

infectious cases in U.S. peaks in months of December and 
dramatically decline to the lowest in months of January. 
During springs and summers and early autumns, TB cases 
are relatively stable at the moderate level. This particular 
characteristic of U.S. TB is rather different from TB 
variation behaviors in other countries. For example in Japan 
during 1998 and 2000-2003, the number of TB cases was 
found lowest from November to January and highest around 
spring to summer seasons in a research of Nagayama and 
Ohmori [28]. In a review conducted by Fares [29], the 
author also found that TB seasonally peaks during the spring 
and summer seasons in most of the examined countries.  

Alternatively, the seasonal patterns are also clear in the 
New York monthly number of varicella cases during 1931-
1972 (Fig. 6a). On the other hand, it is apparent from Fig. 6b 
that the time series of number of varicella cases in the New 
York City is seasonal. It is at its lowest in August, 

September and October. It is then increases until April and 
then begins declining until August.  

 
Fig. 6a. New York monthly number of varicella cases (1931-1972) 

 

 
Fig. 6b. Box plot of the varicella time series presented in Fig. 6a 

 
The following presents the competency of the proposed 

NFGF in modeling such seasonal or complex 
epidemiological time series. The out-of-sample testing 
results for the U.S. TB and New York varicella datasets are 
assembled in Table I and Table II respectively. Based on the 
forward stepwise regression, three inputs selected for 
modeling the U.S. TB dataset are lag 4th, lag 11th and the 
coded month values. Inputs selected in modeling the New 
York varicella dataset are three lags 5th, 14th and 15th.  

 

TABLE I. U.S. TB FORECASTING RESULTS 
Models RMSE CC (%) ܴଶ (%) 
ANFIS 0.9236 09.77 -975.29 
NN(10-10) 0.1926 80.24 46.10 
NN(30-30) 0.2941 54.24 -16.90 
NN(50-50) 0.4807 40.48 -221.47 
NFGF 15→13(*) 0.1568 90.90 69.00 

(*)The number of fuzzy rules before and after running GA optimizer 
 

TABLE II. NEW YORK VARICELLA FORECASTING RESULTS 
Models RMSE CC (%) ܴଶ (%) 
ANFIS 0.6740 83.53 42.97 
NN(10-10) 0.3753 92.06 82.00 
NN(30-30) 0.5436 86.05 59.32 
NN(50-50) 0.6175 81.19 49.46 
NFGF 39→22 0.3228 94.57 86.92 

 
The more accurate forecasting results are obtained with 

the NFGF models over all analyzed datasets compared to 
ANFIS and FFNN models. For example, in the U.S. TB 
dataset, the RMSE on the NFGF is only at 0.1568, which is 
lower than that of the ANFIS model at 0.9236. The best NN 
model is where 10 nodes are used in the hidden layers, i.e. 



 
 

NN(10-10) with RMSE at 0.1926. Similar outcomes are 
found in the New York varicella dataset where NFGF is 
ranked first with the lowest RMSE at 0.3228 whilst that of 
ANFIS and NN(10-10) are respectively 0.6740 and 0.3753. 
More neurons in the NN hidden nodes do not increase the 
forecasting accuracy evidenced from results of all datasets 
by the dominance of the NN(10-10) over the NN(30-30) and 
NN(50-50) models. This is understandable because more 
parameters in the model would probably lead to overfiting 
and lower the generalization capability.  

Both CC and ܴଶ  measures provide the same ranking 
results to the RMSE criterion. NFGF model obtains highest 
CC and ܴଶ  values, which are congruent with the lowest 
RMSE values among investigated models. In the U.S. TB 
dataset, the NFGF forecasts have ܴଶ  reaching 69% whilst 
the CC value achieves the accuracy of 90.9%. These values 
are much higher than those of the ANFIS and NN models. 
NN(10-10) obtains CC and ܴଶ  at 80.24% and 46.1% 
respectively whilst ANFIS is severely ruined when CC is 
just at 9.77% and ܴଶ falls to a negative value. In the New 
York varicella dataset, NFGF also reaches the highest CC 
and ܴଶ at 94.57% and 86.92% correspondingly. Both ANFIS 
and NN(10-10) models have CC and ܴଶ lower (see Table II).  

Generally, NFGF achieves forecasting values closer to the 
actual values than other models. This fact demonstrates the 
advantage of the recurrent nodes of the proposed NFGF in 
handling the cyclic temporal data. The GA augments this 
advantage through optimizing the fuzzy rule structure and 
thus reduces supervised training cost for the NFGF. In the 
U.S. TB dataset experiment, the initial number of fuzzy rules 
of NFGF is 15. GA optimizes this initial NFGF rule 
structure down to 13 significant rules. Likewise, the NFGF 
rule structure is initialized with 39 rules and it is optimized 
by GA to realize just 22 necessary rules for supervised 
training and forecasting afterwards.   

The ANFIS model basically does not possess the 
recurrent nodes so that the ability to handle cyclic patterns in 
time series is limited. The results from running all datasets 
confirm this fact as ANFIS model achieves the worst 
performance ranking compared to NN and NFGF.  

Fig 8a. represents the NFGF and NN(10-10) forecasts 
versus actual values in the TB dataset. It is obvious that 
NFGF follows the actual series closer than NN(10-10). Fig. 
8b details more the comparisons between these models. 

 

 
Fig 8a. TB forecasts comparisons between NFGF and NN(10-10) 

 

 
Fig 8b. TB forecasting errors between NFGF and NN(10-10) 

 
Graphical comparisons between NFGF and NN(10-10) 

forecasts in the New York varicella dataset are presented in 
Fig. 9a.  

 
Fig 9a. N.Y. varicella forecasts comparisons between NFGF and NN(10-10) 
 

Forecasting errors of the NFGF vary closer to zero 
compared to those of the NN(10-10) in the New York 
varicella dataset (see Fig. 9b).  

 
Fig 9b. N.Y. varicella forecasting errors between NFGF and NN(10-10) 
 

V. CONCLUSIONS 
This paper first transparently transforms SAM to an 

adaptive neural network model. The successfulness of the 
transformation opens the possibility for SAM to be extended 
to include various advantages of NN that are not available in 
FS. Second, we demonstrate the advantage of the proposed 
SAM-equivalent NN structure by incorporating recurrent 
nodes into it in order to formulate RSAM. The learning laws 
for RSAM parameters also have been derived in detail. The 
proposed RSAM is the more general form of SAM that is 
capable of handling temporal relations. We later integrate 
GA to optimize fuzzy rules of RSAM to formulate the 



 
 

NFGF aiming at superior approximation ability and reducing 
computational costs of the RSAM supervised training.  

Epidemiological time series data are modeled efficiently 
by the proposed NFGF. The key success of the NFGF comes 
from the recurrent nodes and the GA optimizer applied to 
the fuzzy rule structure. While addition of recurrent nodes 
increases number of modifiable parameters then GA mitigate 
this computational burden by reducing fuzzy rules. The 
harmonious combination of GA and the recurrent node 
extension brings an optimal fusion of soft computing 
techniques that is able to cope with non-linear and temporal 
relations in epidemiological time series. Results of 
experiments in time series modeling shows superior 
performance and flexibility of NFGF compared to ANFIS 
and FFNN. 

As epidemiological evidence from time-series studies has 
played a critical role in public health authorities’ decision 
making, accurate modeling epidemiological data offered by 
the proposed NFGF helps to estimate the burden of 
infectious diseases precisely, assess health risks of the 
communities and further bring great benefits in protecting 
the public’s health. Based on accurate forecasts, public 
health authorities can evaluate disease trends better, assess 
the efficiency of control and prevention measures more 
accurately, allocate resources appropriately and thus reduce 
financial and human costs, and further devise prevention 
strategies and establish public health policies effectively.  

The objective of this study is just to investigate the 
univariate time series models for forecasting because we 
have the limited data available. The utilization of other 
variables (presumably data are available), e.g. air pollution, 
temperature, humidity, sunlight, rainfall, populations, 
people’s incomes probably much more useful. As cohort 
studies are also important in epidemiology, the merging of 
time-series and cohort studies is an interesting future 
research direction.  
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