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Abstract

The growing diversity of digital face manipulation tech-
niques has led to an urgent need for a universal and ro-
bust detection technology to mitigate the risks posed by
malicious forgeries. We present a blended-based detection
approach that has robust applicability to unseen datasets.
It combines a method for generating synthetic training
samples, i.e., reconstructed blended images, that incorpo-
rate potential deepfake generator artifacts and a detection
model, a multi-scale feature reconstruction network, for
capturing the generic boundary artifacts and noise distri-
bution anomalies brought about by digital face manipula-
tions. Experiments demonstrated that this approach results
in better performance in both cross-manipulation detection
and cross-dataset detection on unseen data.

1. Introduction

Digital facial manipulation, exemplified by deepfake tech-
nology, entails substituting or altering facial attributes, ex-
pressions, and appearances to create highly deceptive vi-
sual content. The advancement of deep generative mod-
els [12, 13, 19, 25–27] and computer vision technologies
has facilitated the creation of efficient, automated deepfake
pipelines (e.g., [5]), enabling non-experts to easily manipu-
late visual media content. However, this ease of use has led
to increasing misuse in various domains (politics, journal-
ism, mass media, etc.) and violations of individual privacy.

Early detection models [6, 7, 34, 40, 46, 50, 58] are
susceptible to overfitting specific artifacts and noise pat-
terns. They are deficient in cross-domain detection, re-
sulting in substantial performance deterioration when con-
fronted with unseen datasets. Researchers thus introduced
blended-based deepfake detection methods [33, 47, 60] that
create blended samples through the fusion of suitable gen-
uine facial samples, thereby simulating prevalent manipula-
tion artifacts such as misalignment, incongruent boundary
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Figure 1. (a) RGB features, (b) noise patterns, and (c) edge fea-
tures extracted from the first block of EfficientNet-B4 for real im-
age (top row) and corresponding fake image (bottom row).

textures, and irregularities in pixel or color distribution.
Previous methods for constructing blended samples typ-

ically extract facial entities from the original foreground af-
ter they undergo certain augmentations and then graft them
onto alternative original backgrounds. This results in syn-
thetic blended samples that lack certain invisible artifacts,
including unique generator fingerprints [31, 39] and anoma-
lies in channel distribution introduced by adaptive instance
normalization [23]. Furthermore, previous methods for de-
tecting forgeries predominantly perform binary classifica-
tion with foundational backbones or learned self-supervised
consistency features when training from blended samples,
resulting in inadequate harnessing of the potential of diverse
annotations inherent in synthesized samples.

We have devised a novel approach to detecting forgeries
that combines a method for generating synthetic forgery
training samples and a detection model for capturing the
generic boundary artifacts and noise distribution anoma-
lies brought about by digital face manipulation. Our recon-
structed blended image (RBI) method builds upon advanced
deepfake generation techniques [10, 28, 32, 54, 55] to dis-
entangle identity and background information from genuine
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facial images. Random Gaussian noise is infused into a
background vector with a predefined probability, and the
identity-background pairs are passed through a decoder to
obtain reconstructed images. This process incorporates la-
tent generator patterns and distinctive fingerprints into the
synthesized blended data. After application of the statisti-
cal transformations of Shiohara and Yamasaki [47], the re-
constructed image is blended with the original image and a
mask is used to generate a training sample.

Our detection model, a multi-scale feature reconstruc-
tion network (MFRN), effectively exploits diverse train-
ing artifacts and manipulated regions. Built upon prior
research[11, 14, 33, 47], it focuses on the three possible ori-
gins of forged features shown in Figure 1: RGB features,
noise patterns, and edge features. RGB features include
color inconsistencies between inner and outer facial regions
and an abnormal image channel covariance, noise patterns
include mismatched image frequencies in manipulated re-
gions and invisible generator fingerprints, and edge features
include boundary conflicts arising from face splicing and
landmark misalignment. A specifically designed architec-
ture is used to extract the corresponding features from the
input and combine them at multiple scales to self-supervise
the reconstruction of blended boundaries and regions.

We conducted cross-manipulation and cross-dataset de-
tection assessments on unseen data to align with real-
world detection scenarios. Our model was trained solely
on genuine data from the FF++ dataset [45]. For cross-
manipulation detection, it achieved areas under the curve
(AUCs) of 100%, 100%, 99.88%, 99.81%, and 98.90%
respectively, for DeepFake (DF) [2], Face2Face (F2F)
[52], FaceSwap (FS) [3], NeuralTextures (NT) [53], and
FaceShifter (FSH) [32] manipulation. For cross-dataset
detection, it demonstrated robust detection on prominent
deepfake detection datasets such as CDF-v2 [35] (AUC of
95.27%), DFD [1] (99.12%), DFDC [17] (73.31%), and
DFDC-P [16] ((83.66%). These results surpass or match
those of current state-of-the-art baselines.

Our contributions are summarized as follows:

• We introduce a method for generating simulated forgery
training samples (reconstructed-blended images) that en-
hances the diversity of simulated artifacts by incorporat-
ing an invisible generator fingerprint and noise pattern.

• We introduce a model (a multi-scale feature reconstruc-
tion network) for harnessing the diversity in training arti-
facts and manipulated regions present in blended samples.

• We validated the performance of this approach across
multiple unseen manipulation techniques and datasets and
demonstrated its superiority.

2. Related Work
2.1. Deepfake Generation

Modern deepfake generation techniques primarily use deep
generative models [19, 22, 30, 44] to achieve seamless in-
tegration and migration of facial features and expressions,
enabling creation of highly realistic visual content. Earlier
deepfake models [2, 3] separated the process of generating
and blending forged faces, leading to noticeable stitching
artifacts and easy human eye detection.

Subsequent deepfake models addressed this problem by
combining the generation and blending into a single step.
Incorporating the concept of style transfer, these models
consider the target identity information as a style feature
and use techniques like AdaIN [23] to align the target iden-
tity with the source background, resulting in end-to-end
deepfake generation pipelines that improve realism and re-
duce visible artifacts. Several of these models [32, 54, 55]
predict masks for the target background, enabling precise
control over manipulated areas. Others [10, 28] do not re-
quire such masks and instead autonomously learn the con-
tent that needs to be modified or retained during training.

2.2. Deepfake Detection

Detection techniques that combine spatial-frequency statis-
tical analysis with deep neural networks have shown marked
efficacy in identifying image manipulation artifacts. These
methods [11, 14, 21, 48] focus on detecting abnormal edges
and noise features introduced by splicing together disparate
source images, resulting in the capture of imperceptible ma-
nipulation artifacts. Deepfake detection, a specialized do-
main within image manipulation detection, can be catego-
rized into artifact-based and blended-based detection.

Artifact-based Detection is aimed at identifying po-
tential deepfakes by detecting prevalent and distributed ar-
tifacts or imperfections introduced during manipulation.
Early research focused on visible artifacts such as abnor-
mal facial expressions and head movements [7], inconsis-
tencies in predicted head pose [58], image photo response
non-uniformity [31], and color cues [39]. As forged im-
ages have become increasingly realistic, manually speci-
fied artifacts have proven insufficient. Subsequent research
[6, 37, 40, 43, 59] has focused on using neural networks to
detect spatial-frequency pattern differences within manipu-
lated images. Additionally, researchers have observed that
frame-by-frame manipulation of videos can introduce tem-
poral inconsistencies at the interframe level, leading to ef-
forts [20, 38, 46, 49, 61] to uncover the absence of temporal
correlations within video streams.

Blended-based Detection is aimed at identifying poten-
tial deepfakes by using forgery training samples generated
by blending pairs of genuine samples that have undergone
flexible image augmentations through diverse blending, cre-
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Figure 2. Illustration of RBI generation. Information in given genuine image IG is disentangled, and image is reconstructed as IRec,
incorporating a unique fingerprint and noise patterns. Statistical transformations are then randomly applied to create source image IS and
target image IT in which common visible manipulation artifacts are simulated. Concurrently, IG’s convex hull is augmented and deformed
to produce mask M and edge E, which are used guide the blending of IS and IT , yielding result image IR.

ating an array of manipulation artifacts. These methods
aim for high generalization performance on unseen datasets
by incorporating various manipulation patterns. Early at-
tempts in this category, such as DSP-FWA (Dual Spatial
Pyramid for Exposing Face Warp Artifacts in DeepFake
Videos) [34], simulate distortion artifacts introduced by
affine transformations in the deepfake pipeline by blending
downsampled and Gaussian-blurred facial regions with the
background. Subsequent methods like Face X-Ray [33] and
patch-wise consistency learning (PCL)+ inconsistency im-
age generation (I2G) [60] simulate blending boundaries or
inconsistent information by replacing and blending similar
facial images from the dataset. The use of self-blended [47]
images has improved detection performance and achieved
higher data efficiency by generating pseudo source-target
image pairs through statistical transformations applied to a
single image, followed by blending.

3. Proposed Approach

In our approach to enhancing the generalization of deepfake
detection, we introduce a novel synthetic training sample,
namely the reconstructed blended image (RBI), and a corre-
sponding detection framework, namely multi-scale feature
reconstruction network (MFRN).

As illustrated in Figure 2, RBI is generated by extract-
ing identity and background features from the source image,
embedding imperceptible latent generator artifacts, integra-
tion of common visible image artifacts through statistical
transformations, and finally blending with the source image
through a randomly deformed mask. This results in diver-
sity and enrichment in the synthetic training samples. Some
examples of RBIs and detailed explanations of relative arti-
facts can be found in Figure 6 and Section 7 in the appendix.

Once the samples have been generated alongside the

corresponding blending masks and boundary annotations,
as depicted in Figure 3, a convolutional neural network-
based reconstruction model, the MFRN, is created. This
model captures RGB, edge, and noise features across var-
ious scales, thus enabling comprehension of the mapping
from blended samples to region labels. This enables the
model to autonomously identify discrepancies introduced
by manipulation and to detect conflicting boundary textures.

3.1. Reconstructed Blended Image Generation

Genuine image IG is disentangled using an identity (ID) en-
coder and background (BG) encoder. The resulting identity-
background pair is then decoded, producing reconstructed
image IRec. This step disrupts innate noise patterns within
the genuine image and thereby introduces a simulated gen-
erator fingerprint. Encoding is diversified by adding ran-
dom Gaussian noise with mean (µ) 0 and standard devia-
tion (σ) in [0.1, 0.3] to the background vector with proba-
bility p = 0.5. Note that this encoder-decoder framework
can be replaced with an analogous deepfake generator that
combines identity and background features. We used a pre-
trained SimSwap [10] model to perform the reconstruction.

Next, in accordance with the method outlined in [47],
statistical augmentations are equally applied to either IG or
IRec, forming source (IS) and target (IT ) images for blend-
ing. This integration introduces evident spatial or frequency
irregularities like those commonly encountered in manip-
ulated images. Specifically, following operations are exe-
cuted on the each image: random RGB channel value shift,
random adjustment of hue, saturation, and brightness, ran-
dom modification of brightness and contrast, and random
application of blurring or sharpening.

Concurrently, 81 landmarks are extracted from IG us-
ing the Dlib library [29] and are used to form initial mask
MI by convex hull calculation. The hull is then diversified
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Figure 3. Overview of MFRN architecture. First, noise map N of input image I is acquired. Next, RGB features FRGB and noise patterns
Fn are independently extracted across diverse scales by using separate backbones. FRGB undergoes Sobel block to create corresponding
edge features Fe at their respective scales, which are upsampled for manipulation boundary prediction (EP ). Concurrently, a feature fusion
block integrates features from the diverse scales for manipulation map prediction (Mp) and authenticity classification.

using the random get hull from open source tool [4] for
mask augmentation. With a probability of p = 0.5, identi-
cal affine and elastic transformations are applied to both MI

and IS , simulating landmark discrepancies and boundary
conflicts introduced by warping in the deepfake pipeline.

Finally, transformed MI is subjected to Gaussian blur,
yielding blending mask M , which is used to guide the
blending process. The blending of IS and IT using M to
obtain IR is done using

IR = IS ⊙ αM + IT ⊙ (1− αM) (1)

where α ∈ [0.5, 1] regulates the magnitude of the blend-
ing mask. Corresponding blending edge E can be readily
extracted [33]:

E = 4 ·M ⊙ (1−M) (2)

3.2. Multi-scale Feature Reconstruction Network

Input image I ∈ RW×H×3 is converted to grayscale, and
noise map N is derived using a 5 × 5 Bayer constrained
convolutional layer [8]. Two separate EfficientNet-B4 [51]
backbones are then used to capture features from both I and
N . For clarity, the output of the ith downsampling block is
designated as being at scale i. At each scale i, feature maps
F i
RGB and F i

n are extracted from the RGB and noise branch,
respectively. The edge features are computed from the RGB
feature using the Sobel block depicted in Figure 4(a), which
involves applying two fixed-parameter 3× 3 Sobel filters to
F i
RGB , followed by batch normalization [24] and Sigmoid

activation. The resulting output is element-wise multiplied

with F i
RGB , and integration is achieved using a 1 × 1 con-

volutional layer to produce F i
e . This procedure can be sum-

marized by the following formula:

Edge Acti = σ((BN(SobelConv(F i
RGB))))

F i
e = Conv(F i

RGB ⊙ Edge Acti) (3)

Subsequently, the extracted feature maps are split into
two pathways and used to individually reconstruct the mod-
ified boundaries and regions within the blended image.

For one pathway, F i
e at each scale is uniformly upsam-

pled to (W2 , H
2 ), which, after channel-wise concatenation,

yields feature Fe ∈ RW
2 ×H

2 ×720. Two 3 × 3 convolutional
kernels are used to capture local information, and a 1 × 1
convolutional kernel is used to integrate channel features,
finally producing predicted edge Ep ∈ RW

2 ×H
2 .

For another pathway, feature fusion block (FFB) is in-
troduced to facilitate both within-scale feature fusion and
across-scale feature propagation. As illustrated in 4(b), at
scale i, FFBi receives F i

n, the element-wise summation of
F i
RGB and F i

e , and the output feature from FFBi−1 (exclud-
ing the first FFB block) as input. The rationale behind sum-
ming F i

RGB and F i
e stems from their shared provenance

in the RGB domain. Subsequently, a bottleneck attention
module (BAM) [41] applied to the concatenated extracted
features establishes a self-attention mechanism that directs
attention to anomalies within manipulated areas on the ba-
sis of the spatial disposition and channel distribution of fea-
ture map. Following the processing of the two convolutional
layers, weighted feature FFBi

w is obtained for the present
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Figure 4. Architecture of Sobel block and feature fusion block.

scale. A 3× 3 convolutional kernel is used to align the size
of the propagated feature originating at the previous scale,
denoted as FFBi−1

in , with that of the one at the current
scale. Subsequent element-wise summation with the cur-
rent weighted features results in the output feature FFBi

out,
which is then propagated to FFBi+1 after ReLU activation.
These operations can be succinctly encapsulated:

FFBi
w = Conv×2(BAM(Cat(F i

RGB ⊕ F i
e , F

i
n))))

FFBi
out = FFBi

w ⊕ Conv(FFBi−1
in ) (4)

After the features of the different modalities at the var-
ious scales are fused and passed hierarchically, fusion fea-
ture Ff ∈ RW

32×
H
32×896 is obtained. Several transposed con-

volutions with a kernel size of 4 are used to predict modifi-
cation map Mp ∈ RW

2 ×H
2 . Furthermore, a parallel classifi-

cation branch, encompassing a convolutional head, a pool-
ing layer, and a dense layer, is created and used to predict
two-dimensional classification vector Pcls, which is derived
from the Ff feature.

Clearly, the lack of manipulation in authentic instances
means that outcomes Ep and Mp for a genuine image
should manifest as matrices consisting exclusively of zeros.

3.3. Loss Functions

Map Loss and Edge Loss. Element-wise binary cross-
entropy (BCE) loss is used to assess the dissimilarity be-
tween the predicted map and the blending mask, as well as
between the predicted edge and the blending edge:

Le = − 1

N

∑
i,j

(Ei,j logEi,j
p + (1− Ei,j)log(1− Ei,j

p )) (5)

Lm = − 1

N

∑
i,j

(M i,j logM i,j
p +(1−M i,j)log(1−M i,j

p )) (6)

where N = WH
4 is the number of pixels in the Ep and Mp.

Classification Loss. BCE loss is used to quantify the clas-
sification error, given by

Lcls = TclslogPcls + (1− Tcls)log(1− Pcls) (7)

where Tcls = {0, 1} represents the ground truth label of the
input sample.

The overall loss function of our model is

L = λ1Lm + λ2Le + Lcls (8)

where λ1 and λ2 are scaling factors used to regulate indi-
vidual loss proportions.

4. Experiments
4.1. Setup

Training Data. Our model was trained solely on pristine
FaceForensics++ [45] (FF++) data, following the official
dataset split, which included 720 training videos. We uni-
formly extracted 20 frames from each video and utilized
Dlib [29] to extract 81 facial landmarks from each frame,
which were used to compute the initial mask. We used the
RetinaFace face detector [15] for bounding box localization
and face cropping. In cases with multiple faces detected
in a video frame, we overlapped the bounding boxes with
a corresponding deepfake manipulation mask, selecting the
result with the largest intersection area for validity.
Test Data. We assessed model performance through cross-
manipulation and cross-dataset evaluation. For cross-
manipulation evaluation, we used unseen manipulation
videos from the FF++ test set, including Deepfakes [2]
(DF), Face2Face [52] (F2F), FaceSwap [3] (FS), Neu-
ralTextures [53] (NT), and FaceShifter [32] (FSH), total-
ing 840 test videos (140 from the pristine dataset and
each manipulation dataset), following official dataset splits.
For cross-dataset evaluation, we utilized several promi-
nent digital face manipulation datasets: DeepFakeDetection
[1] (DFD), Celeb-DF-v2 [35] (CDF-v2), DeepFake Detec-
tion Challenge [17] (DFDC), and its preview version [16]
(DFDC-P). We used the complete DFD dataset for testing
and adhered to official data splits for the other datasets,
using their designated test videos. For all videos, we uni-
formly sampled frames and used RetinaFace for bounding
box extraction and face cropping. As the current models
had reached saturation in FF++ detection performance, we
assessed cross-manipulation at the individual sample level,
extracting and cropping five faces per video to construct
the test set. Conversely, we evaluated cross-dataset per-
formance at the video level, extracting 32 frames evenly,
cropping faces, and aggregating model predictions for all



Method
Test AUC (%)

DF F2F FS NT FF++(w/o FSH) FSH FF++
Face X-Ray [33] 99.17 98.57 98.21 98.13 98.52 - -
PCL + I2G [60] 100 98.97 99.86 97.63 99.11 - -
Self-blended [47] 99.99 99.88 99.91 98.79 99.64 - -
Self-blended * [47] 99.94 99.72 99.76 98.23 99.42 97.70 99.07
RBIs + MFRN (Ours) 100 100 99.88 99.81 99.92 98.90 99.71

Table 1. Cross-manipulation comparison among blended-based methods. Results are cited from the papers, with * indicating official
pre-trained model results on our test data. Our method outperformed baselines on DF, F2F, NT, FSH, and the complete FF++ dataset.

Method Type
Test AUC (%)

CDF-v2 DFD DFDC DFDC-P

DeepRhythm [42]

Artifact

- - - 64.1

MultiATT [59] 67.44 - - -

FRDM [37] 79.4 91.9 - 79.7

RECCE [9] 68.71 - 69.06 -

FTCN [61] 86.9 - - 74.0

Face X-Ray [33]

Blended

- 93.47 - 71.15

PCL + I2G [60] 90.03 99.07 67.52 74.37

Self-blended [47] 93.18 97.56 72.42 86.15

RBIs + MFRN (Ours) Blended 95.27 99.12 73.31 83.66

Table 2. Cross-dataset detection comparison with baselines.
With best and second-best results indicated in bold and underline.
Our method outperformed the baselines on CDF-v2, DFD, and
DFDC and was second best on DFDC-P.

32 faces per video on the basis of their mean. To ensure
fairness, videos where face extraction was not possible were
assigned a prediction value of 0.5.
Comparison Baseline. We used advanced baselines to
evaluate our model, categorizing them into two types:
artifact-based and blended-based. The former type re-
quires both genuine and manipulated samples for train-
ing and included Multi-Attentional Deepfake Detection
[59] (MultiAtt), Fusion + RSA + DCMA + Multi-
scale [37] (FRDM), Uncovering Common Feature [56]
(UCF), Spatial-Phase Shallow Learning [36] (SPSL),
Reconstruction-Classification Learning [9] (RECCE), Fully
Temporal Convolution Network [61] (FTCN) and Deep-
Rhythm [42]. In contrast, the latter type requires only gen-
uine samples and included Face X-Ray [33], PCL+I2G [60],
and Self-blended[47].
Implementation Details. To generate RBIs, we used the
official pre-trained SimSwap model as the reconstruction
generator and applied common image augmentations, such
as JPEG compression, brightness-contrast adjustments, and
color jittering, to both synthesized RBIs and genuine sam-
ples. The MFRN used the pre-trained EfficientNet-b4 [51]

backbone. All facial regions cropped by bounding boxes
were resized to 380 × 380 to match pre-training specifica-
tions. We set λ1 and λ2 to 100 and 50, respectively; ad-
ditional insights into the effect of varying loss weights λ
are available in Table 7 in the appendix. To enhance stabil-
ity and generalization performance, we used the sharpness-
aware minimization (SAM) optimizer [18]. Training was
performed over 80 epochs on a NVIDIA A100 (80G) GPU,
with a learning rate of 0.001 and a batch size of 32.
Evaluation Metrics. Due to the highly imbalanced distri-
bution of genuine and manipulated samples in the datasets
used for evaluation, we primarily used the AUC as our eval-
uation metric as it better reflects the model’s performance.

4.2. Cross-Manipulation Detection

We conducted cross-manipulation detection experiments on
the FF++ raw data to evaluate our model’s detection ability
on unseen manipulations. We maintained fairness by com-
paring our model with similar blended-based models, citing
their reported results directly. Additionally, for assessing
the performance of FSH, we utilized the official pre-trained
Self-blended model on our test data (the results for Face X-
Ray and I2G+PCL could not be replicated due to the lack
of official implementations), indicated by an asterisk (*).

As shown in Table 1, in scenarios nearing performance
saturation, our model achieved AUCs of 100%, 100%, and
99.81% for common DF, F2F, and NT manipulations, re-
spectively, surpassing the baseline models. It slightly under-
performed with a 98.88% result on FS. It outperformed
Self-blended by 1.2% on FSH, illustrating its enhanced abil-
ity to capture generator fingerprints and noise patterns intro-
duced by one-stage deepfake generators. Our method con-
sistently achieved optimal detection AUCs on the complete
FF++ test set, whether considering FSH or not, with scores
of 99.71% and 99.92%, respectively.

4.3. Cross-Dataset Detection

As previously mentioned, we validated our method’s perfor-
mance across multiple unseen mainstream forgery datasets.
We compared our method’s performance with those of



Method Training Set
Test AUC (%)

CDF-v2 DFD DFDC DFDC-P

Self-blended [47]
CDF-v2

93.74 - - 81.10

RBIs + MFRN (Ours) 93.53 98.25 73.40 85.21

SPSL [36]

FF-c23

76.50 81.22 70.40 74.08

UCF [56] 75.27 80.74 71.91 75.94

FRDM [37] 75.52 81.20 69.95 74.08

RBIs + MFRN (Ours) 93.89 98.39 72.70 81.72

Table 3. Cross-dataset performance of model trained on the CDF-
v2 dataset and FF-c23 data. The results of SPSL, UCF, and FRDM
were excerpted from DeepfakeBench [57].

artifact-based and blended-based detection methods.
As evident in Table 2, blended-based methods have a

pronounced advantage over artifact-based ones when used
in cross-dataset detection tasks. This observation supports
our statement above that models trained on limited ma-
nipulated data are susceptible to overfitting specific arti-
facts and noise patterns, making them deficient in cross-
domain detection. Among the artifact-based methodolo-
gies, FTCN, which takes into consideration interframe tem-
poral features, demonstrated superior generalization capa-
bilities, achieving an AUC of 86.9% on CDF-v2. Among
the blended-based methods, ours had better outcomes. Its
performance surpassed that of the compared baselines with
AUCs of 95.27%, 99.12%, and 73.31% on CDF-v2, DFD,
and DFDC, respectively. On DFDC-P, its AUC of 83.66% is
slightly lower than that of Self-blended (86.15%) and better
than those of the other compared baselines. In summation,
our model consistently delivered superior performance in
cross-dataset detection scenarios.

To assess our method’s wider applicability, we also con-
ducted training on samples from varying dataset (CDF-
v2) and varying compression level (FF-c23), followed by
cross-dataset performance evaluation on unseen datasets
in a consistent manner. For the latter, to ensure fairness,
we selected three top-performing methods from the Deep-
fakeBench [57], which were trained on FF-c23, as compara-
tive baselines. As shown in Table 3, our model shows robust
adaptability to unseen data, demonstrating its efficacy even
when trained on different dataset or low-quality samples.
From the results trained on FF-23, it outperformed promi-
nent state-of-the-art baselines, emphasizing its advantages
and affirming its position as a robust solution in the field.

4.4. Video Compression Robustness

In the context of digital face manipulation detection, a
model’s resilience to compression is pivotal given that real-
world detection scenarios often entail acquiring highly com-
pressed samples from the Internet. We conducted evalua-
tions using test samples from videos subjected to moderate

Method
AUC on Different Video Compressions (%)
c0 (raw) c23 c40

Face X-Ray [33] 98.52 87.35 61.60
Self-blended * [47] 99.42 88.32 65.29
RBIs + MFRN (Ours) 99.92 88.55 64.63

Table 4. Robustness for different levels of compression of FF++
dataset, with * indicating official pre-trained model results on our
prepared test data.

(c23) and heavy (c40) compression that were taken from
the FF++ dataset. Performance was compared with those
of Face X-Ray and Self-blended. The latter’s results were
derived by assessing the pretrained model on our test data.

As shown in Table 4, Face X-Ray is vulnerable to com-
pression, with AUCs of 87.35% and 61.60% on c23 and
c40, respectively. Our model demonstrates robust detec-
tion performance under moderate compression conditions
but falls short in heavily compressed scenarios when com-
pared with the simpler detection structure. This discrepancy
may stem from our noise pattern extraction and RGB fea-
ture specification, which are affected by the substantial loss
of image information in heavily compressed data.

4.5. Ablation Study

Effectiveness of RBIs + MFRN method. We conducted
two intermediate experiments, denoted as self-blended im-
ages “SBIs + MFRN” and “RBIs + EfficientNet-b4” to as-
sess the effectiveness of our proposed method. As shown
in Table 5, MFRN enhanced the identification of manip-
ulated artifacts, surpassing the performance of the origi-
nal EfficientNet-b4 backbone and yielding superior detec-
tion performance. The inclusion of RBIs introduces diverse
visible artifacts and invisible noise anomalies, enhancing
the authenticity and diversity of the synthetic training data
when compared with the use of SBIs and thereby also con-
tributes to improved detection performance.
Effectiveness of Components in MFRN. We conducted
experiments with the following settings to validate the ef-
fectiveness of each component in MFRN: 1) Edge recon-
struction branch removed, and RGB features and noise pat-
terns fused at multiple scales to reconstruct manipulated re-
gions; 2) FFB removed, and, when reconstructing manipu-
lated regions, edge features, RGB features, and noise pat-
terns at last scale are concatenated and used as inputs; 3)
Both FFB and noise pattern branch removed, and, when re-
constructing manipulated regions, edge features and RGB
features at last scale are concatenated and used as inputs.

As shown in Table 6, the absence of the edge recon-
struction branch resulted in substantially poorer detection
performance. This was due to manipulation techniques of-
ten causing unnatural boundary conflicts in the replaced ar-
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Figure 5. Visualization of predicted edges and maps for genuine images alongside various manipulated samples. Model was trained on
real data from FF++ dataset augmented by RBIs. Inputs used for prediction came from unseen FF++ test dataset.

Settings
Test AUC (%)

Avg.
CDF-v2 DFD FF++

SBIs + EfficientNet-b4 93.18 97.56 99.64 96.79
RBIs + EfficientNet-b4 92.51 98.64 99.72 96.96
SBIs + MFRN 95.21 98.27 99.83 97.77

RBIs + MFRN (Ours) 95.27 99.12 99.92 98.10

Table 5. Results of the ablation study on RBIs and MFRN.

eas, and edge reconstruction effectively aids the model in
capturing these misaligned artifacts. In complex detection
backgrounds like DFDC-P, models without the noise branch
exhibited a notable decrease in detection performance. Fur-
thermore, our FFB effectively boosted the model’s detec-
tion performance through multi-scale self-attention-based
fusion of diverse feature modalities.

4.6. Visualization

We visualized prediction outcomes on real and manipulated
samples from the unseen FF++ test set. These inputs, used
with a model trained exclusively on FF++ real data aug-
mented by RBIs, produced prediction manipulation regions
and boundary conflicts, as seen in Figure 5. Our approach
effectively aids the model in recognizing irregular patterns
in unseen manipulated data and accurately delineating the
boundaries of replaced regions, even without direct train-
ing on similar manipulations. This effectiveness can be at-
tributed to the use of comprehensive synthetic training data

Settings
Test AUC (%)

Avg.
CDF-v2 DFDC-P FF++

w/o Edge Reconstruction 93.34 82.71 99.86 91.97

w/o FFB 94.26 83.25 99.94 92.48

w/o Noise Pattern + FFB 95.02 79.45 99.90 91.46

RBIs + MFRN (Ours) 95.27 83.66 99.92 92.95

Table 6. Results of the ablation study to evaluate the effectiveness
of individual components within MFRN.

and our purpose-designed feature reconstruction network.
More visualization results and explanations can be found in
Figure 7 and Section 8 in the appendix.

5. Conclusion

We have presented an innovative method for synthesizing
forgery training samples, i.e., reconstructed blended images
(RBIs). It improves the ability to simulate manipulation ar-
tifacts by seamlessly integrating simulated generator finger-
prints and noise patterns. We also presented a novel detec-
tion model, the multi-scale feature reconstruction network
(MFRN), which adeptly exploits the richness of diversity in-
troduced by the use of random blending masks and bound-
aries within the RBIs. Experimental results demonstrated
that our proposed approach substantially enhances perfor-
mance in both unseen cross-dataset and cross-manipulation
detection.
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6. Effect of λ in loss function
We experimentally evaluated the effect of scaling factors λ1

and λ2 in the loss function on model performance. Keeping
the other experimental settings constant, we used several
sets of values for hyper-parameters λ1 and λ2. The results
on CDF-v2, DFDC-P, and FF++ are shown in Table 7.

From the results in the table, it can be observed that
the hyperparameter settings with λ1 = 50 and λ2 = 100
achieve the best performance.

7. Samples of RBIs
Several of the RBI samples we generated are shown in Fig-
ure 6, with the left half showing the results of statistical
augmentation on the foreground face taken from the source
image (i.e., the reconstructed image) and with the right half
showing the results of statistical augmentation on the back-
ground face taken from the target image (i.e., the original
image).

The reconstructed images reveal that our proposed
disentanglement-reconstruction process not only introduces
visually imperceptible frequency noise as a generator fin-
gerprint (left half, rows 1, 3, and 5; right half, row 4) but
also introduces unique visible artifacts created by the gener-
ator which cannot be simulated by statistical augmentation.
These artifacts include abrupt cheek contours (left half, row
2, right half, row 5), inconsistent eye sizes (right half, row
2), overlapping eyes (left half, row 4), and blurred teeth
artifacts (right half, row 5). Introducing pattern noise and
distinctive generator artifacts can thus help the model learn
more robust and generalizable forgery features, thereby im-
proving the model’s detection performance on unseen ma-
nipulations and deepfake data.

8. More Visulization Results of Our Model
We have included additional examples in the appendix to
provide a more comprehensive demonstration of the effec-
tiveness of our method, as shown in Figure 7. It can be
observed that our method is capable of accurately detect-
ing specific manipulation regions. For instance, in the case
of Deepfakes, a rectangular mask is employed to guide the
replacement of the target face with the source face in the
central facial region. Face2Face, conversely, employs RGB
tracking to comprehensively capture the whole facial per-
formance for the purpose of expression transfer. FaceShifter
exhibits an adaptive capacity by autonomously generating
manipulation masks and employing post-processing tech-

Settings Test AUC (%)
λ1 λ2 CDF-v2 DFDC-P FF++ Avg.
25 25 92.84 77.52 99.83 90.06
25 50 93.96 80.51 99.89 91.45
50 50 94.51 83.85 99.81 92.72
50 100 95.27 83.66 99.92 92.95

100 50 95.17 81.78 99.91 92.29
150 300 94.28 74.50 99.87 89.55
500 1000 92.90 74.89 99.05 88.95

Table 7. Effect of λ in loss function on model performance.

niques to mitigate the influence of hair and accessories on
the falsified outcomes.

Our method demonstrates effective localization capabil-
ities across various manipulations. Even in instances of
highly convincing manipulation outcomes, such as the FSH
in the third column of Figure 7, the model, while expressing
a lack of confidence, is still able to provide accurate assess-
ments.
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Figure 6. Examples of RBIs, where the left column represents statistical augmentations applied to the source image (i.e., reconstructed
image), and the right column represents statistical augmentations applied to the target image (i.e., original image).
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Figure 7. Additional visualization results of our method.
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