

Turner, J., Cano, J., Radu, V., Crowley, E. J., O’Boyle, M. and Storkey, A. (2018)

Characterising Across-Stack Optimisations for Deep Convolutional Neural Networks.

In: 2018 IEEE International Symposium on Workload Characterization (IISWC),

Raleigh, NC, USA, 30 Sep - 02 Oct 2018, pp. 101-110. ISBN 9781538667804.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/177442/

Deposited on: 11 January 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/177442/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Characterising Across-Stack Optimisations for
Deep Convolutional Neural Networks

Jack Turner, José Cano, Valentin Radu, Elliot J. Crowley, Michael O’Boyle, Amos Storkey
School of Informatics

University of Edinburgh, UK

Abstract—Convolutional Neural Networks (CNNs) are ex-
tremely computationally demanding, presenting a large barrier
to their deployment on resource-constrained devices. Since such
systems are where some of their most useful applications lie
(e.g. obstacle detection for mobile robots, vision-based medi-
cal assistive technology), significant bodies of work from both
machine learning and systems communities have attempted to
provide optimisations that will make CNNs available to edge
devices. In this paper we unify the two viewpoints in a Deep
Learning Inference Stack and take an across-stack approach by
implementing and evaluating the most common neural network
compression techniques (weight pruning, channel pruning, and
quantisation) and optimising their parallel execution with a
range of programming approaches (OpenMP, OpenCL) and
hardware architectures (CPU, GPU). We provide comprehensive
Pareto curves to instruct trade-offs under constraints of accuracy,
execution time, and memory space.

I. INTRODUCTION

Recent years have yielded rapid advances in the field of
deep learning, largely due to the unparalleled effectiveness
of Convolutional Neural Networks (CNNs) on a variety of
difficult problems [1]. These networks are designed to run on
servers with negligible resource constraints, utilising powerful
GPUs. As such, creative approaches are required to deploy
them on hardware with limited resources in order to en-
able many useful applications (e.g. autonomous driving [2],
[3], collision avoidance for quadcopters [4], human activity
recognition with wearable sensors [5], medical systems [6])
building on CNN-based detections. However, currently these
optimisation approaches come with limited benchmarks and
few comparisons. We outline a first step towards a more
comprehensive understanding of the performance available
under different constraints of inference accuracy, execution
time, and memory space.

Since [7] used CNNs to outperform more traditional statisti-
cal techniques on the ImageNet dataset [8] they have become a
standard tool for image processing. With a growing ecosystem
dedicated to training deep neural networks, the number of
parameters that state-of-the-art networks demand has vastly
increased; in 2012 the state-of-the-art, AlexNet, had 61M
parameters spread over eight layers whereas the most recent
ImageNet winner uses an ensemble of SENets [9], the largest
of which has 115M parameters across 154 layers.

This large number of parameters comes with a significant
computational burden reflected in memory, compute time, and
energy consumption. However, there is a great deal of redun-
dancy in these parameters; in [11] the authors demonstrate that

0 20 40 60 80
Parameters pruned away (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

re
nc

e
Ti

m
e

(m
s)

Actual
Expected

Fig. 1. Expected vs. observed inference time for VGG-16 on an Intel Core
i7 processor when compressed with a popular weight pruning scheme [10].

up to 95% of the weights1 in a CNN can be predicted from
a small subset of weights without affecting accuracy. This is
particularly prudent given that [12] showed that the bottleneck
for inference computation was off-chip DRAM accesses, and
that when the memory requirements of a CNN are reduced,
the energy consumption and the time taken to compute an
inference are also reduced.

In light of this, a range of compression techniques have been
developed to reduce the number of parameters in CNNs [12]–
[17]. Alternatively, networks can be compressed through quan-
tisation, for example by reducing the number of bits used to
represent each parameter [18] or by constraining their possible
values [19], [20]. Despite the impressive experimental results
of these techniques, they are rarely paired with hardware
performance characterisations. In fact, [21] showed that some
types of compression can hurt the hardware performance
of these networks despite significant reductions in multiply-
accumulate (MAC) operations; even where inference time
improvements did exist, they did not align with the expected
speedup. We verify this with a motivating example presented
in Figure 1, which shows the gap between expected perfor-
mance (calculated based on the number of operations that need
to be performed) and observed performance for increasing
compression rates on VGG-16, a popular CNN.

As a consequence, deep learning researchers and practi-
tioners are left to explore a vast space of possible optimi-
sations with poor intuition as to the effect they will have
on real hardware performance. We believe this issue exists
primarily due to a fundamental separation between machine
learning experts and system design engineers, each taking an
independent view of their domain-specific problems, which

1The parameters in neural networks are commonly referred to as weights,
and as such, we use these terms interchangeably.

is limiting the advancement of both fields. We aim to bridge
this gap by taking a bi-directional view, both from a machine
learning perspective and a system level perspective to unify
observations, which are useful to instruct both sides.

Inspired by [21], we explore a broad range of compres-
sion techniques emerging from the machine learning domain.
Specifically, we evaluate parameter pruning, channel pruning
and quantisation on different CNN models (VGG-16 [22],
ResNet-18 [23] and MobileNet [24]) adapted for image clas-
sification on the CIFAR-10 [25] dataset. As system level opti-
misations, we employ commonly-used libraries to exploit the
parallelism options present on resource-constrained devices.
Execution time, memory footprint, and inference accuracy are
the primary metrics used in this work to evaluate the impact
of the explored solutions. This paper makes the following
contributions:

• We introduce the concept of a Deep Learning Inference
Stack to reflect the different layers2 of optimisation where
candidate solutions can be applied to make a neural net-
work model run more efficiently on resource-constrained
devices.

• At each layer of this stack we identify the most relevant
candidates from both the machine learning community
(CNN topologies, compression techniques), and the sys-
tems community (code optimisation and parallelism) for
accelerating neural networks.

• Candidate solutions are implemented and evaluated
across the layers of the stack to produce across-stack
observations and characterise their impact. Our network
implementations are available online3 for the community
to expand on our work.

• We provide guidelines for adapting established neural net-
work architectures to run on resource-constrained hard-
ware. Given constraints of accuracy, inference time, and
memory footprint, we demonstrate that significant per-
formance enhancements can be achieved given insights
from our exploratory work. We show that compression
techniques can be applied to large networks to surpass
the performance (inference time with fixed accuracy) of
smaller networks that were handcrafted for embedded
devices, e.g. compressed VGG-16 vs. MobileNet.

The rest of the paper is organised as follows: In Section II
we describe the full stack used at both the machine learning
and system levels for this characterisation. In Section III we
cover techniques in the machine learning literature used to
reduce the computational complexity of neural networks. This
is followed by a presentation of our experimental setup and
choice of solutions (Section IV). In Section V we provide
our experimental results and recommendations for deploying
neural networks on resource-constrained devices. Finally, in
Section VI we discuss the results of our experiments.

2These layers are not to be confused with the computational layers that
make up a neural network.

3https://github.com/jack-willturner/characterising-neural-compression

TABLE I
THE DEEP LEARNING INFERENCE STACK.

Layer Name Short Description
1 Neural Network Models Dense neural network models
2 Machine Learning Techniques Common compression techniques
3 Data Formats and Algorithms Network weights representation
4 Systems Techniques Parallelisation, optimisations
5 Hardware Resource-constrained devices

II. THE DEEP LEARNING INFERENCE STACK

A. Motivation

The recent growth of deep learning has been facilitated by
the availability of massive computational power on clusters
of computers. When combined with a tendency to focus
narrowly on inference accuracy, this has led to state-of-the-
art CNNs exploding in size. This presents a large barrier
to deploying many modern deep learning applications on
embedded devices.

Both machine learning researchers and system design en-
gineers have proposed innovative solutions to overcome this
barrier. However, these solutions are typically developed in
isolation. For instance, sparsity is regarded by some in the
neural network community as a silver bullet for compressing
models, whereas exploiting parallelism is generally seen as es-
sential for neural network computations by system architects.
Challenging these isolated preconceptions reveals that sparsity
does not always excel at reducing the number of operations
during inference, and parallelism does not necessarily come
with the speedups expected on neural network workloads.
These observations are presented in greater detail in Section V.

It is clear that we need a better approach to assess the
proposed techniques and optimisation solutions that range
across these two disciplines. With this paper we take a first
step in providing this comprehensive analysis by exploring a
range of machine learning and system level techniques which
shed light on the current state of development across the two
disciplines targeting resource-constrained devices. We hope
that our methodological approach to join the two disciplines
will lead to further common efforts to advance the fields.

B. Description of the Inference Stack

We introduce the Deep Learning Inference Stack, which
spans from the machine learning domain all the way down
to the hardware domain. Each layer can be tuned to optimise
different goals (i.e. inference accuracy, execution time, mem-
ory footprint), or to yield further improvements in adjacent
layers. The Stack contains the following layers (Table I):

1) Neural Network Models – This encompasses the full-
precision dense models proposed in the machine learn-
ing community designed for particular tasks (e.g. image
classification, speech recognition).

2) Machine Learning Techniques – The choice of compres-
sion techniques, such as pruning or quantisation.

3) Data formats and Algorithms – Selecting the right data
format for each compression technique is important to

avoid penalties imposed by memory access requirements
(e.g. speed, bandwidth) and to improve memory locality.
Interlinked with data formats are computation algorithms
(e.g. direct convolutions, image2col) and other data
transformations (e.g. Winograd transform).

4) Systems Techniques – Inference algorithms in neural
networks are ideal for parallelisation, although their effi-
ciency is specific to the software libraries, programming
languages, and compilers used.

5) Hardware – This layer includes all resource-constrained
devices these models can be run on, which are fun-
damentally different to the servers where the original
models were designed to run (GPUs in clusters).

Design decisions made at each layer of the stack directly
impact adjacent layers. They can also influence decisions
across the entire stack. In this paper we perform an across-
stack investigation of the different techniques at each layer to
determine their impact on inference and runtime performance.
By bridging together concepts from both machine learning
and systems domains in one accessible stack, we can expose
limiting preconceptions in each domain and identify their
impact on the whole stack.

III. BACKGROUND

A range of compression techniques have been proposed in
the Machine Learning community. In this section we present
the techniques most relevant to this paper and their variants.

A. Weight pruning

Weight pruning is a popular technique for reducing the
parameter count in neural networks, and has been shown
to improve generalisation [26]. Weight pruning techniques
introduce sparsity in the network and generally fall into
two categories: (i) unstructured removal of weights deemed
unnecessary; and (ii) structured regularisation — pushing the
network weights towards a regular sparse format. The step
from Figure 2(a) to 2(b) shows an example of a network with
individually pruned weights.

The removal of redundant weights was first proposed
in [27], which uses different biases to penalise the error
function used to train the network. A more computationally
demanding approach was suggested in [28] which involved
computing second derivatives to find and remove weights with
the smallest effect on the error function.

A less computationally demanding method is proposed
in [10], where the network is trained in its original dense
format, and then all weights below a certain threshold are
removed. This is applied layer-by-layer, where the threshold is
determined by the standard deviation of the layer. The authors
show that after pruning, the network should be retrained with
its new weights in order to maintain accuracy, and that by
iteratively repeating this process they can prune up to 90%
of the weights without affecting accuracy. In [12], this is
developed using a three stage method for storing the network
involving pruning, quantisation, and Huffman coding.

Other works [11], [29] have utilised low-rank approxima-
tions that yield significantly reduced sparse networks. The ma-
jor benefit of this approach is that the network can be kept in
a highly optimisable form. In [29] the authors present a sparse
convolution algorithm that can be used along with compression
methods to outperform the original dense network. Similarly,
[26], [30] use sparse group Lasso to penalise small weights
and push the network towards a structured sparse format.

B. Channel pruning

A natural extension of weight pruning is to not only remove
individual weights in a network, but entire channels from the
convolutional layers and nodes from the fully connected layers,
as shown in Figure 2(c). One approach to this is to apply Lasso
regression to the problem of channel selection [31]. This view
of channel pruning was questioned by [13], who applied Lasso
instead to the batch-norm [32] layers of the network and then
removed any channels with low batch-norm weights, resulting
in greater accuracy.

Another approach altogether is to approximate the effect of
removing certain channels on the error using a Taylor series
expansion [33], [34]. Surprisingly, it has been shown that
random pruning [35] is also an effective strategy for removing
filters; many common networks are able to retrain to their
original accuracy after iterative stages of randomly removing
progressively more filters.

C. Quantisation

Quantisation methods attract a lot of attention in the ma-
chine learning community due to their immediate impact on
memory requirements. In [18] the number of bits used to rep-
resent each weight is reduced. Others have instead restricted
each weight to one of several fixed values. HashedNet [20]
restricts weights to a smaller set of possible values by using
a hash function to map weights to hash buckets, in which
they share the same floating point value. The extreme case is
achieved by BinaryNet [19] transforming all weights to a one
bit representation, with minimal accuracy degradation.

These quantisation methods have been proposed and eval-
uated predominantly on well-known CNNs starting from a
floating-point weight representation. The networks are typi-
cally pre-trained and then quantisation is applied gradually
while fine-tuning (i.e. re-training) to maintain a high inference
accuracy. This fine-tuning process is essential to compensate
for the loss of information in quantising weights.

Several works observe an increase in network performance
after this process, explainable by quantisation acting as a
regularisation method in the fine-tuning phase, nudging the
quantised model in the right direction in a reshaped convex
space. One such promising approach that combines elements
from previous quantisation methods is presented in [36]. This
ternary quantisation method transforms the weights in convo-
lution filters to just three possible values, the zero value and
two other values (one positive and one negative) determined
independently for each layer. Figure 2(d) shows an example.

(a) Dense Convolutions (b) Weights Pruning

(c) Channel Pruning
0 0.3-0.6

(d) Weights Quantisation

Fig. 2. A visual representation of different compression techniques: (a) shows a slice of a standard neural network. Each rectangle represents the output
generated by convolving filters with learnt weights (parameters) over each input channel; (b) shows the same network slice with weight pruning applied. A
subset of weights in the filters are forced to zero (visually represented with white holes) producing sparse matrices; (c) shows the network slice with channel
pruning applied onto the middle layer, where the connections remain dense but there are fewer channels; (d) shows the quantisation process for weights,
constraining all value from the original distribution to just three possible values (ternary quantisation).

IV. EXPERIMENTS SETUP

We evaluated each network model on the CIFAR-10
dataset [25], which is a standard benchmark in machine
learning and computer vision. It comprises of 60,000 images
across 10 object categories, split into a training and test set of
50,000 and 10,000 images respectively. The size of each image
is 32× 32 pixels represented in RGB format. During training
we augment the data by padding each image with 2× 2 zeros
and taking random 32× 32 crops.

A. Neural Networks Models
We consider the workloads of three CNNs that represent

three separate classes of network topology. To train the models
we used Stochastic Gradient Descent (SGD) to minimise the
cross-entropy loss (averaged across all data items), which
penalises the network for making incorrect classifications. We
use a stepped learning rate, starting at 0.1 and decreasing by
a factor of 10 every 50 epochs.

The first network, VGG-16 [22], is a feed-forward network
with 13 convolutional layers and 3 fully connected layers.
Each convolution uses a 3× 3 kernel. There are max-pooling
operations after layers {2, 4, 7, 10, 13}. Since VGG-16 is
defined for the ImageNet dataset, we use a truncated CIFAR-
10 form that replaces the final three fully connected layers
with two layers containing 512 and 10 nodes respectively.

ResNet-18 [23] is an 18 layer convolutional network that
consists of residual blocks. Each block contains two convolu-
tional layers (using 3×3 kernels) and blocks are connected in
a feed-forward manner. Additionally, there is a skip connection
between the input and output of each block, which helps
gradients propagate through the network [37]. This network
also utilises batch normalisation [32] after each convolution
and is defined for CIFAR-10.

The final network we consider is MobileNet [24], which
was developed specifically for embedded devices. It takes

advantage of depthwise separable convolutions in place of the
traditional convolution operation, allowing for a significant
reduction in computation and parameter costs. MobileNet
consists of 27 convolutional layers, alternating between 3× 3
depthwise convolutions and 1×1 pointwise convolutions, and
a single fully connected layer for classification. We use the
original ImageNet definition of MobileNet but change the
number of outputs from 1,000 to 10 to match the number
of object categories present in CIFAR-10.

B. Machine Learning Techniques

In our characterisation we use Deep Compression [12],
which is the state-of-the-art for weight pruning. To represent
channel pruning we use Fisher pruning [33], [34], as it yields
the most impressive levels of compression for this category.
Finally, we use the ternary quantisation method [36] because:
(i) it encompasses elements from all previous quantisation
solutions and can be represented with sparse formats, similar
to weight pruning; and (ii) achieves very good inference
accuracy.

C. Data Formats Representation

Neural network weights are commonly represented as ma-
trices to support common algebraic operations. Since weight
pruning and quantisation often leave the weight matrices very
sparse (i.e. a high percentage of weights are zero-valued),
sparse format representations are often used to reduce the
matrix storage requirements. The most common sparse format
used in large scale applications is Compressed Sparse Row
(CSR) format4. We employ this sparse representation for the
machine learning techniques that introduce sparsity in the
weight matrix (specifically, weight pruning and quantisation).
We leave the exploration of other formats for future work.

4http://www.scipy-lectures.org/advanced/scipy sparse/csr matrix.html

TABLE II
EXPERIMENTAL APPROACH CONSTRUCTED ON FUNDAMENTAL LAYERS.

Experimental Layer Candidate Solutions Description
Neural Network Models VGG-16, ResNet-18, MobileNet CNNs trained on the CIFAR-10 dataset

Machine Learning Techniques Deep Compression, Fisher pruning, Ternary Quantisation Most common compression techniques
Data Formats and Algorithms Dense/Sparse, im2col Network weights representation, matrix transformations

Systems Techniques OpenMP/OpenCL, CLBlast Parallel execution, libraries
Hardware Odroid-XU4 (heterogeneous platform), Intel Core i7 Resource-contained devices

D. Systems Techniques

We have developed parallel versions of each network model
starting from serial versions we implemented in C. More
specifically, each CNN is parallelised for CPU and GPU
devices using OpenMP and OpenCL respectively. OpenMP
4.0 was used for the CPU parallel versions, whereas for the
GPU versions we used OpenCL 1.1 and the OpenCL C++
wrapper API 1.1 which simplifies the host code.

OpenMP is an API for shared memory parallelisation (i.e.
all processors use the same address space). In our imple-
mentation, the outer for loop of the convolutional layers is
parallelised using dynamic scheduling of threads (because of
the different amount of data required to process in each loop).
Besides, the execution of the threads is synchronised on each
neural network layer because each output is the input of the
next layer, so we have to wait until all the operations from the
previous layer finished. OpenMP suffers from some overheads
such as threads initialisation and loops scheduling.

In OpenCL programming, the main program which contains
the specifications of the architecture and the workflow of a
given network (host code) is executed on the CPU sequentially.
Since the different layers of a network are parallelised and
can potentially run on both CPU and GPU devices, the
OpenCL code needs to be carefully designed to avoid data
transfer overheads that may degrade the overall performance.
OpenCL kernels communicate with the host code through
buffers, which can be accessed directly from memory pointers.
Therefore, the arrays in the GPU are handled as they are
represented in memory, i.e. as 1-dimensional arrays. As a
result, all the matrices are transformed to 1-dimensional arrays
and passed through the buffers to the OpenCL kernels. This
transformation is performed in the host code at the start of the
program. Then, all layers handle 1-dimensional arrays and the
final output is reformed back to a multidimensional matrix.
Note that the transformation of the matrices is not a simple
procedure, as it could lead to poor performance.

The specific optimisations used to obtain the parallel ver-
sions of the network models include threads (for both OpenMP
and OpenCL), and work-groups, vectorisation (SIMD), and the
CLBlast library [38] for OpenCL.

We use the CLBlast library [38] to transform the convo-
lution operation to general matrix-matrix multiplication using
the GEMM (Generalised Matrix - Matrix Multiplication) rou-
tine. It is well-known that matrix multiplication is one the of
the most optimised operations in GPUs. However, using the
CLBlast library for the convolution operation is not trivial, as

it requires to change the structure of the matrices in a way
that the matrix multiplication would give the same results as
the convolution operation. This transformation can be done
by using the im2col operation, which rearranges image blocks
to columns. Note that the CLBlast library can be tuned for
a specific GPU architecture, and it includes an auto-tuner
(CLTune) for that purpose. Up to 14 parameters can be tuned,
for example: work group size; register tiling configuration;
vector widths of both matrices; loop unroll factors; whether
to use local memory or not; etc.

E. Hardware

1) Odroid-XU4: This board includes the ARM Cortex-
A15 (4 cores @ 2.0GHz) and Cortex-A7 (4 cores @
1.4GHz) big.LITTLE CPU, the low power ARM Mali T628
MP6 (6 shader cores @ 600MHz) GPU, and 2Gbyte of
shared LPDDR3 RAM. The GPU supports 64-bit data types
(scalar/vector, integer/float) which makes it suitable for accel-
erating applications that require significant computations like
deep neural networks.

2) Intel Core i7 CPU: A second platform we used for
evaluation is a general purpose desktop system, with 4 cores
Intel Core i7-3820 @ 3.60GHz, and 16GB DDR2. This was
selected as a representative modern desktop system, which
could be employed for inferences at the edge.

F. Approach

The experiments are conducted in a layered style, start-
ing from the machine learning techniques (channel pruning,
weight pruning, quantisation), moving down to data format
representations (dense format, compressed sparse formats),
followed by the systems layer where different parallelisation
techniques are considered (OpenMP, OpenCL). We evalu-
ate the networks on two target platforms representative of
resource-constrained devices: an embedded heterogeneous sys-
tem (Odroid-XU4) and a desktop CPU (Intel Core i7). Table
Table II presents a summary of the choices for each layer.

We chose to implement the three CNNs directly in C code
for simplicity of control, allowing us to interchangeably use
different libraries and to avoid the extra code contained in
large deep learning frameworks necessary for other types of
networks. We make our implementations available for the
community to scrutinise and expand our work. We hope that
this work can be used to direct decisions and priorities re-
garding future feature implementations in commonplace deep
learning frameworks.

0 20 40 60 80 100
Sparsity (%)

82

84

86

88

90

92

94
T
o
p
-1

 A
cc

u
ra

cy
 (

%
)

MobileNet

ResNet-18

VGG-16

60 70 80 90 100
Compression rate (%)

80.0

82.5

85.0

87.5

90.0

92.5

95.0

T
o
p
-1

 A
cc

u
ra

cy
 (

%
)

MobileNet

ResNet-18

VGG-16

0.00 0.05 0.10 0.15 0.20
TTQ Threshold

70

75

80

85

90

95

T
o
p
-1

 A
cc

u
ra

cy
(%

)

MobileNet

ResNet-18

VGG-16

(a) (b) (c)

Fig. 3. Pareto curves of the accuracy and compression tradeoff at training time: (a) shows the accuracy of each model when weights are iteratively pruned
to introduce an increasing level of sparsity into the weight matrices; (b) shows the rate of compression of the convolutional layers under the channel pruning
scheme and the effect this has on error; (c) shows the accuracy of the models using an increasing quantisation threshold.

V. EXPERIMENTS

This section presents our results as we explore different can-
didates for each layer of the Deep Learning Inference Stack.
We focus on three critical metrics: classification accuracy,
inference time and memory footprint. We start by training our
CNN models, and then apply three compression techniques
separately to each model. Further down the stack, data formats
are investigated by observing memory footprint and inference
time on two target platforms (an Odroid-XU4 board and an
Intel Core i7 machine), for (i) optimal accuracies, and (ii)
fixed accuracies of 90% for each model. Finally we explore
the effect of parallelism by measuring the inference time of
the more generic parallelisation libraries.

A. Models Training

Starting at the neural network model layer of the stack,
we train each model from scratch with SGD using the hyper-
parameters presented in Section IV-A to obtain our baseline
test accuracies. These are 92.20%, 94.32% and 90.47% for
VGG-16, ResNet-18 and MobileNet respectively.

B. Compression Techniques Tuning

1) Weight Pruning: We replicated Deep Compression [12]
and for each model we set the initial threshold such that 50%
of weights (those with the lowest magnitude) are zeroed out.
After fine-tuning the network for 30 epochs (a reasonable
number of epochs for the models to converge) we increase the
threshold and repeat to achieve greater sparsity in weights.

The effect of this on the predictive performance of the
models is outlined in Figure 3(a), which shows that both
ResNet-18 and VGG-16 are able to withstand significant
levels of weight pruning before losing accuracy. MobileNet,
however, suffers significant accuracy losses which we attribute
to its already optimised parameter count. Since this is a very
aggressive method of parameter reduction, the network is not
able to recover its original accuracy.

2) Channel Pruning: We implemented Fisher pruning, a
channel-level pruning technique that removes whole channels,
allowing the network to be recast as a new dense network with
a reduced architecture, as opposed to the original architecture
with increased sparsity.

After initial training, the network is fine-tuned and a single
channel is removed every 100 steps. A second-order Taylor
expansion of the loss function is used to approximate the effect
of removing each channel on the loss. In addition to this,
a penalty is placed on each channel scaled by the number
of floating point operations (FLOPs) it requires, meaning
highly expensive channels are pruned first. The channel with
the lowest effect on the loss, subject to a FLOP penalty, is
removed. For our experiments, we fine-tune with a learning
rate of 8× 10−3 for MobileNet and ResNet-18, and 8× 10−4

for VGG-16 and we use β = 10−6 for the FLOP penalty.
The results of this are presented in Figure 3(b). It is

fascinating that all three networks perform very similarly as
the compression rate increases. Note that ResNet-18 is not
compressed as far as the other models for the network to
remain in a standard form, as only layers between the shortcuts
can be pruned.

3) Quantisation: Trained Ternary Quantisation (TTQ) [36]
combines precision reduction and constraining weights to a
small set of values for each layer. These values are determined
iteratively over several epochs in two steps, first assessing the
loss of output quality compared to a full precision version of
the network and second adjusting the two values (one positive
and one negative) such that loss of quality is minimised.

This method exposes a hyper-parameter (TTQ threshold) to
control the separation between the weights, lower values being
trimmed to zero. Beyond this threshold all weight values are
forced to one determined positive value per layer and similarly
for the negative values using the same threshold with negative
sign. Intuitively this should control the sparsity level, although
this is not necessarily implicit. As seen in Figure 3(c), net-
works can converge to different weight distributions, which in
the case of MobileNet is a flat distribution therefore requiring
a larger threshold value to approximate those larger weights
to single positive/negative values.

C. Data format assignment

Two of the compression techniques (weight pruning and
quantisation) force many weights to zero. To avoid represent-
ing zero repeatedly in memory, the CSR format is used to store
and to perform computations on for these two compression

techniques. The storage space for the network weights is
reduced considerably due to the large sparsity level (above
80% for VGG-16 and ResNet-18 as seen in Figure 3), although
the memory footprint sees an increase (see Section V-D).

Of course, weight-pruned models and quantised models can
also be used in the dense format as done for the original
models. However, in the rest of Section V we use only the
sparse format for these two compression techniques. Channel
pruned models are evaluated in dense format.

D. Baseline performance on the hardware platforms

We now construct a full set of baselines by choosing an
optimal point of accuracy on each Pareto curve (i.e. the elbow)
in Figure 3 for each model. These optimal points are detailed
in Table III, where sparsity refers to the percentage of zero-
valued parameters in the network, while compression refers
to the percentage of parameters that have been completely
removed via channel pruning. Taking just one instance of
each compression technique-model pair, we run our OpenMP
implementations and show the inference time as thread count
increases on both the Odroid-XU4 board and the Intel Core
i7 CPU. These baseline results are reported in Figure 4.

The key insight offered by the baseline experiments is that
channel pruning significantly outperforms the other compres-
sion techniques in every setup considered. In some cases,
the number of operations is larger in the channel-pruned
model than the sparse format (for instance, the ResNet-18
models in Figure 4(d)) yet the inference time is still lower
due to the other compression techniques using the sparse
format representation (CSR). It is also worth noting that
out of the three models, MobileNet is the least suitable for
parallelisation, achieving no speedup on the two platforms
(Figures 4(e)(f)); while for VGG-16 and ResNet-18 the infer-
ence times decrease when increasing the number of threads,
we observe the opposite trend for MobileNet.

A second observation is that for VGG-16 and ResNet-18
the sparse methods (weight pruning and quantisation) fail to
provide any speedup and do in fact hurt the performance of
the network. Conversely, the inference time for the original
model decreases when increasing the number of threads.
However, MobileNet presents a different behaviour, as we see
in Figures 4(e)(f), the sparse methods outperform the original
model when increasing the number of threads.

Table IV presents the memory requirement at runtime
for the original dense models and the three compression
techniques. This is predominantly influenced by the network
parameters being available in memory, input and output buffers
and intermediate allocation for padding input in the convo-
lutions. Again, channel pruning has an advantage of lower
memory footprint due to fewer filters. In comparison with
the original dense implementation, both weight pruning and
quantisation have a slightly larger memory footprint despite
being represented in CSR sparse format. This is due to using
the direct convolution algorithm and the filter size of the
networks, all relying on small 3 × 3 or 1 × 1 filters. Such
dimensions require more memory space in sparse format than

TABLE III
COMPRESSION RATES FOR EACH MODEL AND COMPRESSION TECHNIQUE

FOR THE BASELINE EXPERIMENTS.

W. Pruning
Sparsity

C. Pruning
Compres. Rate

T. Quantisation
TTQ thr. / Sparsity

VGG-16 76.54% 88.48% 0.09 / 69.52%
ResNet-18 88.92% 60.24% 0.07 / 87.93%
Mobilenet 23.46% 80.33% 0.20 / 92.13%

TABLE IV
MEMORY REQUIREMENTS (MB) FOR EACH MODEL AND COMPRESSION

TECHNIQUE FOR THE BASELINE EXPERIMENTS.

Model Plain W. Pruning C. Pruning T. Quantis.
VGG-16 111.4 144.4 17.9 130.3

ResNet-18 89.0 99.4 31.6 100.8
MobileNet 69.1 188.5 10.8 201.1

dense format: for example, in dense format the matrix is an
array of 9 floating point elements for the 3 × 3 filter, while
in CSR format there are 3 arrays holding the column offset,
pointer to value on columns and the actual non-zero values,
with additional parameters to account for the size of arrays.
The memory footprint observation would be different for other
algorithms implementation – such as im2col, which is not
covered in these baseline experiments.

Through hashing at the level of bits, the memory require-
ment for quantisation could be an order of magnitude smaller
although the inference time would also increase, which is the
reason we chose not to compact the quantised format to its
achievable minimum.

E. Accuracy Pareto Curve Exploration

In the previous section we compared the elbows of the
Pareto curves for each model to highlight which compression
technique gives the best performance in terms of accuracy.
This is a useful comparison when accuracy is a high priority,
however, in some scenarios we may be willing to accept a
larger loss in accuracy for increased performance on hardware.
In this section we show an example of how this tradeoff can
affect model choice by constraining the accuracy of all of the
compressed models to 90%; this puts the focus more heavily
on the hardware performance of the technique, rather than
the accuracy achievable by the model. We chose 90% as it
is achievable by all of the networks without demanding a
significant drop in accuracy. Table V shows the compression
rates for the chosen 90% accuracy level. Using these values,
Figure 5 and Table VI show the inference time and memory
footprint of the three networks respectively.

On both hardware platforms the speedup gained from chan-
nel pruning is clear. Furthermore, the memory footprint of
these networks is reduced significantly beyond the memory
reduction achieved by the sparse methods. However, it is
interesting to note that on the Odroid board the inference
time of MobileNet is slower than both ResNet-18 and VGG-
16 (Figure 5). With accuracy fixed at 90%, we are able to

1 thread 2 threads 4 threads 8 threads
0

1

2

3

4

In
fe

re
n

ce
ti

m
e

(s
)

(a) VGG-16 on Odroid-XU4

Plain

Weight Pruning

Channel Pruning

Quantisation

1 thread 2 threads 4 threads
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
fe

re
n

ce
ti

m
e

(s
)

(b) VGG-16 on Intel Core i7

Plain

Weight Pruning

Channel Pruning

Quantisation

1 thread 2 threads 4 threads 8 threads
0

1

2

3

4

5

In
fe

re
n

ce
ti

m
e

(s
)

(c) ResNet-18 on Odroid-XU4

Plain

Weight Pruning

Channel Pruning

Quantisation

1 thread 2 threads 4 threads
0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
fe

re
n

ce
ti

m
e

(s
)

(d) ResNet-18 on Intel Core i7

Plain

Weight Pruning

Channel Pruning

Quantisation

1 thread 2 threads 4 threads 8 threads
0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
fe

re
n

ce
ti

m
e

(s
)

(e) MobileNet on Odroid-XU4

Plain

Weight Pruning

Channel Pruning

Quantisation

1 thread 2 threads 4 threads
0.0

0.2

0.4

0.6

0.8
In

fe
re

n
ce

ti
m

e
(s

)

(f) MobileNet on Intel Core i7

Plain

Weight Pruning

Channel Pruning

Quantisation

Fig. 4. Baseline experiments comparing the compressed models chosen from obvious elbows on the Pareto curves of accuracy outlined in Table III, benchmarked
on the Odroid-XU4 and Intel Core i7 platforms with an increasing thread count.

use channel pruning to optimise very large networks (VGG-16
and ResNet-18) and outperform a small network hand-tuned
specifically for embedded inference (MobileNet).

TABLE V
COMPRESSION RATES FOR EACH MODEL AND COMPRESSION TECHNIQUE

WHEN ACCURACY IS FIXED AT 90%.

W. Pruning
Sparsity

C. Pruning
Compres. Rate

T. Quantisation
TTQ thr. / Sparsity

VGG-16 85.00% 94.00% 0.2 / 70.00%
ResNet-18 91.00% 94.00% 0.2 / 80.00%
Mobilenet 42.00% 96.00% 0.2 / 20.00%

TABLE VI
MEMORY REQUIREMENTS (MB) FOR EACH MODEL AND COMPRESSION

TECHNIQUE WHEN ACCURACY IS FIXED AT 90%.

Model Plain W. Pruning C. Pruning T. Quantis.
VGG-16 309.9 112.2 74.9 114.1

ResNet-18 233.8 66.1 13.1 66.9
MobileNet 66.3 40.9 2.7 63.3

Although we explore only the accuracy Pareto Curve of
the models and take memory footprint and inference time as
observable parameters for the compression techniques in ques-
tion, it is relevant to explore further by fixing specific memory
requirements or inference times. We leave this exploration for
future work.

F. Parallelisation in heterogeneous systems

We also consider different parallel implementations, using
OpenMP and OpenCL, for the dense models of the three
networks when running on the Odroid-XU4 board.

Since OpenMP does not support ARM Mali GPUs, the
networks are parallelised only on the CPU of the board using
up to 8 threads (cores) of the Cortex-A processor.

We developed two OpenCL versions. The first one uses
the CLBLast library to perform the convolution operation
as a general matrix multiplication. The second one performs
dot products for the convolutions and we hand-tuned the
parameters in order to get the best performance. Specifically
we chose 4 × 4 work-items for the work-group size and we
vectorised the code using vectors of 16 elements.

VGG-16 ResNet-18 MobileNet
(a) Odroid XU4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
fe

re
n

ce
ti

m
e

(s
)

Weight Pruning

Channel Pruning

Quantisation

VGG-16 ResNet-18 MobileNet
(b) Intel Core i7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

re
n

ce
ti

m
e

(s
)

Weight Pruning

Channel Pruning

Quantisation

Fig. 5. Inference time comparison of weight pruning, channel pruning and
quantisation on our three models when the accuracy level is fixed at 90%: (a)
Odroid-XU4 with eight threads; (b) Intel Core i7 with four threads.

Figure 6 shows the results for the inference time when
comparing the three parallel versions of each network. As we
see, the hand-tuned OpenCL versions outperform the OpenMP
implementations. The parameters selected perform very well
when mapping the OpenCL kernels on the GPU cores. This
shows that GPUs are preferable even on embedded devices
to CPUs for neural network workloads. However, the version
using the CLBlast library hurt performance, suffering up to
a 10× slowdown on ResNet-18. This poor performance is
due to the small size of CIFAR-10 input images (32 × 32
pixels); the efficient matrix multiplication operation only pays
off for big matrices [39] so the bigger the matrix the greater
the improvement. As such, when using the ImageNet dataset
for VGG-16 (where images are 224×224 pixels) the CLBlast
library actually outperforms the OpenMP implementations.

VI. DISCUSSION

Looking across the Deep Learning Inference Stack we
can make some very interesting observations. Some support
existing neural network lore, while others are contradictory to
commonly held beliefs.

Our memory footprint analysis validates that memory access
is a bottleneck for neural network computations. In fact,
this is more obvious with the sparse formats where memory
continuity is not achieved due to many arrays being allocated
to represent and access only non-zero values. In the case of
CNNs with small filters (3×3 convolutions), the sparse format
actually takes up more memory. For this reason introducing
sparsity in the convolutional layers would only truly benefit

VGG-16 ResNet-18 MobileNet
0

2

4

6

8

10

In
fe

re
n

ce
ti

m
e

(s
)

CLBlast

OpenMP

OpenCL

Fig. 6. Performance of the plain models when parallelised using OpenMP
(with 8 threads), CLBlast and hand-tuned OpenCL on the Odroid-XU4 board.

networks with larger filter sizes. This is a contradictory obser-
vation to the general belief in machine learning that sparsity
can be useful for adapting neural network models to run
more efficiently on smaller devices. In the code optimisation
community, the knowledge that 3×3 convolutions are the
current standard in neural network architectures would allow
for the creation of more efficient data structures, even though
these would not readily generalise to other filter sizes.

Although the CLBlast library is known to be very efficient
at performing basic linear algebra operations — often regarded
as the most promising candidate to parallelise the operations
in neural networks — we found that in many cases a hand-
coded implementation with OpenCL and OpenMP is faster.
This shows that overheads imposed by specialised libraries
surpass their benefits in highly optimised matrix operations,
which is important for deep learning framework designers.

Collectively, these observations expose a gap between the
machine learning community — proposing solutions that are
not beneficial to hardware execution — and the systems
community that proposes libraries for executing neural net-
works without a full understanding of the workloads involved.
Fundamentally, to optimise a deep learning model to run
on a particular device requires careful selection and tuning
of techniques across the Deep Learning Inference Stack and
this can be achieved only by the two research communities
working together.

VII. CONCLUSIONS

This paper presents a characterisation of current state-of-
the-art solutions across the Deep Learning Inference Stack
and their limitations. We find that promising candidate solu-
tions to compress Convolutional Neural Networks (i.e. weight
pruning and quantisation) hurt performance given libraries
and hardware that are not able to leverage the reduction in
parameter count into real speedup. It is critical to overcome
these limitations in order to bring neural networks to the edge.
We believe this can be achieved through closer collaboration
across the layers of the stack; to produce machine learning
techniques and models with a view of deployment on the
resource-contained hardware.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 732204 (Bonseyes). This work is
supported by the Swiss State Secretariat for Education, Re-
search and Innovation (SERI) under contract number 16.0159.
The opinions expressed and arguments employed herein do not
necessarily reflect the official views of these funding bodies.
The authors are grateful to Lizhong Chen and the anonymous
reviewers for their valuable contributions.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba, “End to end learning for self-driving cars,” in Computer Vision
and Pattern Recognition, 2016.

[3] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun,
“Multinet: Real-time joint semantic reasoning for autonomous driving,”
in Computer Vision and Pattern Recognition, 2016.

[4] H. Alvarez, L. Paz, J. Sturm, and D. Cremers, “Collision avoidance for
quadrotors with a monocular camera,” Experimental Robotics. Springer,
2016.

[5] V. Radu, C. Tong, S. Bhattacharya, N. D. Lane, C. Mascolo, M. K.
Marina, and F. Kawsar, “Multimodal deep learning for activity and
context recognition,” Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2018.

[6] A. Doherty, S. Hodges, A. King, A. Smeaton, E. Berry, C. Moulin,
S. Lindley, P. Kelly, and C. Foster, “Wearable cameras in health - the
state of the art and future possibilities,” American Journal of Preventive
Medicine, 2013.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[9] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[10] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems, 2015, pp. 1135–1143.

[11] M. Denil, B. Shakibi, L. Dinh, N. de Freitas et al., “Predicting param-
eters in deep learning,” in Advances in Neural Information Processing
Systems, 2013, pp. 2148–2156.

[12] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[13] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution layers,”
arXiv preprint arXiv:1802.00124, 2018.

[14] X. Dong, S. Chen, and S. J. Pan, “Learning to prune deep neu-
ral networks via layer-wise optimal brain surgeon,” arXiv preprint
arXiv:1705.07565, 2017.

[15] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for deep
learning,” arXiv preprint arXiv:1705.08665, 2017.

[16] E. J. Crowley, G. Gray, and A. Storkey, “Moonshine: Distilling with
cheap convolutions,” arXiv preprint arXiv:1711.02613, 2017.

[17] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger, “Con-
denseNet: An efficient densenet using learned group convolutions,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[18] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” in
International Conference on Learning Representations, 2017.

[19] C. Matthieu, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,” in NIPS,
2015.

[20] W. Chen, J. T.Wilson, S. Tyree, K. Q.Weinberger, and Y. Chen,
“Compressing neural networks with the hashing trick,” in International
Conference on Learning Representations, 2015.

[21] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture. ACM, 2017, pp. 548–560.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[24] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[25] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, University of Toronto, 2009.

[26] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing, vol.
241, pp. 81–89, 2017.

[27] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network
construction with back-propagation,” in Advances in Neural Information
Processing Systems 1, D. S. Touretzky, Ed. Morgan-Kaufmann, 1989,
pp. 177–185.

[28] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

[29] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 806–814.

[30] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems, 2016, pp. 2074–2082.

[31] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in International Conference on Computer Vision
(ICCV), vol. 2, 2017, p. 6.

[32] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.

[33] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in In-
ternational Conference on Learning Representations, 2017.

[34] L. Theis, I. Korshunova, A. Tejani, and F. Huszár, “Faster gaze
prediction with dense networks and fisher pruning,” arXiv preprint
arXiv:1801.05787, 2018.

[35] D. Mittal, S. Bhardwaj, M. M. Khapra, and B. Ravindran, “Recovering
from random pruning: On the plasticity of deep convolutional neural
networks,” arXiv preprint arXiv:1801.10447, 2018.

[36] C. Zhu, S. Han, H. Mao, and W. Dally, “Trained ternary quantization,”
in International Conference on Learning Representations, 2017.

[37] D. Balduzzi, M. Frean, L. Leary, J. Lewis, K. Wan-Duo Ma, and
B. McWilliams, “The shattered gradients problem: If resnets are the
answer, then what is the question?” arXiv preprint arXiv:1702.08591,
2017.

[38] C. Nugteren, “Clblast: A tuned opencl BLAS library,” CoRR, vol.
abs/1705.05249, 2017.

[39] M. Loukadakis, J. Cano, and M. O’Boyle, “Accelerating deep neural net-
works on low power heterogeneous architectures,” in 11th International
Workshop on Programmability and Architectures for Heterogeneous
Multicores (MULTIPROG-2018), January 2018.

