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Abstract

In inverse electrocardiography (ECG), the problem of finding activation times on the heart
noninvasively from body surface potentials is typically formulated as a nonlinear least squares
optimization problem. Current solutions rely on iterative algorithms which are sensitive to the
presence of local minima. As a result, improved initialization approaches for this problem have
been of considerable interest. However, in experiments conducted on a subject with Wolff-
Parkinson-White syndrome, we have observed that there may be a mismatch between favorable
solutions of the optimization problem and solutions with the desired physiological characteristics.
In this work, we use a method based on a convex optimization framework to explore the solution
space and analyze whether the optimization criteria target their intended objective.

[. Introduction

The inverse problem of electrocardiography (ECG) is to estimate source parameters on or in
the heart given a geometric and conductivity model of the torso volume and observed
electric potentials on the body surface. Activation-based inverse ECG models the functional
sources of the heart at any location on the heart surface (synthesized by closing the
ventricular endocardium to its epicardium, for example) as having two sequential states: off,
then on [1]. One can model the on/off waveform behavior of each source during the QRS
complex of a heart beat as a phase-shifted step function, a parameterization that reduces the
temporal behavior of each source to a single unknown variable: the activation time [2].
Because this waveform parameterization is nonlinear in the unknown activation time, the
inverse problem is typically formulated as a nonlinear least squares (NLLS) minimization
problem. It turns out that this problem is not convex and that its objective function tends to
have many suboptimal local minima.

This has led to several attempts to incorporate the observed data and prior physiological
knowledge into initialization methods, with the belief that local minima found near these
initializations are likely to be close to being optimal. An important example is the Fastest
Route Algorithm (FRA), an initialization method that employs a simplified wavefront
propagation model based on finding the shortest path on a graph. In this method, each edge
that connects two nodes of the graph that represents the heart surface is weighted by an
assumed propagation velocity [3], [4]. Each node on the surface is considered as a candidate
for the site of first activation. An initial earliest node is selected by choosing the resulting
wavefront, as determined by the estimated propagation pattern which would follow from a
signal triggering activation at that node, whose predicted body surface potentials (BSPs)
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have the highest correlation with the data. Wavefronts arising from later breakthroughs are
then also considered and combined node-wise by retaining the activation time of the first
wavefront to arrive [5], [6]. The emphasis of this method is on choosing an initialization
with physiologically-plausible propagation behavior that is consistent with the measured
BSPs.

More recently, we introduced a method of initialization that reformulates the NLLS problem
as an optimization problem with non-convex constraints, relaxes the constraints to be
convex, and then solves the new problem for a globally optimal solution. This solution is
typically infeasible for the NLLS problem because it does not satisfy the original non-
convex constraints, but we suggested in [7] one possible method that solved for the nearest
neighbor to the convex relaxation solution in the original non-convex constraint set and
subsequently used this point as initialization for the NLLS problem. We found that this
method of initialization yielded solutions that were close to ground truth in experiments
conducted on data simulated from known activation times and perturbed with pseudorandom
“measurement” noise.

However, when conducting experiments with clinical data recorded from a subject with
Wolff-Parkinson-White (WPW) syndrome (published previously in [8]-[10]), we observed
what appeared to be a mismatch between the optimization criteria and our intended
objective. The measured BSPs exhibited typical WPW behavior during the QRS complex,
with extra activations initiated from the Kent bundle (whose location was determined
invasively). It was previously reported that FRA-initialized candidate solutions to the NLLS
problem were able to localize the initial activations [10]. These candidate solutions had
activation patterns exhibiting propagation consistent with cardiac electrophysiology.
Surprisingly, we were able to find physiologically-inadequate candidate solutions that
outperformed the FRA-initialized solutions in terms of objective value. Furthermore, we
found that the duration of the upstroke in this optimization setting can have a significant
effect on the objective value. In this paper, we use the convex relaxation to explore the
solution space and examine whether the NLLS objective function targets the solutions we
wish to find.

We begin the rest of the paper by presenting the NLLS problem, its convex relaxation, and
briefly explaining the nearest neighbor initialization method in the Background section. In
the Methods section, we introduce an optimization procedure that, together with the convex
relaxation, we use to explore the solution space of the NLLS problem. In the Experiments
section, we report the results we obtained by applying FRA and our newer methods to two
clinical WPW datasets. We analyze the results and their implications in the Discussion
section below.

Il. Background

In this section, we review a framework for the activation-based problem as an optimization
problem and use it to show how the original NLLS problem can be equivalently expressed
as a non-convex constrained optimization problem. We explain how a convex relaxation can
be obtained and one method of converting its global solution into a feasible initialization for
the NLLS problem.

For the remainder of the paper we assume that the data is regularly sampled in time and we
only consider those samples that correspond to the QRS complex of a single heartbeat. At
any given time, the linear relationship between a vector of body surface potentials, y € RV,
and a vector of on/off sources on the heart, x€ RV, is y= Ax, where A is the forward matrix
that results from solving the forward problem on spatially discretized heart and body surface
domains. Furthermore, we assume that the waveforms for the sources are unit step functions
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whose true amplitudes are known (a vector V) and have been multiplicatively absorbed into
the linear forward model (A <— A diag(V)) for notational simplicity.

In order to reformulate the NLLS problem as a constrained optimization problem, we define
an alternative set of constraints to describe the nonlinearly parameterized waveforms. The
original nonlinear parameterization is that every source, xj, has the waveform

0 ,t-1,<0
Xu(D=u(t—1,)= { 1 —T n> 0
’ n =

where t,is the activation time. Using this parameterization, the original NLLS problem is
e .. 2 2
minimize " [W©)-Ax(0)[[,+ A||Lx(0)|;

where L is a Tikhonov regularization matrix, A is the regularization parameter, and the
optimization variables are the activation times. The Gauss-Newton algorithm and similar
nonlinear least squares solvers require that the objective function is differentiable, so a
smoothed step function (with a specified upstroke duration) is typically used and the
subsequent approximate version of the original NLLS problem is solved instead [2], [11].

If we let QRS correspond to the sample times £=1, ... 7then we can define a source matrix
Xthat contains all of the temporal samples of each spatial source such that X}, ;= x,(7). Key
characteristics of this matrix are that its values are either 0 or 1, are nondecreasing as the
column index increases, and that they always increase from 0 to 1 between column indices 1
and T

Let D be a first-order temporal differencing matrix (i.e. Dis 7 x Twith 1 on the diagonal
and -1 on the subdiagonal). If we define the sets ® and ¢ as

R=(X e RM™Dj0< X <1, XDT >0,XD"1
E={X e R Dtr(XTx)=1T X1

(Nx1) (T><1)}

1

== (le)}

(where 1(x; denotes a / x jmatrix of ones) then X' € ® N £. Thus we can express the
original NLLS problem as a constrained optimization problem

minimize |[Y-AX]|}+ A[|LX||
subjectto X e RNE

where the optimization variable is the matrix X and ||-||e denotes the Frobenius norm. We
showed this problem was non-convex in [7] and formulated a convex relaxation by relaxing
the domain from ® N ¢ to R. Theoretically, if the solution to the convex relaxation satisfies
XE€E ¢, itis the global solution to the non-convex problem as well. In general, the convex
relaxation does not solve the original problem because of infeasibility. In this case, the
objective value 7(.X) for the convex relaxation is simply a lower bound on the objective
value of the original constrained problem (which follows from = N & C ® and convex ). If
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the solution is infeasible, one can find its nearest neighbor in the feasible set and use that as
initialization for the NLLS problem [7].
lll. Methods

In this section we describe an optimization procedure that solves a sequence of alternate
NLLS problems that approaches the original NLLS problem. This is done by using a
sequence of parameter values that effectively transforms a subset of the convex domain ®=
into ® N € in its limit.

We start by modeling the values of a source matrix X as samples taken at regular intervals
from an underlying continuous-time function. Rather than limit the function for each row to
phase-shifted unit step functions, we use an arbitrary function /,, that is non-decreasing with
values between 0 and 1. Therefore we have

X=X, O=h,(B(t—7,))

where gis a time scaling parameter and z, is the phase shift. Given these conditions, as 8
goes from 1 — oo, X approaches the set ® N £. Thus, as an alternate NLLS problem, we
minimize the least squares objective function from the original NLLS with this new
parameterization (for fixed g and variable ;). We note that this alternate NLLS problem
and the original NLLS problem have the same convex relaxation.

We initialize the sequence of optimization problems with the convex relaxation, X, such
that 8= By = 1, the initial phase shifts z, are the activation times from the nearest neighbor
initialization method, and the waveforms /,, are chosen such that X'= X, We use a Gauss-
Newton solver to search for a local minimizer, using this solution to initialize the next
problem in the sequence with 8= B; > . The procedure continues in this manner until X'is
within some specified precision of its nearest neighbor in = N €.

At the conclusion of every iteration, we store the minimizing activation times and source
matrix. When the sequence terminates, we find the nearest feasible neighbor to all of the
stored source matrices and keep the one with the best objective value as the “best” feasible
candidate solution. We also keep the final source matrix of the sequence as the “last”
candidate solution (not necessarily feasible).

IV. Experiments

For our experiments, we used measured body surface potentials during the QRS complex of
beats from a subject diagnosed with Wolff-Parkinson-White (WPW) syndrome. Subjects
with WPW have an additional conduction system called the Kent bundle that leads to
additional initial activations to those caused by the regular conduction system. In this case,
the location of the subject’s Kent bundle was determined invasively. We use two different
beats for our experiments: first a fusion beat (i.e. ventricular activation initiated by both the
Kent bundle and regular conduction system), and then a Kent-bundle-only beat. The fusion
beat is considered a typical WPW beat, whereas the Kent-bundle-only beat was induced by
administration of adenosine to block the AV-node. Thus, although exact activation patterns
may not be known, much is known about the beats that can be used to evaluate whether
candidate solutions to the inverse problem capture the correct behavior.

For each beat, we computed candidate solutions by solving the NLLS problem initialized by
FRA, applying the optimization procedure described in Methods for the “last” and “best”
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candidate solutions, and solving the convex relaxation. Optimization problems were solved
for a fixed value of the regularization parameter (1 = 1) in each case, but the objective
values of resulting candidate solutions were compared over a wider range of regularization
parameters.

V. Discussion

In this paper, we described the results of a procedure for activation-based inverse
electrocardiography as applied to data measured from a patient with WPW syndrome. In
these experiments, we explored the solution space of the NLLS minimization problem of
activation-based inverse ECG with a number of optimization procedures: FRA-initialized
NLLS, a convex relaxation of the NLLS problem, and a sequence of NLLS problems.

The first experiment was conducted on a fusion beat that combined both the Kent bundle
and the normal conduction system. The results of the optimization procedures can be seen as
isochrone maps in Figure 1. The aforementioned sites of initial activation can be seen in the
candidate solution found by FRA initialization. This candidate solution has its earliest
activation near the base of the heart where the Kent bundle is known to be located, and a
second activation on the epicardium of the other ventricle. Furthermore, the spacing of the
isochronal contours for this activation pattern are consistent with the behavior of
propagating wavefronts. The second experiment was conducted on an induced Kent-bundle-
only beat and its results can be seen in Figure 2. Again, in this case the FRA-initialized
candidate solution accurately localizes the site of initial activation and captures the expected
behavior of propagating wavefronts.

For the fusion beat experiment, the other three candidate solutions that were obtained using
the optimization procedures described in the Background and Methods sections loosely
resemble the FRA-initialized activation pattern but have isochronal contours that are
inconsistent with propagating wavefronts. In the case of the Kent-bundle-only beat, the
candidate solutions for the same three methods find erroneous endocardial sites of initial
activation in addition to those of the Kent bundle. In terms of their qualitative physiological
characteristics and the degree to which they adhere to the known behavior of the beats in
these experiments, these three sets of candidate solutions are clearly unfavorable in
comparison to the comparable FRA-initialized candidate solutions.

On the other hand, in Figures 1 & 2, we also plot the objective values for these candidate
solutions evaluated for a range of regularization parameters. The green and red curves in this
plot correspond to the FRA-initialized candidate solution and its smoothed approximation
with a 10ms upstroke duration, respectively. The other three curves correspond to the
unfavorable candidate solutions described in the previous paragraph. As the plot shows, the
unfavorable candidate solutions have a lower objective value than FRA for all of the
regularization parameter values.

In theory, the objective function of an optimization problem serves as a way of ranking the
suitability of candidate solutions. The implication of the results we have presented here is
that there is a mismatch between the objective of activation-based inverse ECG and the
objective function of the corresponding optimization problem. This suggests that the
optimization criteria for this problem need to be carefully reviewed and modified, if
necessary, to achieve the intended goal. Another conclusion we draw from this work is that
the convex relaxation method, which compared favorably to FRA on simulated data, does
not compare favorably on this clinical case. We are currently investigating the possible
causes of this discrepancy with an eye to improving both methods.
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Fig. 1.

Isochronal activation time maps of candidate solutions (left to right: FRA-initialized, “last”,
“best”, and convex relaxation) for the WPW fusion heart beat, rows showing alternate
views. Plot of objective values (black=convex relaxation, blue="last”, magenta="best”,
red=smooth FRA-initialized (upstroke=10ms), green=FRA-initialized) for a range of
regularization parameters.
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Fig. 2.

Isochronal activation time maps of candidate solutions (left to right: FRA-initialized, “last”,
“best”, and convex relaxation) for the WPW Kent-bundle-only heart beat, with rows
showing alternate views. Plot of objective values for a range of regularization parameters
(colors of lines same as in Fig. 1).
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