
HAL Id: hal-03347304
https://hal.science/hal-03347304v1

Submitted on 14 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PAMELA : a Generic and Light Multi-Agent Platform
Baudouin Dafflon, Maxime Guériau, Yacine Ouzrout, Sylvain Touchard

To cite this version:
Baudouin Dafflon, Maxime Guériau, Yacine Ouzrout, Sylvain Touchard. PAMELA : a Generic and
Light Multi-Agent Platform. 33rd IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI 2021), Nov 2021, Virtual Conference, Greece. �10.1109/ICTAI52525.2021.00226�. �hal-
03347304�

https://hal.science/hal-03347304v1
https://hal.archives-ouvertes.fr


PAMELA: a generic and light multi-agent platform
Baudouin Dafflon∗, Maxime Guériau†, Yacine Ouzrout‡, Sylvain Touchard‡

∗DISP-LAB, Université Claude Bernard Lyon 1, Lyon, France, baudouin.dafflon@univ-lyon1.fr
†LITIS, INSA Rouen, Normandie Univ., Rouen, France, maxime.gueriau@insa-rouen.fr

‡DISP-LAB, Lyon 2, Lyon, France, {firstname.lastname}@univ-lyon2.fr

Abstract—Multi-agent frameworks are gaining popularity
among the research community as they provide efficient and
scalable tools for modelling distributed and/or social systems,
enabling to simulate and investigate the behaviour of complex
systems in a wide range of applications (such as road traffic,
crowd evacuation, disease spreading, etc.). Existing MAS frame-
works (such as GAMA, MADkit, JADE, etc.) offer stable and
widely used solutions for users that are already experienced
with distributed systems simulation or the MAS paradigm. They
are also often dedicated (or primarily designed) for a specific
application (e.g., MATSim for road traffic). New users can
see the learning curve associated with each framework as an
obstacle, especially when they lack the theoretical knowledge
about computer science or agents and they seek to build and run a
very first proof-of-concept simulation. The work presented in this
paper results from an effort towards providing more accessible
MAS simulation tools, possibly further popularizing their use
across different research fields. This paper introduces PAMELA:
a novel generic collaborative open-source MAS framework that
aims at being light, beginner-friendly, and that allows for fast
prototyping through assisted scenario generation and powerful
configuration. The tool can work with or without (for faster
simulations) the integrated graphical user interface (designed for
both testing and visualization). To make is more attractive to new
programmers and to enable an easier interfacing with trending
machine learning frameworks, PAMELA is entirely written in
Python and only relies on standard libraries. This choice makes
it possible to make it a multi-platform tool that is easy to
deploy and maintain in industry and in the laboratory. After a
discussion of existing MAS platform capabilities and limitations,
we will present the general design of PAMELA and then we
will describe its core components. Through two applications
areas, we will show the potential of PAMELA to quickly and
easily provide running prototypes that could be used as proof-
of-concept simulations before building more complex use cases
in the same or a more specific MAS framework.

Index Terms—multi-agent systems, agent-based modelling,
open-source, framework, simulation

I. INTRODUCTION

Multi-agent systems (MAS) offer a specific way of simu-
lating the interaction between individuals and with their envi-
ronment. They are used efficiently to model and investigate
phenomena in various areas such as economy, commerce,
transport, health, urban zones and, in a more general context,
can act as decision support tools. However, although software
agents have been part of artificial intelligence techniques
for years, their implementation remains based on abstract
concepts. The research community has developed a variety
of agent-based (or MAS-based) platforms over the past two
decades, either for general use or oriented towards a specific
domain of use. Since the end of the 90s, a lot of software for

agent simulation has been developed. Some frameworks have
already been dropped while others continue to be updated.
This great variety of platform options leads to a high degree
of heterogeneity and to limited compatibility. Finding and
choosing the right platform that meets the developer needs and
matches the application or the investigated problem features
is thus challenging.

Finding an agent platform is generally done on the basis of
reputation, recommendation, or based on past experience. To
date in the literature, articles on multi-agent systems describe
only the basic characteristics of existing platforms without
even providing a benchmark of the systems themselves. Our
review of the literature on MAS frameworks led to the
following observation: the more generic a platform is, the
more complicated it is to take in hand for new developers or
researchers that are new to MAS programming.Maintainability
of algorithms and their evolution becomes a real problem while
the amount of prior knowledge required to start working with
a framework is increasing. This complexity is an obstacle
to the use of MAS and to the adoption for more industrial
applications.

The work presented in this paper attempts to mitigate
this issue by proposing and sharing a new framework called
PAMELA: Python reActive Multi agEnt pLAtform, written
in python, free and open-source, which provides a light and
robust implementation of agent concepts. Getting started with
PAMELA only takes a few minutes, making the framework
beginner-friendly and helping to demystify and popularise the
use of MAS for research and industrial projects. Before going
into the details of PAMELA, this paper offers a review and a
classification of existing MAS frameworks from the literature.
This classification is based on a selection of objective criteria
that helped to discuss the relevance of a new platform.After
presenting the implementation details and design choices
of PAMELA, we will illustrate possible applications of the
framework within two separate use cases that showcase its
capabilities and highlight the simplicity of using it.

II. REVIEW OF EXISTING MULTI-AGENT FRAMEWORKS

Among the existing MAS frameworks, only a few appear to
be used extensively and supported by the research community.
This section focuses on the platforms that are the most
represented in the literature, by excluding frameworks that
are still in an experimental state, abandoned, or distributed
confidentially.



A. Comparison criteria

Our review of existing MAS frameworks gives a particular
focus on beginner-friendly features, as reflected by the follow-
ing list of criteria, used for comparison and discussion:

• Usability: describes the type of users for which the
platform is primarily designed for.

• Operational capability: refers to the suitability of the
platform to easily implement and use various MAS
properties (such as self-organization, communication/co-
ordination, adaptation/learning, etc.).

• Configurability: the quality allowing the system be-
haviour to be varied by a small amount of user input.

• Stability: refers to issues of stability during simulation
and the ability of the tool to maintain the same behaviour
under high load or during scaling.

• Versatility: the fact a given framework is generic enough
in its design to allow for a wide scope of applications and
scenarios.

• Extensibility: the quality for a MAS plateform of being
designed to enable the addition of new functionality.

B. Comparison of existing frameworks

1) JADE [2]: (Java Agent DEvelopment Framework1) is
a software framework implemented in Java. Though the user
requires prior knowledge on multi-agent systems and agent-
based simulation, it simplifies the implementation of MAS
through a middle-ware that complies with the FIPA specifica-
tions [13] and through a set of graphical tools that support the
debugging and deployment phases. A JADE-based system can
be distributed across machines (which not even need to share
the same OS) and the configuration can be easily controlled
via a remote GUI. The configuration can be even changed at
run-time by moving agents from one machine to another, as
and when required. JADE is completely implemented in Java
language and the minimal system requirement is the version 5
of JAVA. JADE is free software and is distributed by Telecom
Italia, the copyright holder, in open source under the terms and
conditions of the LGPL license, allowing it to be extended by
expert users. The project however does not seem to be updated
since 20171.

2) JADEX [3]: Jadex is an agent system that follows
the Belief Desire Intention (BDI) model [5] and facilitates
easy intelligent agent construction due to software engineering
foundations. It allows for programming intelligent software
agents in XML and Java. The platform design was initiated
by the Distributed Systems and Information Systems Group of
the Hamburg University, and the tool is available under GPLv3
license. Although there is documentation and examples, the
handling can be complex for novel users as JADEX is pre-
sented as an extension for agent middleware and knowledge
about an other agent platform (e.g., JADE) is required. The
BDI paradigm also limits the scope of agent application that
can be specifically designed using JADEX.

1https://jade.tilab.com/

3) Janus [8] and SARL [14]: Janus is an open-source multi-
agent platform fully implemented in SARL2 (relying on Java
for its versions 1 and 2). Janus enables developers to quickly
create web, enterprise and desktop multiagent-based applica-
tions. It provides a comprehensive set of features to develop,
run, display and monitor multiagent-based applications. Janus-
based applications can be distributed across a network. Janus
could be used as an agent-oriented platform, an organizational
platform, and/or an holonic platform. It also natively manages
the concept of recursive agents and holons.

Janus platform was initially published during the 2007-2008
period as a pure Java framework. Since 2014, Janus is fully
reimplemented to support the SARL Agent-Oriented Program-
ming Language. And since 2020, it is fully re-implemented
using the SARL language. It is Licensed under the Apache Li-
cense. The extended capabilities of Janus makes it a powerful
and stable tool for expert users but could drastically discourage
users that are new to agents or multi-agent programming.

4) MADKIT [10]: The MadKit platform was developed
in 1998 at the LIRMM (Montpellier) by Olivier Gutchneck
during his thesis and Jacques Ferber his supervisor. There-
after, under the supervision of Jacques Ferber, Fabien Michel
took over the development of the platform and integrated, in
particular, TurtleKit a StarLogo-like. MaDKit agents interpret
one or more roles. They belong to groups and create artifi-
cial communities. MaDKit provides general functionality for
agents, such as lifecycle management, message distribution,
and allows great flexibility in agent architectures. Although
there is a documentation, the first steps with MaDKit do not
seem to be accessible to a beginner. A computer scientist
should be able to take it in hand easily. MaDKit-5 is free
software licensed under CeCILL-C, a french licence close to
LGPL, unknown in software industry.

5) Gama [17]: GAMA is an agent platform which aims at
providing a complete modeling and simulation development
environment for building located multi-agent simulations. It
provides capabilities concerning data visualization, GIS data
management, and multi-level modeling. GAMA programming
is based on GAML, agent-oriented language, with an optional
graphic user interface to support rapid prototyping. It has been
first developed by a Vietnamese-French research team until
2010. Now, it is developed by a academic consortium. This is
a free software (distributed under the GNU GPL v3 license).
This platform is very easy to learn thanks to many tutorials and
videos. However, it is much more complicated to understand
its architecture to make it fit your specific need such as non
localized simulation.

6) NetLogo [16]: NetLogo was designed by Uri Wilensky,
in the spirit of the programming language Logo, to be ”low
threshold and no ceiling”. It teaches programming concepts
using agents in the form of turtles, patches, links and the ob-
server. NetLogo was designed for multiple audiences in mind,
in particular: teaching children in the education community,
and for domain experts without a programming background to

2SARL website: http://www.sarl.io/

http://www.sarl.io/


TABLE I
SUMMARY AND COMPARISON OF EXISTING MAS FRAMEWORKS

Framework Usability Operational
capability

Configurability Stability Versatility Extensibility

JADE [2] MAS experts,
expert programmers

(Java)

FIPA compliant,
state-of-the-art agent

technologies

Remote GUI,
runtime changes

Scalable and
distributed

Generic
middle-ware

Requires a solid
experience with
the framework

JADEX [3] MAS experts,
expert programmers

(Java)

BDI paradigm Same as JADE Same as JADE Limited to BDI
agents

Already based
on JADE

Janus [8] and
SARL [14]

MAS users and
advanced

programmers

state-of-the-art agent
technologies with

holonic and recursive
agent representations

Agent-Oriented
Programming

Language

Actively
maintained and

improved3

Various
applications4:
transportation,

games, etc.

Extensible agent
behaviours(using
Capacities/Skills)

MADKIT [10] Beginners in
MAS/agents,

advanced
programmers

Cellular automata
and grid-like
environments

Basic GUI Not suited for
large-scale
simulation

Limited by the
environment

Requires
in-depth core

changes

Gama [17] Advanced knowledge
of MAS/agents,
advanced/expert

programmers

Specialized in
located agents and

simulations

GAML
agent-oriented
language and

declarative 3D
GUI

Suited for large
scale agent-based
simulation, large
base of tutorials
and demo videos

Compatible with
GIS, has several
plug-in available

(traffic,
pedestrians, etc.)

Integrated
plug-in

development
pipeline

NetLogo [16] Beginners in
MAS/agents and

programming

Limited to
educational or fast

prototyping

Basic GUI Popular in
education and

research

Limited to
small-scale or

simplified
models

Requires
in-depth core

changes

MATSim [11] Advanced knowledge
of MAS/agents,
advanced/expert

programmers

Large-scale
agent-based

transportation
simulation

Advanced
demand

modelling

Suited for large
scale agent-based

simulation

Dedicated to
transportation
applications

Modular
architecture

PAMELA (this
paper)

Beginners in
MAS/agents,
intermediate
programmers

state-of-the-art agent
technologies

Interactive GUI,
Json

configuration
files, scenario

generator

Actively
maintained and

improved5

Various
applications:

transportation,
epidemiology

Modular
framework based

on the REST
API

model related phenomena. Many scientific articles have been
published using NetLogo [1], [15].

The NetLogo environment enables exploration of emergent
phenomena. It comes with an extensive models library in-
cluding models in a variety of domains, such as economics,
biology, physics, chemistry, psychology, system dynamics.
NetLogo allows exploration by modifying switches, sliders,
choosers, inputs, and other interface elements. Beyond ex-
ploring, NetLogo allows authoring new models and modifying
extant models. NetLogo is very popular in the education and
research community. NetLogo is also free software licensed
under GPL Licence.

7) MATSim [11]: MATSim provides a framework to im-
plement large-scale agent-based transport simulations. The
framework consists of several modules which can be combined
or used stand-alone. Modules can be replaced by custom
implementations to test single aspects of your own work.

Currently, MATSim offers a framework for demand-
modeling, agent-based mobility-simulation (traffic flow simu-
lation), re-planning, a controller to iteratively run simulations
as well as methods to analyze the output generated by the

modules. MATSim is developed in Java under GPL v2 licence.

C. Summary and discussion

We reviewed existing MAS frameworks that appeared to
be representative of the state of the art.NetLogo seems to be
the perfect start for a user, programmer or researcher who
wants to learn about the multi-agent systems paradigm by
designing and prototyping his very first application. However,
moving to more complex applications can be quickly limited
and more powerful/extensive tool are then required. Expert
users can legitimately go for JADE or Janus, although the
learning curve could be seen as an important obstacle. Finally,
a proportion of users will naturally be driven towards GAMA
and MATSim, mostly depending on the initial application they
are working on. MATSim will particularly suit for traffic and
transportation-related applications while GAMA can be more
versatile while interesting programmers who work with GIS
data.

3SARL GitHub repository: https://github.com/sarl/sarl
4Example of projects built using SARL: http://www.sarl.io/community
5PAMELA GitHub repository: https://github.com/BDafflon/PAMELA-DEV

https://github.com/sarl/sarl
http://www.sarl.io/community
https://github.com/BDafflon/PAMELA-DEV


After testing and evaluating these platforms on several
types of projects: Transportation Simulation, Product Design
Optimization and Human Society Simulation, we noticed that
each of them has shown advantages and disadvantages, as
highlighted in Table I. None of them allowed to realize the
projects without a huge technical and technological invest-
ment. We have noticed several obstacles to the adoption of
these existing platforms by the general public and to their in-
troduction in the industrial sector. Among these obstacles, we
can cite the great complexity of these projects from a software
and architecture point of view. Adapting a tool to customized
problems is not accessible to a beginner or a technician. In
the operational aspect, these platforms are very robust and
offer plug-ins to help design simulation and agent applications.
We have encountered few stability or scalability problems.
Nevertheless, their deployment on exotic architectures (RPi
for example) is complicated or impossible.

In this context, we started the reflection and design of
an ultra light MAS or agent-based platform that provides
the main functionalities of MAS while being accessible to
beginners. For reasons of practicality and maintenance, we
have opted for the python language. Indeed, since a few
years, python has become the most used language on GitHub
and presenting the most documentation on public search
engines. In the following section, we present the architecture
and functionality of PAMELA: Python reActive Multi agEnt
pLAtform. PAMELA intends to offer an alternative MAS-
based simulation framework to intermediate programmers and
users new to MAS that can be used for fast prototyping,
through an integrated GUI and a simplified scenario definition,
while showing advanced extensibility capabilities thanks to
its modular architecture. The capabilities of PAMELA are
illustrated when presenting some of the existing modules that
are dedicated to non-computer scientists users.

III. PAMELA FRAMEWORK

A. Global overview

In the previous section, we observed a great heterogene-
ity between existing MAS frameworks. It is the same for
agent formalism, communication models and architectures. In
PAMELA, we have left this choice to the user by providing
the basic concepts. Each agent evolves in an environment,
perceives it and is able to act on it. Interfaces can be used
as is or overloaded to adapt to the user’s level or the targeted
application.

B. Structure

The PAMELA platform is built around this concept. As
shown with Figure 1, four components are required:

• an environment manager
• an entity collection (Agent, item, object, etc.)
• a GUI
• a scenario manager

We will see in a following part that agents also provide web-
services that help them to be easily inter-operable.

PAMELA is a set of Python classes that implements these
components, libraries, messaging function, etc. The platform
also offers a scenario generator and a graphical editor that
allow to configure a simulation without writing code. The
basic philosophy of the architecture is to use the platform as
much as possible to add new features. The small size of the
environment manager, combined with the principle of modular
services, enable advanced users to add new functionalities and
to adapt or propose custom agent models.

Fig. 1. Architecture diagram of PAMELA

C. Execution of agents

The execution cycle of an agent (Figure 2) is based on the
principles defined by Ferber [7] and Wooldrige [18].

Fig. 2. Agent life cycle

The environment manager executes this cycle at each time
step. It calculates perceptions according to the defined agent’s
frustrum (i.e., its field of view), then collects all agents’
decisions and finally applies them taking in account physi-
cal constraints of each agent body (i.e., the agent physical
representation).

The implementation of a standard agent is done by defining
the following functions:

• Creation function (init): this function allows the user to
define a frustrum, a body, and the parameters required
for the agent’s decision making. The agent’s body and
frustrum can be customized classes or instances of default
classes (e.g., circular, conical frustrum, etc.).



• Display function (getEditable): it summarizes the infor-
mation to be displayed for the log or the GUI.

• Decision function (update): the result of the decision
taken by the agent given its current perception, under
the form of an Action (or None).

D. Agents configuration

The agents configuration can be done by an overload of the
”Agent” class. It can also be done through a configuration file.
The platform can also be controlled by defining all necessary
parameters in a scenario file (or by using the editor), for
faster prototyping or for beginners. In both cases, a JSON
configuration file is required.

def __init__(self, f=1):
Agent.__init__(self)
self.body = StadardAgentBody()
self.body.frustrum = Circularfrustrum(5)

def getEditable(self):
return [’id’]

def update(self):
action = AnimateAction()
action.move = self.moveRandom()
return action

Fig. 3. Example of a random agent configuration

The structure of this file is described in Figure 3. The
first part (Start) describes the state of the simulation before
the launching the simulation. The second part (Simulation)
rules the execution of the simulation at each time step. Each
element defined in this block will be created in the simulation
according to a timestamp that takes the beginning of the
simulation as a reference.

In each of these two blocks, agents and objects can be
described according to the structure illustrated in the example
given in Figure 4.

{
"entity":"object",
"name":"Grass",
"type":"Grass",
"aabb":[

0,
0,
200,
200

],
"customArgs":{

"orientation":180
}

}

Fig. 4. Example of an entity description

In this example, an object of type ”Grass” will be added
at the beginning of the simulation at position [0,0] and with
an orientation of 180 degrees. The particularity of this file is
that all the elements present in the ”customArgs” block will
become attributes of the Grass class. The description of an
agent follows the same rule.

Fig. 5. Configuration GUI available in PAMELA

Creating a file like this can be complicated, especially if the
simulation becomes very large. An embedded tool (Figure 5
allows to do it in a graphical way.

E. Servisization / Observer

As mentioned previously, PAMELA relies on a set of classes
that can be directly used and/or overloaded. Among these
classes, the RESTEnvironment class proposes a REST API
to interact with PAMELA as a server. It is possible to retrieve
the list of agents, their states or to relocate the decision.
REST endpoints are available after a JWT identification. The
endpoints allow to build and update the environment (cre-
ation, modification, deletion) and the items (object and agent).
Thanks to this system, it becomes easy to build a webview or a
custom GUI. RESTEnvironment allow to use heavy cognitive
decision processes such as neural networks, ontologies, etc.,
by decentralizing the calculation. The PAMELA platform is
modular, so that the user has the choice to use the classical
environment or a REST environment. The classical environ-
ment is included in the REST environment which allows to
deploy a hybrid approach.

F. Conclusion

In this part, we have presented the functioning of PAMELA
from a user point of view, whether he is a computer scientist
or a simple user. The configuration, simplified by the editor,
makes it a first gateway to agents and MAS simulation.
We also saw that it was possible to customize the different
components of PAMELA using simple inheritance. In the same
way, servitization allows to add a layer of complexity in the
decision making mechanisms.

Like all modern platforms, the functions of messaging,
metrics, etc., are available in PAMELA. A number of modules
have been developed around the framework, such as:

• city and urban road network environment generator,
• environment import system from an image,
• waypoint and pheromone mechanism,
• webview based on webGL, etc.

Next sections illustrate the capabilities of PAMELA in two
different applications.



IV. USE CASE 1: COVID SIR SIMULATION

A. Global overview

The global health crisis of the Covid-19 Coronavirus has
demonstrated the role of modelling in political and health
decision making. A classic model in the literature for decision
support is the ”Compartmental models” such as the SIR
model [4] (Susceptible, Infectious, or Recovered). For a given
population, we study the size of three sub-populations over
time: S(t) represents the susceptible individuals at time t, I(t)
the infected individuals, and R(t) the removed individuals;
N = S(t) + I(t) + R(t) then represents the total constant
population over time. It is important to differentiate between
healthy and removed individuals: healthy individuals have
not been affected by the virus, whereas removed individuals
are cured and therefore considered immune. In other words,
withdrawn persons are no longer taken into account. This
model can be studied by solving the following system:

dS(t)
dt = −βS(t)I(t)

dI(t)
dt = βS(t)I(t)− γI(t)

dR(t)
dt = γI(t)

The advantage of this type of model is to be able to
calculate and study the population dynamics very quickly.
However it is very difficult to simulate complex behaviours.
One possibility is to multiply the number of classes. The
following simulation, relying on the underlying MAS provided
by PAMELA, has common points with the SIR model (3
sub-populations: healthy, infected, withdrawn) but also major
differences: it is discrete (each point represents one person)
and random (in order to model the movements of people and
their potential contacts). It allows to see more precisely the
impact of the modification of the parameters on the evolution
of the virus thanks to the definition of different types of (agent)
behaviours and interaction between populations.

B. Environment

This simulation can be done using a reactive multi-agent
system. In this type of simulation, agents environment is the
corner stone of the approach. It links the population with the
decision process mechanism.

The virtual environment is composed of:
• Obstacles: when perceived by the agent frustrum, they

are transmitted and placed in the virtual environment.
Each obstacle is represented by an aggregation of re-
pulsive spots. These entities does not show a specific
behaviour. In addition a spot belt mark the environment
boundary corresponding to the simulation perception lim-
its.

• Building (housing, infrastructure, etc.): They represent
points of interest for the simulation such as places of
mixing like schools or bottlenecks like hospitals. They
influence the decisions of agents according to their class.

• Agents: A population of agents dispersed in the environ-
ment at the beginning of the simulation. A random draw

allows to assign them a class (S or I) according to the
parameters of the simulation.

C. Agents
The behaviour of the agents looks like a finite state machine

(Figure 6). The change from one class of the SIR model to

Fig. 6. Agent behaviour

another is done according to the following rules:
• I1: To pass from class ”S” to ”I”, it is necessary to have

in the frustrum of the agent ”S” an agent belonging to
class ”I”. However, this is not automatic. A probability
based on [12] is applied

• I2: For the agent ”I” to die, a probability according to
the internal states is applied [12]

• I3: The move from ”I” to ”R” is only based on time.
After a certain time, an ”I” agent will automatically join
the ”R” class if he is not dead.

• I4: As immunity is not permanent, after a certain period
of time, the agents of the ”R” class return to the ”S”
class.

The interactions between agents are also simplified for the
needs of the example: following laws of attraction and repul-
sion inspired by Newtonian physics, agents ”S” and ”R” move
randomly in the environment seeking to satisfy their desires
(go to the supermarket, to work and to their homes). They
avoid the ”I” agents.

Class ”I” agents follow the same desires for the first
few days and then confine themselves to their homes when
the symptoms appear. Class ”D” agents do nothing and are
removed from the simulation.

Fig. 7. PAMELA View: SIR Simulation. Green: susceptible, Red: infectious

A screenshot of this simulation is depicted in Figure 7.



D. Results

Two question arose from this very simplified example: can
we find the same results as with an analytical solution? and
was the implementation easier thanks to the platform?

In the first case, by measuring the population of each class
in real time, we obtain results of the same order of magnitude
(Figure 8). The implementation was fast and the abstraction

Fig. 8. Comparison

of the platform and the flexibility of the language allowed to
have results after a few minutes.

V. USE CASE 2: MOBILITY-ON-DEMAND OPTIMISATION

A. Global overview

Mobility-on-Demand (MoD) systems offer a flexible mo-
bility alternative to classical public transportation services in
urban areas. However, a significant part of MoD vehicles
operating time can be spent waiting empty or driving to reach
new potential ride requests. Improving vehicle fleet operation
is an extremely challenging problem, as the number of vehicles
in operation at a time cannot be controlled. To cope with this
issue, new forms of mobility are being deployed successfully:
for instance, ride-sharing enabled MoD systems can match
riders from several requests. MAS have been shown to be
particularly suited to model vehicles and riders interaction
finely in MoD systems [9].

B. Environment

The problem of rider-driver assignment (or rider-vehicle
assignment in the case of Autonomous MoD) can be described
in a multi-agent environment. Here agents are vehicles and
riders, both trying to fulfil their own goals. The MoD booking
platform allows vehicles to access pending requests from
riders, and unlike traditional MoD systems, this information
is shared with all riders. This framework is described in the
UML diagram depicted in Figure 9.

C. Agents

1) Riders: A rider i is defined by the vector Ri :
Oi, Di, Pi, Ti, Ji, Si|fcit where Oi is its origin (where the
request is created), Di its destination, Pi its field of view,
Ti time of the request creation,Ji denotes its impatience, Si

its current state and fcit is an internal function that drives

Fig. 9. Environment for MoD

the agent decision. fit uses all the other agent parameters
to minimize the waiting time and the cost of the trip. To
remain active in the environment, each rider agent must keep
an impatience gauge be low 100 %, otherwise, we assume
that the client leaves the system (completing its trip using an
alternative transportation mode) and his request is recorded as
unserved. Riders tend to exhibit a gregarious behaviour: each
rider tries to minimize is own waiting time and the cost of
the journey by moving (walking) in the environment to form
groups of riders.

D. Driver

Each vehicle Vj is defined by a field of view Pj , a working
time Tj and the number of free seats Cj . Similarly to riders,
each vehicle has an internal function called fdjt

that traduces
its objective of maximizing profit: Vj : Pj , Tj , Cj |fdjt. Each
vehicle tries to pick-up more passengers and attempts to avoid
travelling empty. The behaviour of a vehicle can be divided
into two phases: waiting (vehicle is empty waiting for new
requests) and traveling (with at least one rider on board).

E. Interactions

Agents interaction are inspired by physics:
• Rider-rider interaction: this interaction is modeled as a

simple linear attraction force
• Rider-vehicle interaction: To reduce the waiting time of

riders,we enable them to walk to a location where he
is more likely to be pick-up by a vehicle, by meeting
more riders with a similar destination, hence making the
newly formed group more attractive to the MoD system
vehicles. When a vehicle passes (or plans to drive) near a
potential rider, and goes in the same direction, the MoD
system sends a notification containing the coordinates of
the meeting point (on the current trajectory of the vehicle,
where riders should meet). This meeting point is defined
taking into account the capacity of the vehicle and its
dynamics.

• Vehicle-vehicle interaction: for empty (waiting) vehicles,
this interaction acts as a repulsive force computed through
a repulsion force

• Vehicle-rider interaction: vehicles tend to be attracted by
riders, and the intensity of this attraction is weighted
by the number of riders going to a similar destination



and located close to each other (for instance, forming a
micro-community). All riders (even individually) impact
vehicles trajectories.

F. Results

This second implementation example is more complex than
the COVID SIR simulation (use case 1). The interactions
between agents are more complicated, and so is the scenario.
Thus, it is difficult to compare it to an analytical model because
of the nature of the problem. However, its development with
PAMELA was very fast. The technical points that could have
been blocking was the link with the database of the requests,
which was solved thanks to the library proposed by Python.
The interested reader can refer to [6] for a more detailed
overview of the scenario, set-up and detailed results of this
study.

VI. DISCUSSION AND CONCLUSION

Multi-agent systems and intelligent agents are particularly
suited to model the behaviour of complex and distributed
systems. Researcher and programmers usually rely on existing
simulation frameworks (such as GAMA, JADE or MADkit) to
leverage MAS properties for tackling problems in various ap-
plication areas. However, users that are new to these platforms
can see the learning curve associated with each framework
as an obstacle, especially when they lack the theoretical
knowledge about computer science or agents and they seek
to build and run a very first proof-of-concept simulation. The
work presented in this paper results from an effort towards
providing a more accessible MAS simulation tool, possibly
further popularizing their use across different research fields.
This paper introduced PAMELA: a novel generic collabora-
tive open-source6 MAS framework that aims at being light,
beginner-friendly, and that allows for fast prototyping through
assisted scenario generation and powerful configuration. To
make it more attractive to new programmers and to enable an
easier interfacing with trending machine learning frameworks,
PAMELA is entirely written in Python and only relies on
standard libraries.

We showed in the experiments that PAMELA can be
easily and quickly tuned and configured for very different
applications: an infection spreading model and a mobility-on-
demand system optimization. Different types of agents can be
defined and their interaction can be controlled by the system
designer, before running a simulation or at runtime. PAMELA
also provides different modules (such as metrics computation,
scenario generation, environment generation) that enable a fast
prototyping of MAS algorithms and models while giving a
first overview of simulation results.PAMELA also aims, by
being released as an open-source6 project, to be maintained
and extended, thus further benefiting from the experience of
the MAS community. We hope that PAMELA will be useful
and helpful in an academic and industrial context, providing a
framework that allows for a fast prototyping of MAS solutions,

6PAMELA GitHub repository: https://github.com/BDafflon/PAMELA-DEV

that could either be further developed in the same or an
other framework for more complex scenarios or more detailed
simulations.

REFERENCES

[1] José Barbosa and Paulo Leitão. Simulation of multi-agent manufacturing
systems using agent-based modelling platforms. In 2011 9th IEEE
International Conference on Industrial Informatics, pages 477–482.
IEEE, 2011.

[2] Fabio Bellifemine, Giovanni Caire, Giosuè Vitaglione, Giovanni Ri-
massa, and Dominic Greenwood. The jade platform and experiences
with mobile mas applications. In Software Agent-Based Applications,
Platforms and Development Kits, pages 1–20. Springer, 2005.

[3] Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Jadex:
A bdi-agent system combining middleware and reasoning. In Software
agent-based applications, platforms and development kits, pages 143–
168. Springer, 2005.

[4] Yi-Cheng Chen, Ping-En Lu, and Cheng-Shang Chang. A time-
dependent sir model for covid-19, 2020.

[5] Francisco JP Cunha, Marx L Viana, Tassio Ferenzini Martins Sirqueira,
Marcio Rosemberg, and Carlos Lucena. Understanding normative bdi
agents behavior. In SEKE, pages 221–220, 2018.

[6] Baudouin Dafflon, Maxime Guériau, Yacine Ouzrout, and Ivana Dus-
paric. Emergent micro-communities for ride-sharing enabled mobility-
on-demand systems. In 11th Workshop on Agents in Traffic and
Transportation (ATT 2020) held in conjunction with ECAI 2020, 2020.

[7] Jacques Ferber. Les systèmes multi-agents: vers une intelligence collec-
tive. InterEditions, 1997.

[8] Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and Abderrafiâa
Koukam. An organisational platform for holonic and multiagent systems.
In International Workshop on Programming Multi-Agent Systems, pages
104–119. Springer, 2008.

[9] Maxime Gueriau, Federico Cugurullo, Ransford A. Acheampong, and
Ivana Dusparic. Shared autonomous mobility-on-demand: Learning-
based approach and its performance in the presence of traffic congestion.
IEEE Intelligent Transportation Systems Magazine, 12(4), 2020.

[10] Olivier Gutknecht and Jacques Ferber. Madkit: A generic multi-agent
platform. In Proceedings of the fourth international conference on
Autonomous agents, pages 78–79, 2000.

[11] Andreas Horni, David Charypar, and Kay W Axhausen. Variability in
transport microsimulations investigated with the multi-agent transport
simulation matsim. Arbeitsberichte Verkehrs-und Raumplanung, 692,
2011.

[12] Nancy HL Leung, Daniel KW Chu, Eunice YC Shiu, Kwok-Hung Chan,
James J McDevitt, Benien JP Hau, Hui-Ling Yen, Yuguo Li, Dennis KM
Ip, JS Malik Peiris, et al. Respiratory virus shedding in exhaled breath
and efficacy of face masks. Nature medicine, 26(5):676–680, 2020.

[13] Stefan Poslad and Patricia Charlton. Standardizing agent interoper-
ability: The fipa approach. In ECCAI Advanced Course on Artificial
Intelligence, pages 98–117. Springer, 2001.

[14] Sebastian Rodriguez, Nicolas Gaud, and Stéphane Galland. Sarl:
a general-purpose agent-oriented programming language. In 2014
IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), volume 3, pages 103–
110. IEEE, 2014.

[15] Zhenjiang Shen, Xiaobai A Yao, Mitsuhiko Kawakami, Ping Chen, and
Masahito Koujin. Integration of mas and gis using netlogo. In Geospatial
Techniques in Urban Planning, pages 369–388. Springer, 2012.

[16] Elizabeth Sklar. Netlogo, a multi-agent simulation environment. Artifi-
cial life, 13(3):303–311, 2007.

[17] Patrick Taillandier, Duc-An Vo, Edouard Amouroux, and Alexis Dro-
goul. Gama: a simulation platform that integrates geographical informa-
tion data, agent-based modeling and multi-scale control. In International
Conference on Principles and Practice of Multi-Agent Systems, pages
242–258. Springer, 2010.

[18] Michael Woolridge and Michael J Wooldridge. Introduction to multia-
gent systems. John Wiley & Sons, Inc., 2001.

https://github.com/BDafflon/PAMELA-DEV

	Introduction
	Review of existing Multi-agent frameworks
	Comparison criteria
	Comparison of existing frameworks
	JADE bellifemine2005jade
	JADEX braubach2005jadex
	Janus gaud2008organisational and SARL rodriguez2014sarl
	MADKIT gutknecht2000madkit
	Gama taillandier2010gama
	NetLogo sklar2007netlogo
	MATSim horni2011variability

	Summary and discussion

	PAMELA FRAMEWORK
	Global overview
	Structure
	Execution of agents
	Agents configuration
	Servisization / Observer
	Conclusion

	Use case 1: COVID SIR simulation
	Global overview
	Environment
	Agents
	Results

	Use case 2: Mobility-on-Demand optimisation
	Global overview
	Environment
	Agents
	Riders

	Driver
	Interactions
	Results

	Discussion and conclusion
	References

