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Abstract— Nano-sized unmanned aerial vehicles (UAVs) are
well-fit for indoor applications and for close proximity to
humans. To enable autonomy, the nano-UAV must be able to
self-localize in its operating environment. This is a particularly-
challenging task due to the limited sensing and compute
resources on board. This work presents an online and onboard
approach for localization in floor plans annotated with semantic
information. Unlike sensor-based maps, floor plans are readily-
available, and do not increase the cost and time of deployment.
To overcome the difficulty of localizing in sparse maps, the
proposed approach fuses geometric information from minia-
turized time-of-flight sensors and semantic cues. The semantic
information is extracted from images by deploying a state-of-
the-art object detection model on a high-performance multi-
core microcontroller onboard the drone, consuming only 2.5mJ
per frame and executing in 38ms. In our evaluation, we globally
localize in a real-world office environment, achieving 90%
success rate. We also release an open-source implementation
of our work1.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are emerging for appli-
cations such as monitoring, inspection, surveillance, trans-
portation and logistics [38]. Mainly in indoor scenarios, a
small form factor brings key advantages since smaller UAVs
allow for safe operation near humans and can reach locations
which are inaccessible with larger platforms [19].

Localization is essential in enabling autonomy for mobile
robots. For standard-sized robots, RTK-GPS is often used
for outdoor localization [37], as well as heavy high-end
power-hungry 3D LiDARs [6][12], which require expensive
computations. These approaches are unsuitable for nano-
UAVs. First, nano-UAVs are usually deployed indoors, in
GPS-denied environments. Second, their low payload and
limited battery capacity restrict the type and accuracy of
sensors and the computational resources available onboard.

One approach to localizing small-sized UAVs in GPS-
denied environment is infrastructure-based localization, com-
monly implemented using ultra-wideband (UWB) [41][34] or
other wireless communication protocols [26][7]. To tackle
the sensing and compute constraints on nano-UAVs, off-
board processing was proposed for pose estimation [8][29].
However, these methods are unsuitable for many application
scenarios, as they require prior installation of external in-
frastructure and reliable communication between the mobile
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ground truth ground truth

Fig. 1: Top: A nano-UAV while flying and globally localizing in an
office environment using our novel sensor fusion approach. Bottom:
A qualitative evaluation of the localization results on recorded
sequences. Ground truth pose is marked by black stars. The rainbow
colors encode the time of prediction, with purple marking the
beginning of the sequence and red its end.

agent and the base stations.
Map-based approaches for localization do not require

pre-existing infrastructure or external localization cues, and
can therefore operate independently in indoor environments
even when communication is unavailable. In map-based
approaches, the agent uses measurements acquired by its
sensors (LiDAR, camera, sonar, etc.) to estimate its pose
in a given map, such as a landmark-based map [3][18] or an
occupancy grid map [32][11].

Range sensors have been successfully coupled with oc-
cupancy grid maps [10][40] for indoor localization. Un-
fortunately, these sensors are power-hungry and large and
therefore unsuitable for use on a nano-UAV (Fig. 1), where
only around 10% (around 1-2 Watts) of the overall power
budget can be spent on sensing and processing without
affecting the flight time substantially [13]. Miniaturized time-
of-flight (ToF) sensors [33] were used to localize a nano-
UAV. However, they suffer from a short range (3m) and low
beam count (8×8) that limits their ability to operate in large
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spaces.
Sparse maps, such as floor plans, are attractive due to

their availability, removing the need for a complex mapping
procedure before deployment. However, relying solely on
geometric information from range sensors can lead to global
localization failures in sparse maps and environments with
high structural symmetries [44].

Humans navigate using objects rather than precise metric
measurements [28][43], which inspires leveraging semantic
information to improve localization. With the recent ad-
vances in tasks such as object detection [4], semantic cues
are commonly utilized for robot localization [1][43][44].
However, they still require high-end, energy-consuming com-
putational resources, which are usually not available on nano-
UAVs. The challenge of executing semantic inference under
limited computational resources is addressed with neural
architecture search, quantization and optimized deployment
engines [14][30][42].

Our main contribution is an approach for global indoor
localization on a nano-UAV. In our approach, we use sensor
fusion to exploit both semantic and geometric information.
We fully execute our online and onboard approach on a novel
low-power processor. We address the difficulty of executing
object detection tasks on resource-constrained platforms,
describing a pipeline for model quantization and deployment.
We introduce a memory-efficient map representation which
contains both semantic and geometric information. We utilize
semantic information extracted from the camera and fuse it
with range measurements from a miniaturized ToF sensor
to localize a nano-UAV in a the metric-semantic map, by
introducing a novel observation model, as seen in Fig. 1.

In our evaluation, we demonstrate that our approach can
(i) globally localize a nano-UAV in a given map, (ii) infer
semantic information under resource constraints, (iii) operate
with low power consumption onboard (iv) execute in real-
time (15Hz ToF, 5Hz camera). Additionally, we provide a
video of the live demo, as well as an open-source imple-
mentation.

II. RELATED WORK

Localization is a fundamental problem in robotics and
has been extensively-researched [5][39]. Localization is often
cast within a probabilistic framework, accounting for the
uncertainty of sensor measurements, and providing accurate
and robust state estimation. The foundational works of prob-
abilistic robot localization include Markov localization by
Fox et al. [16], extended Kalman filter [23] and particle filter-
based localization, commonly known as Monte Carlo local-
ization (MCL) by Dellaert et al. [10]. These works focused
on localization using range sensors such as 2D LiDARs and
sonars, and later works also utilized cameras [2].

Localization in indoor human-oriented environments is
particularly challenging, due to the presence of dynamic
obstacles such as humans, chairs and carts, as well as quasi-
static changes such as opening and closing of doors and
rearrangement of furniture [45]. Relying solely on geometric
features may lead to global localization failure, especially
when localizing on sparse maps such as floor plans [44].

Additional sources of information, such as WiFi and
textual cues, have been integrated into localization frame-
works [9][21][46] to increase the robustness of localization,
as well as semantic information about objects in the scene.
Mendez et al. [28] exploit semantic cues to localize, but only
address a small set of semantic classes (walls, windows and
doors) which can lead to global localization failure in the
case of structural symmetries. In our previous work [44], we
propose a semantic localization utilizing both 2D laser and
a camera. While our current approach shares the concept of
abstract semantic map representation, the previous method
requires a 360o laser and camera coverage, and a power-
hungry onboard computer (Intel NUC10).

In the context of localization for small UAVs, the most
commonly-used approaches rely on preexisting infrastruc-
ture. Coppola et al. [7] present a Bluetooth based relative
localization approach where signal strength is used as a
range measurement. Van et al. [41] propose UWB for both
communication and relative localization of micro-UAVs.
Similarly, Niculescu et al. [34] suggest a global localization
approach based on UWB for nano-UAVs. Unlike our map-
based approach, these methods require the presence of pre-
installed infrastructure and reliable communication between
the UAVs and the base stations. In our previous work [33] we
introduce a map-based global localization approach relying
on miniaturized ToF sensors, which can be executed online
onboard a nano-UAV. While the approach shows sufficient
accuracy in very narrow and cluttered environments, it cannot
operate in larger, open environments we target in our work
due to the short range of the ToF sensors (3m).

Extracting semantic information is essential for
semantically-guided localization. While lightweight
architectures such as YOLO [4] enable inference of object
detection models onboard computers such as Intel NUC and
Nvidia Jetson, they still require several tens of megabytes
of memory for sensor-rate execution and are therefore
unsuitable for execution on microcontrollers(MCU). Recent
years witness a growing interest in the deployment of
machine learning on edge devices, specifically semantic
perception tasks such as object detection [20][24][31].
Motivated by these trends, our approach incorporates also
semantic information from the onboard camera, to overcome
the range limitation of the ToF sensors.

To the best of our knowledge, our approach is the first to
fuse both range measurements and semantic cues for global
localization on nano-UAVs. By optimizing the map format
and sensor model for a novel ultra-low-power processor, we
are able to globally localize, onboard and online, in indoor
environments without the need for infrastructure or reliable
communication [34], [41]. Additionally, we are the first
to deploy a state-of-the-art (SotA) object detection model
from the YOLO family on a RISC-V multi-core platform,
achieving 20fps with only 2.5mJ per frame.

III. SYSTEM OVERVIEW

We introduce the hardware setup including the nano-UAV,
sensors, and compute platform. We use a Crazyflie 2.1, an



open-source drone, and extend it with three plug-on decks,
as shown in Fig. 2.

We equip the Crazyflie 2.1 with upgrade-kit motors and
propellers and a 350mAh battery. The Crazyflie already
features two MCUs (STM32F405 and nRF52188) and an
inertial measurement unit. For improved state estimation
we mount a flow-deck v2 that provides visual odometry
with a downward-facing optical flow and ToF sensor. To
enable semantic localization, we mount miniaturized ToF
sensors, a tiny, low-weight camera and a novel, low-power
multi-core processor on custom designed decks. The multi-
zone ToF deck features 4 ToF sensors, each one detecting
a 64-pixel grid with a 67 degree diagonal field of view
(FoV) [17]. Additionally, it includes an uSDcard for logging.
The GAP9-deck, as introduced in [33], integrates an RGB
camera (OV5647) and a RISC-V parallel system-on-chip
called GAP92 as processing platform. It also includes a
NINA WiFi module, which is used for data collection.

Our approach requires a camera interface and the execu-
tion of multiple computationally heavy loads with relatively
high memory requirements (>1MB), making GAP9 a good
fit. GAP9 is based on the open-source chip Vega [36]
and features one RISC-V core as fabric controller (FC)
and a cluster with one orchestrator and 8 worker cores.
It features interleaved RAM (referred to as L2) shared
between the cores, with memory capacity of 1.5MB. The
maximum operating frequency of the cores is 370MHz for
both the cluster and the FC. GAP9 also features NE16, a
convolutional neural network (CNN) hardware accelerator,
specialized for highly efficient MAC operations. NE16 is
tailored to 3×3 convolutions, as it features 9×9×16 8x1bit
MAC units, but it also offers support for 1×1 and 3×3 depth-
wise convolutions and fully connected layers. Additionally
to the aforementioned internal memory on GAP9, we mount
an L3 RAM octa-SPI memory of 32MB.

Fig. 2 displays the interactions between the different
components. Note that the WiFi module, the 2.4GHz radio
and the uSDcard solely serve for logging and remote steering
purposes, no computations are offloaded. For time synchro-
nization of the logging we send a timestamp packet from the
STM32 on the Crazyflie to the GAP9 every 10ms.

IV. APPROACH

We aim to globally localize a nano-UAV in a given floor
plan, targeting full-scale human oriented environments, such
as offices. To this end, we fuse geometric and semantic
information, in a MCL framework. In Sec. IV-A we detail the
training and deployment pipeline for porting a SotA object
detection model to a resource-constrained MCU. We briefly
explain MCL (Sec. IV-B). In Sec. IV-C we describe our
optimized semantic map format, and then present our novel
fusion sensor model in Sec. IV-D.

A. Object Detection

We use a modified architecture from the YOLOv5 fam-
ily, we refer to as YOLOv5p, to reduce the memory and

2https://greenwaves-technologies.com/gap9 processor

Fig. 2: System overview. Top: All stacked components on the nano-
UAV, ordered from the top (left) to the bottom (right). Bottom:
A visualization of the communication paths and task distribution
between all employed processors and sensors.

execution time required for inference fully onboard, on the
parallel RISC-V processor. The proposed YOLOv5p has
a smaller backbone and also a reduced head, with 623K
parameters compared to the 1.9M parameters of smallest
YOLOv5 model(YOLOv5n). We first pre-train our model on
the COCO dataset [25] for 100 epochs, and then fine-tune
on our custom dataset, learning semantic classes of interest.
To deploy the model on the GAP9, we use the deployment
pipeline NNTool3, which includes quantization, an inference
engine for verification in python and code generation for
deployment on resource-constraint MCUs. It supports the
NE16, a hardware accelerator present in GAP9.

B. Monte Carlo Localization

MCL [10] is a probabilistic framework for estimating a
robot’s state. A particle filter is used to represent the robot’s
belief p(xt | z1:t,m), where m is a given map, zt are
sensor measurements and xt is the robot’s state. Each particle
s
(i)
t ∈ S contains the robot’s state xt

(i) and its weight
w

(i)
t . As we localize in a 2D grid, the state is given by

xt
(i) = (x, y, θ)⊤. The proposal distribution is sampled

when a control command ut is available, with odometry
noise σodom ∈ R3. A particle is re-weighted according to
the sensor model, given a sensor reading zt. In our MCL
implementation, we perform the updates asynchronously
whenever an odometry input or an observation is available,
provided that the nano-UAV moved a threshold distance of
dxy or rotated by more than dθ.

C. Semantic Map Format

The proposed semantic map format contains geometric
information, in the form of an occupancy grid map extracted

3https://github.com/GreenWaves-Technologies/
gap sdk/tree/master/tools/nntool
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from a floor plan, which is enhanced with prior semantic
information. Similarly to our previous work [44], we choose
a simplified representation for our semantic information,
defining objects by their semantic class and a 2D bounding
box. However, the contribution of our work is a unified,
memory-efficient map representation, instead of multiple
semantic visibility maps. In the proposed approach, the
occupancy states (free, occupied, unknown) are represented
by 2 bits, and the semantic maps are represented by 1 bit per
class, resulting in one 16-bit map. This generic representation
of semantic objects enables fast, manual annotation and
removes the need for an expensive mapping procedure. Our
approach can handle inaccurate annotations of both object
pose and size. A colored visualization of the semantic maps
can be seen in Fig. 3.

D. Geometric-Semantic Fusion Sensor Model

The output of our object detection model contains the
class label, the bounding boxes coordinates in a xyxy format
and the confidence score for the detected object. First, we
compute the center of the bounding box vc = (xc, yc, 1) in
homogeneous coordinates and project it to a 3D ray in the
camera frame

Vc(λ) = O + λR−1K−1vc, (1)

where K ∈ R3×3 is the camera calibration matrix and
O ∈ R3 is camera center. As the camera is aligned to the
forward direction of the nano-UAV, we assume the rotation
matrix is unity. For every particle s

(i)
t ∈ S , we transform

the 3D ray Vc(λ) to the map coordinate frame using the
pose xt

(i). Then we trace the ray in the semantic map, from
xt

(i) in the direction of the transformed ray Vm
c (λ). We

consider the tracing to fail if we ran into a wall in the
occupancy grid map before reaching an object of class c,
and in this case we penalize the particle by lowering its
weight. As the FoV of the front ToF sensor and the camera
overlap, we can associate range measurements to detected
objects. If the tracing was successful, we look up the 8× 8
ToF beam measurements corresponding to the bounding box,
and calculated the average distance to the object dToF. If the
distance is less than τt, we match the traced distance dtrace
to the measured distance dToF

ps(zt | m,xt) =
1√
2πσs

exp

(
− (dtrace − dToF)

2

2σ2
s

)
, (2)

where zt includes both the semantic observation inferred by
our object detection model and range measurements from
the front ToF sensor. When semantic information is not
available, we use the ToF observations to re-weight the
particles according to the Beam End Model [39]

pg(zt | m,xt) =
1√
2πσg

exp

(
−edt(ẑt)

2

2σ2
g

)
, (3)

where zt includes 32 range measurements, extracting 8
beam points from the middle row of our 4 ToF sensors.
ẑt refers to the end points of the beams in the occupancy
grid map, after considering the particle’s pose. EDT is the

Euclidean distance transform [15], which was truncated at
distance rmax and quantized to 8-bit for memory efficiency.
As the ToF measurements are unreliable after 3 m, we discard
observations beyond that range, and only perform the update
step with enough valid measurements. We employed an
aggressive resampling strategy, sampling the particle after
every observation.

V. EXPERIMENTAL EVALUATION

We evaluate the proposed method in several experiments,
to support our claims the we can (i) globally localize a
nano-UAV in a given map, (ii) infer semantic information
under resource constraints, (iii) operate with low power
consumption onboard, (iv) execute in real-time (15Hz ToF,
5Hz camera). Specifically, we show that we can localize
in a featureless map such as a floor plan using a low-
power compute platform and miniaturized sensors, due to
leveraging semantic information.

A. Experimental Setup

To evaluate our approach, we recorded 10 drone flights
(S1-S10) over several weeks, spanning across the lab (Fig. 3),
including quasi-static changes, furniture moving and differ-
ent lighting conditions. The recordings include odometry
from the Crazyflie’s internal state estimation and ToF mea-
surements at 15Hz. For the front ToF sensor, we recorded the
full 8×8 grid, while for the right, back and left ToF sensors,
we only recorded 8 beams extracted from the middle row
of the grid, due to bandwidth limitations. We also recorded
images with 640× 480 pixel at a lower rate of 2Hz, due to
Wi-Fi streaming limitations.

To assess the accuracy and robustness of our approach, we
used AprilTags [35] to compute the pose of the nano-UAV.
We placed 148 AprilTags on the walls, and then used a SotA
laser scanner to create a dense 3D pointcloud of the lab,
shown in Fig. 3. The 3D coordinates of the AprilTags were
extracted by running the detector on orthographic projections
of the walls. In images where the AprilTags are detectable,
we used 2D-3D correspondences to estimate the nano-UAV’s
position [27]. The images were recorded at 640×480 pixel to
enable the detection of AprilTags. Due to the low resolution
and the blurry nature of in-flight images, the GT accuracy
is ∼ 0.1m. The AprilTags are used strictly for evaluation
and are not part of the localization approach. In addition,
we collected training, validation and test sets to train and
benchmark our object detection model.

The given map (Fig. 3) is a floor plan augmented with se-
mantic information in the form of bounding boxes, annotated
by a lab member from memory. The semantic annotations
are not precise in position or size, and did not require any
type of measurement, but are simply hand-drawn. The map
resolution is 0.05m/pixel, covering an area of 280 m2.

B. Object Detection Performance

We evaluated the quantized YOLOv5p object detection
model to ensure that our deployment process can preserve
the accuracy of the full precision model. While images
are acquired at 640x480 pixel, they are downsampled to



Fig. 3: Left: A top view of the dense pointcloud captured with the
Z+F Imager 5016 terrestrial laser scanner, which was used solely
for GT extraction. The full pointcloud has 200 million points. Right:
The semantically-enriched floor plan of the lab. Semantic objects
of interest are represented using their bounding box and class ID.
Different colors represent different object classes. The semantic
information was added manually, without a complex measuring or
mapping procedure.

TABLE I: Average precision(AP) (IoU=0.50) scores for the test set,
confidence TH 0.2, IoU TH 0.5

Class sink door fridge board table plant drawers sofa cabinet extinguisher all

YOLOv5p 0.663 0.579 0.952 0.574 0.51 0.379 0.604 1.0 0.826 0.967 0.705
FP32 0.663 0.508 1.0 0.525 0.515 0.337 0.659 1.0 0.723 1.0 0.693

MIXED 0.663 0.482 1.0 0.752 0.516 0.168 0.554 1.0 0.715 1.0 0.685
UINT8 0.663 0.492 1.0 0.644 0.436 0.168 0.604 1.0 0.68 0.851 0.654

256×192 for inference. We compared the average precision
for each class of interest and the mean average precision
for 4 variations. We trained YOLOv5p using the Ultralytics
framework [22]. FP32 is a full precision model converted by
the NNTool from YOLOv5p. MIXED is a quantized model
with varying precision - the first layer is FP16, and the
rest are UINT8. UINT8 is a NNTool 8-bit quantization of
YOLOv5p. YOLOv5p inference was executed on a NVidia
GTX3070 GPU. MIXED and UINT8 inferences were exe-
cuted on the GAP9. For the evaluation, we collected a test
set with 50 images, including several instances of each class
of interest. The images were captured by the nano-UAV’s
onboard camera. As can be seen in Tab. I, we lose up to 7.2%
accuracy in the quantization and deployment process, but
the performance is still satisfactory, enabling the extraction
of semantic information for localization. Inference examples
from the UINT8 model can be seen in Fig. 4.

Our object detection pipeline consists out of four parts:
(i) image acquisition (ii) preprocessing (iii) quantized neural
network (iv) post-processing. As we experienced limitations
in the camera acquisition speed it takes 50ms to acquire
an image. As the image is acquired by the µDMA [36],
with double buffering this time can be used productively
on GAP9. The second part is preprocessing, which includes
demosaicing and transforming from 10 to 8 bit inputs and
takes 5ms. The quantized neural network takes 38ms, and the
post-processing (non-maximum suppression) takes 0.3ms.
This means that the limiting factor is the image acquisition -
currently we can reach 20fps, however, even if the hardware
would allow to acquire images faster 23fps would still be
the upper limit for the UINT8 network.
C. Global Localization in Floor Plans

To evaluate the capability of our localization approach, we
examined 3 metrics. The success rate, convergence time and
absolute trajectory error (ATE). Since our ground truth (GT)

Fig. 4: A qualitative evaluation of the 8-bit quantized object
detection model on 256× 192 input images.

TABLE II: Algorithm parameters

Method σodom σg σs τt rmax dxy dθ

Nano-SMCL (0.5 m, 0.5 m, 0.5 rad) 8.0 10.0 2.5 m 2 m 0.05 m 0.05 rad
Nano-MCL (0.5 m, 0.5 m, 0.5 rad) 8.0 - - 2 m 0.05 m 0.05 rad

positions are not continuous, as AprilTags are not visible or
detectable in every frame, we only evaluated our predictions
at the timestamps where the GT checkpoints were available.
We consider the point of convergence to be when the ATE is
lower than 0.5m. We consider a localization to be successful
when the pose estimation remains converged until the end
of the sequence. The algorithm parameters are specified
in Tab. II. We tested our approach (Nano-SMCL) using
a particle filter with 4096 particles, that were initialized
uniformly all over the map. For inferring the semantic cues,
we used the 8-bit quantized model, with 256 × 192 input
images.

As a baseline, we used the ToF-based MCL approach [33],
referred to as Nano-MCL, providing input from 4 ToF sen-
sors and not relying on semantics. As portrayed in Tab. III,
our algorithm converges with 90% success rate, with an
average ATE of 0.32m. Our average convergence time is 45s.
A qualitative evaluation of our localization results can be
seen in Fig. 1. Our approach failed to localize on sequence
S7. In this short sequence, the nano-UAV was mostly in
the center of a large and cluttered room, and we could
not make use of the ToF measurement. In addition, there
is also an ambiguity related to the semantic information,
where the configuration of sofa, cabinet and table in close
proximity also exists in another room, causing the particle
filter to maintain two hypotheses as can be see in Fig. 5. We
outperformed the range-only MCL approach on all criteria,
showing that relying solely on geometric information leads
to a success rate of only 10% We speculate that Nano-
MCL is suitable for more detailed maps such as occupancy
grid maps, and also for environments without vast empty
spaces. This is a limiting factor for the short-sighted ToF
sensor, and motivates the use of both semantic and geometric
information.
D. Real-time execution, power and memory footprint

In this section, we present the execution times, power
measurements and memory footprint of our approach.

Execution times In Table IV we summarize the average
execution times (FC and cluster running at 370MHz) of the
different steps, and the resulting processor load per task at the
worst-case execution rate, using the maximal 15Hz from the



TABLE III: Evaluation of the approaches on recordings S1-S10 with
4096 particles. Top: Absolute trajectory error in meters. Bottom:
convergence time in seconds.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 AVG

Nano-SMCL 0.47 - 0.30 0.22 0.36 0.22 0.40 0.25 0.29 0.37 0.32
Nano-MCL - - - - - 0.26 - - - - 0.26

Nano-SMCL 30.87 - 42.39 101.43 19.30 30.32 56.04 54.78 24.69 46.57 45.15
Nano-MCL - - - - - 67.02 - - - - 67.02

Fig. 5: A failed localization scenario due to ambiguity in both
geometric and semantic features. The particles, marked as green
dots, are divided between two rooms with similar properties. The
weighted-average prediction is marked with a red cross.

ToF sensor for the ToF and odometry update, as well as 5fps
for the camera (all tests are executed at around 2fps, limited
by streaming for debugging and repeatability purposes).

When parallelizing on 8 cores, we reach an overall average
speedup of 4.5 on the MCL, leading to a maximum worst-
case load of 0.77 and demonstrating that our semantic
localization approach can run in real-time. Note that this
is a worst-case scenario for computations, since we assume
the maximum frequencies we can acquire data with. In
practice, the MCL updates are only performed under certain
conditions, such as having valid observations and moving
a threshold distance. Note that the camera acquisition time
does not imply any processor load per se, as it can be
executed by the µDMA [36], however, due to camera driver
limitations we can only acquire images with the full FoV
in VGA resolution and with 10 bits per pixel, saved in 2
bytes, resulting in a too big image to double buffer it in
L2. The data coming from the Crazyflie’s STM32 (odometry
estimation and ToF measurements) is much smaller and can
be double buffered.

Power consumption Power consumption of the drone can
be divided to 3 main categories: actuation, sensing, and pro-
cessing, with the motors consuming the most at ∼ 15W . The
ToF sensors require 266mW each in continuous operation,
accumulating to 1.06W, while the camera consumes only
90mW. The Crazyflie stock electronics consume ∼280mW.
The added processor, GAP9, consumes on average 64.7mW
during the quantized YOLOv5p execution and 23mW during
the MCL execution, which results in an average processing
and sensing power consumption of just under 1.5W, staying
inside the 10% power budget usually advised for sensing
and computation on nano-UAVs. For comparison, onboard
compute platforms for standard-size robots, such as Intel

TABLE IV: Execution time, worst-case execution rate, and resulting
processor load for single- and multi-core implementations (where
present).

camera
acqu.

pre-
process

NN post-
process

. cam/ToF
fusion

obs.
ToF

motion resampling total

Worst-case exec. rate (Hz) 5 5 5 5 15 15 15 15
Single-core (ms) 50 4.5 - 0.3 43.9 39.1 10.3 0.6
Load single-core 0.25 0.02 - 0.00 0.66 0.58 0.15 0.01 1.67 + CNN
Multi-core (ms) - - 38 - 8.5 8.6 2.6 0.5
Load multi-core (0.25) (0.02) 0.19 (0.00) 0.13 0.13 0.04 0.01 0.77

Fig. 6: The 1.5MB L2 memory on GAP9 is used for code and data.

NUC10, consume up to 120W, 5 orders of magnitude more
than the GAP9.

Memory The main constraint, fitting everything into the
assigned L2 space, which we illustrate in Fig. 6 As we
update the MCL at up to 15Hz, we allocate L2 memory
for the particles for faster access. This requires 128kB for
4096 particles, where each particle’s state s

(i)
t = (x

(i)
t , w

(i)
t )

is represented by 4 floats (32-bit). For the 371x302 pixel
semantic map, each pixel is represented by 16-bit value to
encode the occupancy grid map and the multiple semantic
maps. We also store a quantized 8-bit EDT, and both map
and EDT require 336kB. We acquire raw images in VGA
resolution (640 × 480 × 22bytes), totaling in 614kB, and
preprocess them to 256 × 256 8-bit RGB images, reducing
the memory consumption to 196kB. The NNTool allows to
limit L2 size allocated for the model inference in exchange
for slower execution (as transfers from external octa-SPI
RAM are necessary). We allocated 300KB for our 8-bit
quantized YOLOv5p as the inference time was only 3ms
longer than with 1MB. Additionally, code and static data
occupy L2 memory as well - 75KB for the MCL code,
225Kb for the neural network inference and 34kb for static
data. The overall peak memory usage is 1.41MB out of the
available 1.5MB, enabling the implementation of additional
functionalities such as obstacle avoidance or navigation.

VI. CONCLUSION

This paper presents a fully-onboard, global localization
approach for a nano-UAV, operating in a full-scale, human-
oriented indoor environment. The proposed approach exploits
low-element count, miniaturized ToF sensors, fusing the
range measurements with semantic information extracted
from the onboard camera, to localize in a semantically-
enhanced floor plan. We present a SotA object detection
model at 20fps and 2.5mJ per frame on a < 100mW RISC-
V multi-core processor. We provide an optimized semantic
map format and a sensor model that are suitable for onboard,
online execution on nano-UAVs. In our experiments, we
show the benefit of exploiting semantic cues for localization,
and demonstrate that our approach can successfully localize
in various real-world scenarios.
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