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Abstract— A Colored point cloud, as a simple and efficient
3D representation, has many advantages in various fields,
including robotic navigation and scene reconstruction. This
representation is now commonly used in 3D reconstruction tasks
relying on cameras and LiDARs. However, fusing data from
these two types of sensors is poorly performed in many existing
frameworks, leading to unsatisfactory mapping results, mainly
due to inaccurate camera poses. This paper presents Omni-
Color, a novel and efficient algorithm to colorize point clouds
using an independent 360-degree camera. Given a LiDAR-
based point cloud and a sequence of panorama images with
initial coarse camera poses, our objective is to jointly optimize
the poses of all frames for mapping images onto geometric
reconstructions. Our pipeline works in an off-the-shelf manner
that does not require any feature extraction or matching
process. Instead, we find optimal poses by directly maximizing
the photometric consistency of LiDAR maps. In experiments, we
show that our method can overcome the severe visual distortion
of omnidirectional images and greatly benefit from the wide
field of view (FOV) of 360-degree cameras to reconstruct various
scenarios with accuracy and stability. The code will be released
at https://github.com/liubonan123/OmniColor/.

I. INTRODUCTION

Over the last two decades, various reality capture methods
have been successfully designed for reconstructing large-
scale environments by using cameras, LiDAR, as well
as other perceptual sensors. Camera-based photogramme-
try methods [1], [2] typically extract visual features from
textured scenes and then utilize the overlapping areas to
align photos taken from different angles. However, these
methods are highly susceptible to variations in illumination
and visual complexity of scenes. LiDAR-based scanning
methods [3], [4], which typically extract structural features
from point clouds, are invariant to such changes. However, a
fundamental drawback of LiDAR is that they do not provide
rich visual appearance information, which is exceptionally
beneficial for humans to recognize geometric information
from enormous amounts of point clouds. Recently, some
systems [5], [6], [7], [8], [9] have been designed to utilize
the complementary properties of LiDARs and cameras to
create colored point cloud maps but still suffer from blurring,
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Fig. 1. The RGB-Colored point cloud reconstructed by our mobile
mapping system. A fly-through rendered image from the point
cloud’s left and right sides.

ghosting, and other visual artifacts, due to inaccurate camera
poses and illumination variations.

To mitigate the problems above, an effective strategy is to
enlarge the camera field of view (FOV) [10]. The expansion
of FOV facilitates capturing additional scene information,
broadening the co-visible regions among successive frames.
It enables the system to capture the surrounding area simul-
taneously to reduce the artifacts from illumination variation
and acquire sufficient correspondence for improved adap-
tive ability in diverse environments. Concurrently, progress
in lens manufacturing techniques has made it possible to
attain complete 360-degree perception with only two lenses
mounted back-to-back [11], providing a cost-effective mobile
mapping solution.

For customized handheld mobile mapping devices with
an extra commercial 360-degree camera [12], several issues
may negatively affect the quality of reconstructed colored
point clouds. First, the input geometric model [13] for which
the colored point cloud is constructed is inaccurate and
produced from noisy data. Second, LiDARs and cameras are
not hardware-synchronized. The color images are not in rigid
correspondence with the LiDAR range measurements. Third,
panorama images are subject to significant visual distortion
caused by the spherical projection process. Lastly, establish-
ing correct correspondences among data in heterogeneous
modalities (e.g., geometry and texture) is challenging. For
instance, several systems [14], [15] that rely on 2D-3D ge-
ometric line correspondences often encounter misalignment
issues between images and LiDAR-reconstructed maps.

In this paper, we describe an approach for optimizing the
mapping of color images produced by an independent 360-
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degree camera to a corresponding geometric reconstruction.
Our method addresses the above problems through a cohesive
optimization framework, wherein we jointly optimize the
poses of all color frames to rectify inaccurate colorization
regions. The camera poses for all images are globally opti-
mized to maximize a unified objective: the photometric con-
sistency of the colored point cloud maps. Furthermore, our
approach is specially adjusted and highly suitable for 360-
degree cameras. It allows us to bypass the non-differentiable
changes in the visibility relationship between the camera
and point cloud during optimization, significantly reducing
the computational cost. Overall, our contributions can be
summarized as follows:

• We propose a novel global optimization approach of
LiDAR-360 camera fusion for convenient and precise
point cloud colorization (see Fig. 1), which can over-
come the severe visual distortion in omnidirectional
images and gain benefit from a wider FOV.

• We propose a novel point cloud co-visibility estimation
approach, which mitigates the impact of the noise in
point cloud surfaces on visibility relationships.

• Our approach operates in a readily available manner,
enabling seamless integration with any mobile mapping
system while ensuring both convenience and accuracy.
Extensive experiments demonstrate its superiority over
existing frameworks.

II. RELATED WORKS

A. Feature-based LiDAR-Camera Alignment Methods

With the emergence of non-repetitive LiDAR, it is pos-
sible to obtain increasingly denser point clouds over time
at stationary localizations, which can acquire more precise
and distinct edge features from the environment, thereby
facilitating the development of targetless LiDAR-camera
calibration methods. In certain studies, [14], [16] have
proposed leveraging inherent 3D and 2D edges extracted
from LiDAR maps and camera images, and [15] designs
an edge alignment method based on the edge feature of
LiDAR intensity images. Extrinsic parameters are optimized
by minimizing the distance between corresponding edge
features in both sensors. Subsequently, each point cloud
is transformed into the camera frame and projected onto
the image plane to obtain corresponding RGB information.
However, the colored point clouds are the indirect outcome of
these methods. All these methods are designed for LiDAR-
camera extrinsic calibration, which works only in edges’
richness in natural scenes.

In addition, CP+ [12] introduces a series of prepro-
cessing operations, including removing blurry images and
dynamic objects and selecting an appropriate region of
interest (ROI) from the point cloud to address misalignment
issues. However, feature mismatches and the absence of
global constraints make these feature-based LiDAR-camera
alignment methods unreliable in unstructured and textureless
environments [6].

B. Motion-based LiDAR-Camera State Estimation Solutions

Paintcloud [5] firstly proposes an offline method for point
cloud colorization in a plug-and-play manner, and it can be
seamlessly integrated with any LiDAR Odometry (LO) sys-
tem [3], [4]. However, the camera poses used in this method
are calculated by linear interpolation with LiDAR trajectory,
which leads to poor colorization results. By simply combin-
ing with the recent LiDAR-Visual-Inertial Odometry (LVIO)
systems, the colorization result can be improved. LVI-SAM
[17] employs a factor graph as a tightly-coupled smoothing
and mapping framework for sensor fusion. R2LIVE [18] and
R3LIVE [6] effectively integrate data from LiDAR-Inertial-
Visual sensors by minimizing the feature re-projection er-
ror and directly optimizing the frame-to-map photometric
error, respectively. In addition, V-LOAM [19] and DV-
LOAM [20] fuse LiDAR-inertial-visual sensors at a level of
loosely-coupled, in which the state is not jointly optimized
with all sensor measurements. The aforementioned Fusion-
SLAM systems are specifically designed for localization and
mapping applications, with some of them having already
demonstrated available dense colored point clouds [6], [21].
However, the cost function of these systems accounts for
frame-to-map photometric residual without any global map-
ping consistency constraint consideration. Moreover, these
SLAM-based online mapping techniques are unsuitable for
accommodating customized high-resolution cameras in order
to achieve enhanced colorization outcomes.

We draw inspiration from the photometric consistency
mapping approach for mesh colorization [22]. However, this
method is primarily designed for mesh representative re-
constructions, limiting its applicability and robustness when
extended to point clouds due to noise on the point cloud
surface. We improve upon this by proposing a point cloud
co-visibility estimation approach. Our algorithm is highly
suitable for 360-degree cameras as it allows us to bypass
the non-differentiable changes in the visibility relationship
between the camera and point cloud during optimization. By
seamlessly integrating high-resolution independent devices
(360-degree cameras) into a mobile mapping system, our
method ensures convenience and accuracy.

III. METHODOLOGY

A. Overview

Fig. 2 presents an overview of our proposed methodology,
in which the input is derived from two robustly established
systems: the LiDAR-Inertial Odometry (LIO) system and the
Visual Odometry (VO) system. By employing LIO-based
approaches [21], [13], [23], we can acquire highly accu-
rate LiDAR poses and enough corrected point cloud maps,
facilitating the generation of a smooth and precise motion
trajectory using high-frequency IMU data. Additionally, [24],
[25], [26] can be optionally employed as preprocessing steps
to enhance the quality of the point cloud results. We denote
LP as the final global point cloud input. Meanwhile, we also
implement a VO system [10], [27] to estimate the time offset
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Fig. 2. Overview of our proposed system.

∆t between LiDAR and camera systems by comparing their
motion signals through cross-correlation.

Given the handheld nature of the mobile mapping de-
vice, motion blur noticeably affects the quality of the input
color images. In order to enhance the computed color point
clouds, our pipeline autonomously chooses a subset of input
images, utilizing a series of keyframes generated by the
VO system as a basis for selection. Then, we evaluate and
quantify the blurriness of each keyframe image using a no-
reference metric [28]. Subsequently, we add the frame with
the lowest blurriness within each time segment (t−, t+)
after selecting the last keyframes. The selected image set
is denoted as I = {I1, ...In}. The coarse keyframe poses
are calculated using linear interpolation based on the initial
extrinsic parameters, temporal calibration result, and device
trajectory. Here, we denote n as the number of keyframes,
C
LT =

{
C
LT1 , ...,

C
L Tn

}
∈ SE (3) as the set of camera

pose, and C
LTi =

(
C
L Ri ,

C
L ti

)
as the i-th coarse camera

pose (i = 1, ..., n). Note that the world frame, denoted
as W , aligns with the LiDAR-based point cloud frame L,
i.e.,

(
C
LRi ,

C
L ti

)
=
(
C
WRi ,

C
W ti

)
. These color images are

used in the subsequent stages of the pipeline. To provide
a comprehensive explanation, the rest of the initialization
stage’s components (Section III-B) are individually described
in detail. We begin Section III-B.1 with the method of
point cloud adaptive voxelization and hidden points removal.
Subsequently, Section III-B.2 introduces the point cloud co-
visibility estimation method. Section III-C demonstrates the
effectiveness of our proposed approach in globally optimiz-
ing camera poses for all panorama images.

B. Initialization

1) Adaptive Voxelization in Hidden Points Removal: The
primary objective of this component is to identify the vis-
ible portion of the point cloud from a given viewpoint.
[5] involves applying the Hidden Point Removal (HPR)
[29] for this operation. This operator involves two essential
steps: point transformation and construction of a convex
hull. However, the existing 3D convex hull algorithms are
not well-suited to the parallel computing model of GPUs
[30], which makes them unsuitable for processing large-scale
point clouds [12]. To address this challenge, we enhance
operational efficiency by leveraging the root nodes within the
voxel map to predefine a maximum search distance, while the
leaf nodes serve as a representation of the point cloud. This

optimization significantly expedites the computation of the
convex hull. However, it is essential to acknowledge that the
utilization of fixed-resolution voxel maps entails a trade-off
between segmentation time and accuracy. To better adapt to
the environment, we have integrated an adaptive voxelization
method [16], [25], [26] into our workflow to accelerate the
process further.

(a) Point Cloud Input (b) Visible Voxels of  Point Cloud

(c) Panorama Image of Visible Points (d) Panoramic View of Visible Voxels

Fig. 3. Adaptive voxelization in Hidden Points Removal. The
input point cloud is organized using an adaptive voxel-based data
structure for accelerated processing. After adaptive voxelization,
each voxel represents a flat surface, maintaining a consistent visible
relationship.

2) Point Cloud Co-visibility Estimation: We begin by
outlining the pipeline for establishing a point cloud co-
visibility estimation method, which aims to reduce the impact
of point cloud surface noise on visibility relationships. To
achieve this, we first subdivide the global point cloud into
multiple voxels and assess the visibility of each point to
determine the visible region for each keyframe Ii based
on the camera view. This operation is illustrated in Fig. 3
(a-d). The set of visible point clouds is denoted as PV =
P1, .., Pn ⊂L P, where Pi = pidx1

1 , ..., pidxm
m represents the

set of visible points for keyframe Ii, idxi denotes the index
of the voxel node that the point pi belongs to, and m is
the count of visible points. Next, we construct a co-visibility
graph based on the co-visibility of the point cloud. If the
count of visible points in two keyframes sharing the same
voxel indexes exceeds a predefined threshold (e.g., half of the
minimum count of visible points among these keyframes), an
edge is established between them. The co-visible points are
added to each keyframe’s set of visible points, denoted as
Pi → P+

i , where P+
i represents the updated visible points

set for each keyframe. The set of co-visible points is denoted
as Pco =

{
P+
i ∩ P+

j

}
i̸=j

. As shown in Fig. 4, we provide



an example of the method’s results mentioned above in a
2D space, offering a quantitative comparison between our
approach and the default intersection method.

𝐶2𝐶1

Points with noise

Visible points in view 2

Visible points in view 1

Co-visible points (Default) View 1 View 2

Co-visible points (Our method)

Fig. 4. An illustration of point cloud co-visibility estimation on a
2D circle simulated point cloud data.

C. Camera Pose Optimization

1) Loss Function: Given the co-visible points set Pco ={
P+
i ∩ P+

j

}
i̸=j

and a sequence of keyframes I, our ob-
jective is to find the optimal camera poses C

LT at which
panorama images are taken, where L and C are the LiDAR-
based point cloud and camera frames, respectively. C

LTi ∈
SE (3 ) denotes the extrinsic parameters from the LiDAR-
based point cloud frame to the camera frame. Specifically,
Fig. 5 demonstrates the LiDAR-based point cloud and cam-
era coordinate systems, as well as the projection function
Π(·) : R3 → R2 that maps a 3D point Cpco = (x , y , z )
to a point p = (u, v) = (φ, θ) in the panorama images’
coordinate frame, where (u, v) ∈ [0, H) × [0,W ) and
(φ, θ) ∈ (−π

2 , π
2 )× [−π, π] denote the coordinates within the

image plane and sphere space. Cpco =C
L Tipco project the

point cloud from point cloud frame into the camera frame.
This function could be explicitly written as follows:

Π(x, y, z) =

(
H

π
arctan(φ),

W

2π
arctan(θ)

)
,

(φ, θ) =

(
z√

x2 + y2
,
y

x

)
.

(1)

Furthermore, let Γi(p, Ii) indicate the function that maps
the 2D coordinates p to pixel values from the keyframes
Ii ∈ Ip, where Ip denotes the set of images associated with
p. Under this setup, Γi

(
Π
(
C
LTipco

)
, Ii
)

be the color at the
image coordinates of the projection of pco onto Ii, given an
extrinsic matrix C

LTi . We want to maximize the agreement
within

{
Γi

(
Π
(
C
LTipco

)
, Ii
)}

Ii∈Ip
for each co-visible point

pco. To this end, we introduce an auxiliary variable C(pco)
to represent the color of pco. If the co-visible point pco is
perfectly aligned with the keyframes I, one could except the
projected pixel values’ set

{
Γi

(
Π
(
C
LTipco

)
, Ii
)}

Ii∈Ip
to be

very close to the point color values C(pco). Our goal is to
optimize the set of camera pose C

LT , with the set of the aux-
iliary variable C = {C(pco)}, where the objective is to min-
imize the discrepancy between

{
Γi

(
Π
(
C
LTipco

)
, Ii
)}

Ii∈Ip

and C(pco). Let Pco
i = P+

i ∩ {P+
j }i ̸=j , where Pco

i denotes
the co-visible points set from keyframes Ii. This can be
formulated as follows:

E(C,CL T ) =
∑
i

∑
pco∈Pco

i

∥Γi(Π
(
C
LTipco

)
)−C(pco)∥2. (2)

The loss function from Equation 2. is the point cloud-
centric sampling loss, which is evaluated at the projected
location of every co-visible point in the point cloud. This
sampling loss has several advantages. First, It fairly incor-
porates all points in the point cloud, thus making it overcome
the severe visual distortion of omnidirectional images. In
addition, the Pco

i for each image Ii is definitely stable for
360-degree cameras. Thus, it allows us to bypass the non-
differentiable changes in the visibility relationship between
the camera and point cloud during optimization, significantly
reducing computational costs.
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Fig. 5. (a) Our mobile mapping system and (b) LiDAR-camera
coordinate system.

2) Alternating Optimization: We have implemented an al-
ternating optimization scheme, inspired by [22], to minimize
the loss function. The basic idea is to alternate optimizing
between C

LT and C. When optimizing C, C
LT is kept fixed,

and vice versa. To initialize the camera poses when C
LT is

fixed, we use the extrinsic calibration between the camera
and the LiDAR Odometry. We then colorize the point cloud
based on the initial coarse camera poses and keyframe im-
ages. However, due to slight inaccuracies in the point cloud
map, illumination changes from different camera views, and
coarse camera poses, colorization errors are inevitable. To
mitigate this problem, we use a form of robust average. Each
point in the point cloud has a set of candidate colors, and the
number of the candidate colors is denoted as k. Then, the
nonlinear problem Equation 2 is transformed into a linear
least-squares problem with a closed-form solution.

C(pco) =
1

kpco

∑
Ii∈Ipco

Γi(Π
(
C
LTipco

)
). (3)

When C is fixed, the loss function Equation 2. decomposes
into an independent loss for each C

LTi :

Ei(T) =
∑

pco∈Pco
i

∥∥Γi(Π
(
C
LTipco

)
)− C(pco)

∥∥
2
. (4)

The core part of OmniColor consists of a simple gra-
dient descent on the sampling loss Equation 4, which is
computationally efficient. Meanwhile, the loss function can



effectively handle the comprehensive analysis of the 360-
degree image and demonstrate robustness against visual
distortion. Fig. 6 shows an example of our loss function
optimization process on the simulation dataset.

Iteration=100 Iteration = 200 Iteration = 300 Iteration = 400

Fig. 6. The colorization result during optimization process. Our
method is capable of processing sphere simulation point clouds,
which inherently lack distinct geometric features.

IV. EXPERIMENTS

To evaluate the performance of the proposed method, we
compare it against other state-of-the-art approaches using
two categories of datasets. The first includes data col-
lected from a mobile mapping device, specifically the Livox
Mid360 solid-state LiDAR for high-resolution point cloud
measurements and a RICOH Theta S 360-degree camera for
qualitative analysis (see Fig. 7). The second category com-
prises data captured from a stationary LiDAR Scanner named
BKL360 within the HKUST Guangzhou campus premises,
including four scenes with over 10 station frames from
various positions and orientations. Additionally, we utilize
the publicly available Omniscenes dataset [31], consisting of
panorama image sequences with ground truth camera poses
and scene 3D point clouds, for comparison with the SfM-
based method [32]. Finally, a simulated dataset is employed
for an ablation study on our method regarding point cloud
co-visibility estimation.

To quantitatively compare our optimized parameters with
ground-truth values in terms of rotation error (unit: degree)
and translation error (unit: centimeters), random rotational
and translational noise is added to the original camera
views before running the optimization algorithm. The initial
rotation and translation errors are computed as 5.0◦/10cm.
The following presentation of experimental results aims to
directly demonstrate the efficacy of our method through
quantitative and qualitative analysis.

TABLE I
ROTATION ERRORS (DEGREES) AND TRANSLATION ERRORS
(CENTIMETERS) ON HKUST GUANGZHOU CAMPUS DATASET

Scene 1 Scene 2 Scene 3 Scene 4 Average

Depth Edge-
Based [14] 0.89/5.45 1.52/6.75 0.76/4.78 3.67/5.81 1.71/5.70

Intensity Edge-
Based [15] 0.82/4.53 0.96/3.67 1.98/6.83 4.37/7.21 2.03/5.56

Ours 0.05/3.83 0.03/2.56 0.04/2.48 0.07/3.35 0.475/3.06

*The initial rotation and translation errors are 5° /10 cm.

A. Quantitative Results
Our method is specifically tailored for the utilization of

a 360-degree camera. To facilitate comparison with other
methods, we rectify the panorama image into a pinhole
image encompassing FOV of 160 degrees and subdivide the
input point cloud into multiple local maps centered around

coarse camera views. Specifically, we compare our methods
with two types of edge feature-based extrinsic calibration
approaches: depth-continuous edges [14] in the point cloud
and edge features extracted from LiDAR intensity images
[15], which align the local maps with color images through
extrinsic calibration. We have fine-tuned the parameters of
each method to achieve the best performance through the
authors’ efforts. Consistent parameter settings are applied
across all scenes for each method.

The experimental results are summarized in Table I. Our
method outperforms other approaches in terms of accuracy
across all scenes in the HKUST Guangzhou campus dataset.
In contrast to edge feature-based methods, which exhibit
sensitivity to the environment and encounter failures in
several local maps, our approach demonstrates robustness
in handling diverse mapping scenes. We acknowledge that
there were failure cases with the edge feature-based method;
therefore, for calculating the final errors of edge feature-
based methods presented in Table I, we only evaluate suc-
cessfully aligned local maps. However, even within these
successful scenes, our method consistently achieves superior
accuracy. The improved performance may be attributed to
two reasons. Firstly, the color space of the omnidirectional
camera is more sensitive than the edge features proposed
in [14], [15]. In our specific scenario, the initial noise is
minimal, resulting in coarse camera poses that are close to
the global minimum solution where feature-based methods’
gradient approaches zero. However, our direct method still
possesses a clear optimized direction leading to more precise
outcomes. Additionally, it’s challenging to identify reliable
correlation features from various modalities, which can cause
edge feature mismatches and degrade alignment accuracy.

We further evaluate with the SfM method [32], which
jointly optimizes image poses, feature points, and calibra-
tion parameters using LiDAR-SLAM as priors. We conduct
experiments on the Omniscenes dataset. This dataset contains
panorama videos with ground truth poses and 3D point
clouds, which can be regarded as the data captured by a
mobile mapping system. For a fair comparison, we convert
the panorama image to six cube pinhole images and initialize
the coarse camera poses by randomly perturbing the ground-
truth values (5.0◦ for rotation; 10cm for translation). In the
optimization processing, we add rigid constraints on the six
cube pinhole images derived from the same panorama image.
The results are shown in Table II. We notice that the accuracy
of our approach is close to the joint SfM method [32].
Although achieving approximate accuracy, ours is a kind of
direct method that does not need any feature extraction and
matching process that can significantly reduce computational
costs. In addition, our optimization scheme makes it easy to
exploit modern GPU power to update all poses and point
cloud colorization results in parallel.

B. Qualitative Results
In addition to the qualitative comparison, we have specif-

ically chosen various failure scenarios involving feature-
based methods from different sequences within the HKUST
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Fig. 7. The rendered images of the colorization result of the HKUST Guangzhou campus dataset (Scene A-D). Left-red: The colored point with noise
before optimization. Right-blue: The colored point cloud optimized by our method.

TABLE II
ROTATION ERRORS (DEGREES) AND TRANSLATION ERRORS (CENTIMETERS) ON OMNISCENES DATASET

PyebaekRoom Room 1 Room 2 Room 3 Room 4 Room 5 WeddingHall 1 Average

Prior Pose-based SfM [32] 0.26/2.75 0.34/4.25 0.26/3.46 0.35/3.57 0.43/3.42 0.35/4.53 0.21/3.26 0.31/3.61
Ours 0.12/2.54 0.24/3.42 0.18/2.96 0.34/3.42 0.38/4.28 0.28/3.53 0.24/4.75 0.25/3.56

*The initial rotation and translation errors are 5° /10 cm.

No optimization

Optimized

No optimization

Optimized

Fig. 8. The colored point cloud reconstructed by our mobile mapping
device. Top: Colored based on interpolated camera poses. Bottom: colored
based on optimized camera poses

Guangzhou campus dataset. These scenarios highlight the
consistent high-quality results achievable with our method
across all scenes. Fig. 7 illustrates how our method signif-
icantly enhances point cloud colorization outcomes. In the
case of the mobile mapping dataset, we conducted a com-
parative analysis against [5], as shown in Fig. 8. The results
clearly indicate the substantial improvement in colorization
achieved by our method.
C. Ablation Study on Point Cloud Co-visibility Estimation

We perform this experiment using a simulated dataset
that we generated, consisting of points within a sphere
with a radius of 10m. Fig. 6 illustrates the progress of our
colorization process during optimization. In this section, we
conduct a quantitative analysis to assess the impact of point

noise on the optimization results. Fig. 9 introduces noise
ranging from 1cm to 10cm. The results demonstrate that our
method effectively mitigates the noise impact on the point
cloud’s surface, leading to more precise camera poses.
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Fig. 9. Ablation study about the points co-visibility estimation method for
camera pose optimization.

V. CONCLUSIONS

In this paper, we propose a novel and efficient algorithm
(OmniColor) to colorize point clouds using an independent
360-degree camera. It takes advantage of the omnidirectional
perception view of the camera and eliminates the impact of
severe spherical distortion while maintaining computational
efficiency. In experiments conducted on both our proprietary
dataset and the public dataset, OmniColor outperforms ex-
isting algorithms in both accuracy and stability compared to
SOTA methods. Moreover, OmniColor seamlessly integrates
with any mobile mapping system, opening up a world of
possibilities for its application in various domains, including
virtual reality and robotics, where the need for clear and
precise colored point cloud maps is paramount.
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