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Tactile-Informed Action Primitives Mitigate Jamming in Dense Clutter
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Abstract—1t is difficult for robots to retrieve objects in
densely cluttered lateral access scenes with movable objects
as jamming against adjacent objects and walls can inhibit
progress. We propose the use of two action primitives—
burrowing and excavating—that can fluidize the scene to un-
jam obstacles and enable continued progress. Even when these
primitives are implemented in an open loop manner at clock-
driven intervals, we observe a decrease in the final distance
to the target location. Furthermore, we combine the primitives
into a closed loop hybrid control strategy using tactile and
proprioceptive information to leverage the advantages of both
primitives without being overly disruptive. In doing so, we
achieve a 10-fold increase in success rate above the baseline
control strategy and significantly improve completion times as
compared to the primitives alone or a naive combination of
them.

I. INTRODUCTION

Conventional robot navigation and path planning seek
to avoid obstacles [1], which limits the ability to interact
with densely cluttered environments. As a result, navigation
among movable obstacles (NAMO) has become an active
area of research [2]-[5]. Even so, the scenes that robots are
presented with in the literature rarely contain substantial clut-
ter. Robots must interact with dense clutter when operating
among the shelves and cupboards of our homes, in the rubble
of collapsed buildings during search and rescue, or in natural
environments for sample collection.

Navigating clutter made up of movable objects appears in
the literature primarily in the form of table-top manipulation
[6]-[8] and lateral access reaching [9]-[11], in part due
to the prevalence of such scenes in factories, warehouses,
and homes. Object retrieval in these scenes can be difficult,
with task requirements ranging from identifying or predicting
target object locations to reaching past obstacles toward
desired locations and retracting once objects are acquired.

Approaches for establishing target locations generally rely
on vision and are therefore greatly affected by occlusions
when scenes are cluttered and constrained. This is common
for lateral access tasks, in which the scene is only accessible
from one side. Visual information is especially limited while
a manipulator is interacting with the scene, partially blocking
its own view. Consequently, simultaneous action and obser-
vation are often infeasible. In this case, a typical approach
is to perform mechanical search by iteratively observing,
performing open loop actions, and retracting to re-gather
state information of the scene [10, 11].

Iterative mechanical search is time intensive, hence it
is desirable to develop methods that can accurately reach
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Fig. 1: a) An end-effector, covered with soft tactile sensors,
reaches toward a target in a cupboard with numerous ob-
jects. Using motion primitives can prevent object jamming.
Inset images show contact forces—circle diameter represents
normal force and arrows represent shear forces—on each
side of the end-effector. In this case, the contact forces have
triggered a clockwise excavate primitive indicated by the red,
curved arrow. b) Typical front view available to the robot
for a lateral access scene. c¢) Image of the right side of
the end-effector being pinched and corresponding inset force
visualization.

target locations based on an initial observation of the scene,
eliminating the need for multiple search cycles. In some
cases, the scene is so densely cluttered that clearing a visual
path to the target is impractical, or the target object has
spectral properties that make it difficult to identify with
vision. To tackle these cases, several works propose methods
to identify target objects using tactile information [12]-[15].

This paper focuses on enabling robots to perform a reach-
ing maneuver toward expected target locations without the
need for vision. This approach removes the issue of self-
occlusion during reaching and can provide robustness to
approaches that continue to leverage vision throughout the
task. The scenario we study in this paper is shown in Fig. 1
with a finger-like appendage covered with tactile sensors
reaching into a crowded cupboard. Prior research has enabled
vision-less reaching by equipping manipulators with tactile
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sensors and reaching to desired locations while modulating
contact forces using model predictive control [16]-[19]. In
this prior work, however, the scenes consist of objects with
fixed bases, so scenes are static and scene-to-scene variation
is limited. In contrast, we consider the task of reaching
among movable objects in a fixed space (e.g. a cupboard),
where the objects may sporadically resist motion as they
jam against adjacent objects and walls. In these scenes, the
objects are so densely packed that there is no collision free
path toward the target location and a strategy that disturbs
the object arrangement is unavoidable.

Contributions: In this paper, we present the use of two
new action primitives that reduce the likelihood that robot
motion will be impeded by object jamming. Additionally,
we investigate how sensor feedback can inform when to
deploy them. The primitives achieve similar performance in
simulation and on hardware using a robot arm with an array
of soft triaxial tactile sensors. An event-based approach based
on contact forces and locations can help to avoid jamming
in severe cases where running the primitives in an open-
loop manner may fail. The results of this study can enable
mobile robot NAMO and reaching through dense collections
of movable objects using compact end-effectors.

II. METHODS

We present two action primitives—burrow and excavate—
to mitigate jamming when reaching for objects in a clut-
tered, lateral access scenario. We argue that deploying these
primitives in a cohesive, tactile-informed manner provides an
additional benefit over deploying the primitives in isolation.
In the following sections we explain the details of these
implementations.

We simplify the problem by taking a known target location
as a prior and focusing on strategies that a single manipulator
can employ. The scenario is analogous to creating a single
“virtual finger” [20] as humans often do when bringing their
index through fifth fingers together to reach into a cupboard
or other cluttered space to retrieve a hidden object.

A. Straight Line Control

A simple method to command motions of the robot is to
send an angular velocity command that points the link toward
the target while sending a velocity command in the direction
of the target location. We implement straight line control by
sending velocity commands according to

Vs = Vmaxdtarg (D

where Vs; is the commanded straight line linear velocity,
Vmax 1S the maximum allowed velocity magnitude, and, as
shown in Fig. 2a, cfm,g is the unit vector pointing from the tip
to the target. Angular velocity commands are implemented
according to

Wsp, = sign((]) - G)wmax (2)

where @s; is the commanded straight line angular velocity,
Oy 1S the maximum allowable angular velocity, and, as
shown in Fig. 2a, ¢ is the angle of dy,,, w.r.t. the y-axis, and

0 is the angle of the end-effector w.r.t. the y-axis. For each
strategy, the maximum velocity magnitudes are decreased
when approaching the goal to avoid unstable behavior.

Straight line control attempts to progress directly toward
the goal without deviation and therefore succeeds quickly in
easy scenarios but will be susceptible to getting stuck due
to object jamming. As such, it is used as the baseline to
compare performance.

B. Burrow Primitive

The burrowing primitive adds sinusoidal lateral motions
to the straight line command in order to generate a snaking
behavior (Fig. 2b). The behavior is qualitatively similar to
that used by some worms and other animals to reduce the
effort of burrowing through granular media [21, 22].

a)@

Fig. 2: Schematic visualizations of a) straight line control,
b) burrowing action primitive and c—e) a sequence showing
the progression of a clockwise excavate action primitive.

This approach clears a corridor and perturbs impeding
objects to reduce the likelihood of jamming. It also allows
compliant contour following if an impeding object is only
resisting progress on one side of the link. This behavior
occurs naturally while burrowing since motion will be pre-
vented in the impeding direction but free in the opposite
lateral direction. As a result, the link will make and break
contact with the impeding object and during the time that it
is not in contact, progress toward the goal can continue.

The linear velocity commands for the burrowing primitive
are implemented through

‘_"SL + Vsin
[[Visz. + Viin||

3)

Vour = Vmax

where Vy;, is perpendicular to vz and is scaled by a sinusoid
function as follows

Visin = (dturg X 2) <1 fbAu;ur) Sin(fburt) 4)
with the burrow amplitude, Ap,,, corresponding to straight
line motion at Ay, = 0 and purely side-to-side motion as
Apyur approaches 1. fp,, is the burrowing frequency and 7 is
the time since the reaching task began. The angular velocity
Wy, 1S commanded according to Eq. (2).
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C. Excavate Primitive

If objects become jammed despite burrowing, an excavate
primitive may free them. The excavate primitive is a scooping
motion such that the link translates in a spiral (Fig. 2c)
and rotates. If the spiral is counter-clockwise (CCW), the
link rotates CCW, and vice-versa. In this way, the excavate
maneuver tends to push impeding obstacles to the side (right
if CW; left if CCW). This primitive is ideally performed
either to clear a jammed object that impedes motion or
prevent downstream jamming. This maneuver is performed
for a set length of time. For a CCW excavate, while ¢ —
texcvstart < lexcv, the commanded velocity goes as:

Sin( 3Tﬂlfrac) — L®excy
—cos( 3Tﬂtfm.)

(&)

Vexev = KVinaxRe

with
14 (Sexcv - l)tfrac

Sexcy

K= (6)

where Ry is the rotation matrix according to the end-
effector’s current orientation, 8; L is the length of the end-
effector, tfrqc = (f — fexcvstart)/texev 18 the fractional time
during the spiral maneuver, and s, is a scaling ratio used
to adjust how rapidly the radius grows during the spiral
motion. If s, = 1, the motion is a pure arc of 37” radians.
If Sexev > 1, a partial spiral is formed, where the commanded
tip velocity grows from vyuy/Sexcy at the beginning of the
excavate maneuver to v, at the end. In this study, we
choose sexey = 2.

The angular velocity is likewise commanded according to
a growing sinusoid to first get around an impeding object
(Fig. 2d) and then push it to the side (Fig. 2e):

Oexey = —K Oprax SIN(270 14 ) (7

with K from Eq. (6). For a CW excavate, the sign of the
x-component of linear velocity and the sign of the angular
velocity are flipped.

D. Control Strategies

While the previous sections describe the motion primitives,
this section explains the control strategies in this paper and
how the primitive motions are combined to form them.

1) Primitives in Isolation: We implement three control
strategies that deploy the primitives in isolation. The straight
line control strategy continuously commands motions ac-
cording to Eq. (1)-(2). The burrow control strategy continu-
ously performs motions as described in Eq. (2)-(4). The ex-
cavate control strategy performs an excavate—as described
in Eq. (5)-(7)—at regular intervals, f;,;,, and resumes straight
line control otherwise. The direction of the excavation is
randomly chosen each time.

The key parameters that adjust the strategies’ behavior are
the burrowing amplitude, Ap,,, burrowing frequency, fp,,
excavate duration, f..,, and excavate trigger interval, #;,.

2) Hybrid Strategies: We develop two hybrid control
strategies to explore the benefits of using tactile feedback
to decide when to execute primitives.

The hybrid clock control strategy deploys the excavate
primitive at fixed, clock-driven intervals as before (i.e. ev-
ery i, seconds) and executes the burrow control strategy
otherwise.

The hybrid event control strategy triggers primitive mo-
tions according to event-driven, sensory conditions. This
strategy performs an excavate in two sets of circumstances:
(1) if a light, extended contact (Fpushmin < F < Fpushmax
for #,,s, or longer) is detected at the tip of the end-effector
or (2) if progress toward the goal slows substantially and
a large contact force is detected (the distance to goal has
not been reduced by viax(t —tprog) and F > Fo,). Case
(1) will usually occur if an object is being pushed to
the back of the scene; in this case an excavate primitive
can potentially forestall future jamming. Case (2) usually
signals that progress has stopped due to object jamming. The
location of the peak contact force (i.e., whether on the left
or right side of the end-effector) affects whether the strategy
performs a CCW or CW excavate procedure, respectively.

When not excavating, the hybrid event control strategy
will burrow if a moderate force threshold, Fy,,, is exceeded
but will resume the straight line control strategy otherwise.
In this way, a direct path to the goal is taken when possible.

III. EXPERIMENT SETUP

We perform experiments both on hardware and in simu-
lation. This section provides details about both setups and
specifies the experiments we conduct.

We constrain the task such that the robot must complete its
reaching within a predefined time limit, #,. We use velocity
control with a maximum linear velocity magnitude, v;,,, and
angular velocity, ®,,,, and do not allow the robot to exceed
a desired maximum in-plane wrench: [F, < Fux, Fy < Fiay,
MZ < Minax]-

A. Hardware

1) Sensorized end-effector: The control strategies as de-
scribed in Section II-D are deployed on a sensorized, finger-
like end-effector, as seen in Fig. 1c. The sensor provides
triaxial contact force information from each taxel at 25 Hz.
It does this by reading magnetic flux changes caused by
deformations of magnets embedded in elastomer structures.
Fabrication, communication, and additional characterization
details can be found in [23].

Unlike the reported previous application, it is now neces-
sary to compensate for changes in orientation with respect
to the earth’s magnetic field. To separate this effect, we
periodically perform a compensation at ~ 3 Hz as follows.
We represent each force component of each sensor array (e.g.
the x-component of Sensor Array 1) as a surface where each
taxel’s measured force corresponds to a height measurement
of the surface at that taxel location. In contrast to highly
localized variations due to contacts, we expect measurements
that are consistent across the surface to correspond to bulk
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magnetic field changes. Therefore, we fit a plane to these
measurements using RANSAC then subtract it from the
reading of each taxel. This process is performed for all three
force components on each sensor array. The resulting data
are communicated at ~15 Hz to the robot controller.

2) Lateral Access Environment: The scene is divided into
a 5x7 grid where individual objects are placed. The total
number of objects and specific object IDs for each grid
location are pseudo-randomly generated to produce a scene
as in Fig. 3a. The start and goal x-locations are randomly
selected at the front and back of the scene, respectively. Note
that although Fig. 3b shows an overhead view of the scene,
a robot reaching into a cabinet does not typically have this
view. Specific values for the physical setup, including scene
depth, dscene and width, wgeene, can be found in Table 1.

6.
"nee O
. @ @

Fig. 3: a) Pseudo-randomly generated scene layout on a grid
with b) corresponding physical setup to enable repeatable
comparisons between control strategies. c-d) Example ran-
domized scenes in PyBullet with darker objects correspond-
ing to heavier objects.

TABLE I: Hardware Setup Values

. min 143 ¢
Object Mass X 570g
. . min 43cm x 43cm
Object Footprint X S 8om < 88om
dscene 38cm | Vi 0.045m/s Fox 150N
Wcene 53cm | Wpax 0.1rad/s Mo | 45N-m

3) Robot Control: The robot arm used for reaching trials
is the Flexiv Rizon 4, which is controlled using a custom
Robot Operating System (ROS) architecture. The trial work-
flow includes idle, homing, and reaching states, followed by
a resetting state that enables the robot to be re-positioned
for another trial once it has reached the goal region or timed
out. At this time, the scene is manually reset and the next
control strategy is deployed. Each control strategy is run on
the same scene before cycling to a new scene.

B. Simulation

We reproduce the hardware setup in simulation to evaluate
and refine the motion primitives and enable subsequent
performance tests on a larger number of scenes than would

be practical on hardware. Example scenes can be seen in
Fig. 3c,d. In addition to variations in the precise force
thresholds and velocity limits, the primary difference be-
tween the simulated and hardware environments is the object
placement. In simulation, objects are placed at continuously
valued, randomized locations rather than discretized loca-
tions on a grid. The simulation code can be accessed here:
https://github.com/danebrouwer/clutter-jamming.git.

C. Experiments

In the following section, we validate the effectiveness of
the primitives in isolation, evaluate whether the performance
is robust to primitive parameter variations, and compare the
performance of open- and closed-loop hybrid strategies.

The nominal primitive parameter values, ranges for the
parameter sweep, and triggering thresholds for the hybrid
event control strategy can be found in Table II. Nominal
values and triggering thresholds were chosen based on initial
qualitative performance on several pilot scenes. The success
metrics are final distance to the goal region (a circle with
radius 0.75cm) and completion time. A successful trial is
achieved when the end-effector enters the goal region.

TABLE II: Control Strategy Values

Primitives: Nominal Values

Abur 0.83 fbur 1Hz

Texcy 5s ttrig Ss
Primitives: Parameter Sweep

Apur [0.45:0.05:0.90] Sfour [0.5:0.125:1.625] Hz

texcy [1.875:0.625:7.5] s ttrig [1.875:0.625:7.5] s

Hybrid Event Values

Foar S0N Foer T0.0N
Fpush min 0.5N F)msh‘max 75N
Lpush 2.0s tprog 3.0s
IV. RESULTS

A. Primitives in Isolation — Open Loop

To validate the effectiveness of the proposed primitives,
we evaluate the performance of the three control strategies
described in Section II-D.1 on the same randomized scenes—
300 simulated and 25 on hardware.

The resulting distributions of final distance to goal and
completion time can be seen in Fig. 4, where normalized
distance to goal is computed as dgyoa /dscene and normalized
completion time iS feomp/fror-

For the experiments in hardware, straight line, burrow, and
excavate success rates are 8%, 72%, and 56%, respectively.
For the simulated experiments, the success rates are 22%,
67%, and 56%, respectively, showing a similar trend.

In both simulation and physical trials, the burrow and
excavate primitives achieve significantly lower distance to
goal and completion time over the straight line case. In these
experiments, burrow slightly outperforms excavate, with a
lower average distance to goal and completion time as well
as higher success rate.


https://github.com/danebrouwer/clutter-jamming.git
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Fig. 4: Distributions of a) normalized distance to the goal
and b) completion time for the straight line control case and
both proposed action primitives on 300 simulated test scenes
and 25 physical test scenes. Distance to goal is represented
as proportion of scene depth, dscene, and completion time as
proportion of max duration, t,,. **** indicates p < 0.0001
according to a Wilcoxon signed rank test.

B. Primitive Parameter Variation

Since the initial hardware and simulated results demon-
strate similar trends, we use simulation to provide insights
about how performance changes due to parameter variation.
We conduct a parameter sweep to evaluate performance of
the burrow and excavate control strategies on 50 scenes for
variations in Apyr, fpurs tirigs and feey. The values for the
parameter sweep can be found in Table II.

We run the straight line control case on the same 50
scenes in order to compare performance. For each choice
of parameters (e.g. fp,r = 1 Hz, Ap, = 0.83), the average
performance on these 50 scenes is stored as a ratio of the
straight line performance for both metrics. All points for
the parameter sweep, now representing a surface, are passed
through a Gaussian filter with a standard deviation of ¢ =
1.0. These smoothed surfaces are plotted as shown in Fig. 5,
where each contour value is the relative performance above
the straight line control strategy.

For the 50 trials, the straight line control strategy has an
average normalized distance to goal and completion time
of approximately 0.098 and 0.761, respectively. As seen in
Fig. 5, burrow and excavate outperform the straight line case
in both distance to goal and completion time even when taken
at the worst cases, where distance to goal is still improved by
~ 3-fold and completion time is improved by ~ 20%. The
straight line success rate is 38% on these scenes whereas the
worst case success rates for burrow and excavate are 62%
and 68%, respectively.

The results in Fig. 5a display that if distance to goal is
the main objective, low A, paired with a high f3,, should
be avoided. Fig. 5b suggests that if completion time is the
main objective, a high A, should be avoided at the cost of
distance to goal as noted previously.

Distance to goal Completion time
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Fig. 5: Contour plots with varying primitive parameters
showing performance relative to the baseline straight line
control strategy for a) burrow distance to goal, b) burrow
completion time, c) excavate distance to goal, and d) exca-
vate completion time. Even in the worst cases, the burrow
and excavate control strategies substantially outperform the
straight line strategy, with ~ 3-fold improvement on distance
to goal and ~ 20% improvement on completion time.

For the excavate control strategy, Fig. 5c shows that if
distance to goal is the main objective, a high #,;, and a high
texev sShould be avoided. Fig. 5d displays that if completion
time is the main objective, a low #;;, and a high fex., should
be avoided.

C. Hybrid Strategies — Open-Loop vs. Closed-Loop

The results of evaluating performance on the same 300
simulated and 25 physical scenes as in Section IV-A for both
hybrid strategies can be seen in Fig. 6, where normalized
distance to goal and completion time are computed as before.

Hybrid clock and hybrid event success rates are 72%
and 84%, respectively, for the hardware experiment. For the
simulated experiment, the success rates are 68% and 71%,
respectively. As seen in Fig. 6a, in tests with hardware, the
hybrid event strategy significantly outperforms the hybrid
clock strategy in terms of distance to goal. As seen in Fig. 6b,
the completion times for the simulated and hardware tests
of the event-driven strategy are both significantly reduced
in comparison to their respective clock-driven times. In
addition, we observe that during the 25 hardware trials the
hybrid clock strategy resulted in 5 items being pushed out of
the front of the cabinet whereas for the event-driven strategy
this occurred once.

Comparing these results to the previous hardware tests,
the hybrid event control strategy significantly outperforms
all other control strategies in terms of completion time; it
also significantly outperforms the straight line, excavate, and
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Fig. 6: Distributions of a) final distance to the goal and b)
completion time for the hybrid clock and hybrid event control
strategies on 300 simulated test scenes and 25 physical test
scenes. Distance to goal is represented as proportion of scene
depth, dscene, and completion time as proportion of max
duration, t,. * indicates p < 0.05 according to a Wilcoxon
signed rank test.

hybrid clock control strategies in terms of the distance to
goal. Of the 25 hardware trials, the hybrid event strategy
only failed on one scene that any other strategy succeeded
on; in contrast, every other strategy failed on at least four
scenes that were successful for that the hybrid event strategy.

V. DISCUSSION

Although many researchers have acknowledged the “sim
to real” gap in tasks that involve contacts [24, 25], the
simulated results here—despite using a simplified rigid-body
model of contacts in PyBullet—generally matched the trends
seen in hardware. As such, they were sufficient to alter
strategies and predict which would work best. This result
is consistent with other findings which show that abstracting
motion into primitives and sensory information into features
can aid in managing uncertainty [26]-[28]. At each instant,
the important question to determine how to alter motion
was the approximate magnitude and location of the peak
contact force on the end-effector. Additional details of the
interaction forces were less important. We note also that a
single force/torque sensor may not be fitting for this task
since it would not report multiple contact locations.

Nonetheless, the results in hardware for the event-based
hybrid strategy were better than in simulation. Upon inves-
tigation, a likely reason is that the actual contact forces,
as measured by the soft triaxial contact sensors, had less
noise than the simulated contacts and hence worked better
as triggers for the excavate primitive. A second point of
interest is that while the open-loop strategies—especially

the burrow strategy—work well most of the time, they
experienced more failures than the event-driven strategy,
especially in hardware. Furthermore, the primary advantage
provided by tactile information is in swift responses to
contact phenomena which enabled faster reaching than all
other strategies investigated.

VI. CONCLUSION AND FUTURE WORK

This work furthers a paradigm that embraces, rather than
avoids, full-body contact with the environment. This mindset
is advantageous for reaching target locations swiftly in
densely cluttered scenes since it is difficult to map and plan
minimally disruptive paths in constrained, occluded spaces.
In this paper, we present readily adoptable, generalizable
approaches to enable interaction with these unstructured
environments.

We propose the use of two action primitives—burrow
and excavate—for reaching toward target locations in dense
clutter. We demonstrate that the primitives achieve a sub-
stantial improvement in mitigating jamming across a range
of parameters. In these actions, soft tactile sensors are
advantageous to reduce impulsive contact forces and detect
contact locations and forces on the end-effector. These data
inform an event-driven hybrid strategy that combines the
primitives with a baseline straight motion. In comparison, an
open-loop combination of the strategies is both slower and
more prone to unproductively disturbing the arrangement of
objects.

The findings in this study reveal several possible areas
of expansion and improvement. Investigating performance
as the scene and object dimensions change will inform
whether these approaches are useful in a wide range of
scenarios. The proposed primitives can be tools for future
researchers using reinforcement learning to learn higher level
plans since using motion primitives as discrete action spaces
has been shown to improve performance and learning rate
[29]. Optimizing these strategies may improve performance
and elicit multi-objective trade-offs that enable tasks to be
completed according to the requirements of the application.

Expansion to multiple sensorized links, 3D clutter, and
hardware to acquire objects remains to be demonstrated.
Further investigation of which tactile features most benefit
the mitigation of jamming and how tactile data compares
to other sensory modalities, including vision, may inform
system design for robotic interaction with clutter. Finally,
including fixed obstacles may increase the need for tactile-
informed planning rather than purely reactive strategies and
storing a time history of contacts to characterize the scene
is likely essential toward this end.
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