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Abstract— It is often necessary for drones to complete deliv-
ery, photography, and rescue in the shortest time to increase
efficiency. Many autonomous drone races provide platforms
to pursue algorithms to finish races as quickly as possible
for the above purpose. Unfortunately, existing methods often
fail to keep training and racing time short in drone racing
competitions. This motivates us to develop a high-efficient
learning method by imitating the training experience of top
racing drivers. Unlike traditional iterative learning control
methods for accurate tracking, the proposed approach itera-
tively learns a trajectory online to finish the race as quickly as
possible. Simulations and experiments using different models
show that the proposed approach is model-free and is able to
achieve the optimal result with low computation requirements.
Furthermore, this approach surpasses some state-of-the-art
methods in racing time on a benchmark drone racing platform.
An experiment on a real quadcopter is also performed to
demonstrate its effectiveness.

I. INTRODUCTION

Drones are increasingly used for delivery, photography,
search, and rescue [1], often in complex real-world environ-
ments. Propelled by these applications, autonomous drones
have made significant progress in navigation and control,
but the performance is still far from that of the human
pilot. Therefore, many studies and innovations are needed
to fully exploit the physical capabilities of drones. For this
purpose, several autonomous drone racing competitions have
been launched[2], such as the AlphaPilot Challenge [3],
AirSim Drone Racing Lab [4], and Intelligent UAV Racing
Championship (drone.sjtu.edu.cn) by SEIEE in 2021 (Our
lab ranked first in a simulation race and second in a real-flight
race). These competitions enable the generation of racing
track orchestration and come with a suite of gate assets. As
shown in Fig. 1, the drone is required to pass through several
gates in the shortest time to win the race.

Given the conditions of the known environment, push-
ing drones to their physical limits presents challenges to
researchers. There are also many existing solutions to au-
tonomous competitions, including the use of continuous-time
polynomial trajectory planning [5], the time-discrete trajec-
tories method with reinforcement learning (RL) methods [6],
[7], search and sampling-based methods [8], and model-
based optimization methods [9]. Continuous-time polynomial
trajectory planning has high computational efficiency, but
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these polynomials are inherently smooth, therefore, cannot
represent rapid states or input changes, making polyno-
mial methods suboptimal [10]. Optimization methods allow
drones to select any input within each discrete time step
range but often have a great demand for computing resources.

Fig. 1. The nonlinear drone’s poses and location captured in RflySim
(rflysim.com) [11].

Accurate model information of the controlled object is
often challenging to obtain. Therefore, model-free control
methods are necessary. Iterative learning control (ILC) is
a essential model-free control method and is suitable for
dynamic systems with repetitive operation characteristics
[12], [13]. ILC can complete accurate tracking tasks within
a limited time[14]. With ILC, the tracking error in the
last iteration is used to correct the unsatisfactory control
command, thereby improving the tracking accuracy of the
system iteratively[15]. However, the existing ILC is only
used for a specific trajectory tracking problem [16] and
cannot be directly applied to drone races.

In this paper, a model-free online time-optimal spatial ILC
approach inspired by the training experience of top racing
drivers is proposed for drone racing. First, a virtual tube
is established based on the autonomous drone racing scene.
Then, a time-optimal spatial ILC approach is proposed, with
the drone’s trajectory within the virtual tube. The primary
control principle is to make acceleration and deceleration
decisions according to different positions of the drone in the
virtual tube. Finally, the proposed approach can iteratively
learn the control commands to pass through gates quickly.

The contributions of this paper are mainly divided into
two aspects.

• Following top racers’experience, a new and high-
efficiency model-free approach to autonomous drone
races is proposed. Through theoretical analysis and
experimental comparisons, it is found that this approach
can achieve the optimal result with low computation
requirements.

• A new contribution to ILC theory to broaden the scope
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of its applications. The proposed approach addresses
time-optimal control problems with a new controller
structure, which offers a new start to exploit the po-
tential of ILC.

II. PROBLEM FORMULATION

In this section, “path” is used to replace “trajectory” for
the elimination of time dimensional. The drone model will
be transformed into the space domain from the time domain.
The general racing missions and problem transformations are
also presented.

A. Drone Model
Many groups or companies have designed open-source

Semi-Autonomous Autopilots (SAAs) or offered SAAs with
Software Development Kits (SDKs) for drones. Not only
can it avoid the trouble of modifying the low-level source
code of autopilots, but also it can utilize reliable commercial
autopilots to achieve targets. This will simplify the complete
design. With SAAs, for simplicity, the drone is considered
as a mass point in R2 as{

ṗ (t) = v (t)

v̇ (t) = a (t)
, (1)

where p (t), v (t), a (t) ∈ R2 indicate the position, velocity
and acceleration of the drone. Then, its acceleration is
decided by

a (t) = −τ (v (t)− vc (t)) , (2)

where vc (t) ∈ R2 indicates the control command. The
maneuver parameter τ > 0 is proportional to the drone’s
maneuverability; different drones always have different τ to
represent their mobility. The drone model proposed in this
part is only used for analysis. In fact, the proposed approach
design does not rely on the model information. During the
experiments and simulations, τ is unknown and the model
in AirSim [17] cannot be directly represented by (1) and (2)
as well.

The command vc should be bounded. As a result, the
velocity v is also bounded. Therefore, it is necessary to make
the control command vc subject to a saturation constraint as

vc = sat (v′
c, vmax) ,

= κvm (v′
c)v

′
c,

(3)

sat (v′
c, vmax) ≜

{
v′
c ∥v′

c∥ ≤ vmax

vmax
v′
c

∥v′
c∥

∥v′
c∥ > vmax

,

κvm (v′
c) ≜

{
1 ∥v′

c∥ ≤ vmax
vmax

∥v′
c∥

∥v′
c∥ > vmax

,

(4)

where v′
c ∈ R2 indicates the original control command, and

vmax indicates the maximum allowable control command.
With the spatial differentiator map ∇ = d

dl mentioned in
[18], [19], the drone model (1) is mapped in the space
domain as 

∇p (l) =
1

v (l)
v (l)

∇v (l) = − τ

v (l)
(v (l)− vc (l))

. (5)

in which v (l) > 0 indicates the drone’s tangential pace along
the path. In order to facilitate the transformation between t
and l, the relationship between the temporal coordinate t
and spatial coordinate l is obtained for later analysis. For
v = dl/dt, l =

∫ t

0
v (s) ds is obtained. With v > 0, l strictly

increases, so with the function mapping l = f (t) given,
the inverse mapping exists globally. Since τ > 0, given any
constant vc(t), v(t) → vc(t) as t → ∞. The veclocity can
be written as

v(l) = vc(l) + ∆v(l). (6)

To simplify the proof process, an assumption is made.
Assumption 1. The perturbation ∆v (l) satisfies

∥∆v (l)∥ ≤ εv (l), where ε > 0 is bounded.

Gates

( )lγ
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p
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Virtual Tube

Fig. 2. Virtual tube suitable for the racing track.

B. Racing Mission Description

Given the current standard drone competition environment,
a task description is required. These competitions enable the
generation of racing track orchestration and come with a
structure of drone racing with gates as a set course. As is
shown in Fig. 2, each gate has its pose and size, which
indicate the landmarks in the race environment. During
racing, the object is to pass through all the gates at minimum
possible time, without collision.

Based on the above background, the following mission
description is given. In the scene, there are N gates to be
passed through. Since each gate has a crossing position, there
are N+2 waypoints (including the start point and end point)
p̃ = [p̃0 p̃1 · · · p̃N p̃N+1]T ∈ R(N+2)×2 that must be
passed through, as shown in Fig. 2. Let set G indicate spatial
distribution of the gates’ frame. The drone needs to pass
through these gates in the shortest time while avoiding the
collision.

From the above description, a spatial continuous virtual
tube TV ∈ R2 suitable for racing scenes is established to
represent the spatial constraints. The waypoints form the path



γ ∈ R2. The virtual tube is generated with the path and the
constraints. The established virtual tube does not intersect
with the gates’ frame, namely TV ∩ G = ∅.

C. Problem Transformation

According to the racing mission description, the drone rac-
ing problem becomes the drone passing through the virtual
tube to reach the destination as soon as possible. Formally,
the problem is formulated as a time-optimal problem

min
vc(l)∈R2,l∈[0,L]

T

s.t. ∇p (l) =
1

v (l)
v (l)

∇v (l) = − τ

v (l)
(v (l)− vc (l))

∥vc (l)∥ ≤ vmax

p (l) ∈ TV

L =

∫ T

0

v (t) dt,

(7)

in which L indicates the length of the virtual tube’s center
path along the unit tangent vector.This paper aims to achieve
the goal of a drone passing through the virtual tube as quickly
as possible by using the spatial ILC method. Obviously, the
object here is definitely different from that of the traditional
ILC.

III. SPATIAL ITERATIVE LEARNING CONTROLLER
DESIGN

This section first establishes a spatial virtual tube with
the path and obstacle information to suit the racing scene.
Furthermore, the time-optimal spatial ILC within the virtual
tube is designed, inspired by human racers’ training strategy.
Convergence proof is made. Finally, why the spatial ILC can
solve the time-optimal optimization is analyzed.

A. Virtual Tube Modeling Based on Gates

In our previous work, the waypoints are used to obtain
the path, and the gates’ information help establish the
virtual tube [20]. The process of establishing the virtual
tube includes two parts: the generator curve and the cross
section[21]. Intuitively, a virtual tube is generated by a cross
section perpendicularly moving along the generator curve,
and the surface is the boundary of the virtual tube [22].
The following related definitions of the virtual tube must
be drawn to propose the controller.
1. Generator curve, denoted by γ, represents the race path

of the racer.
2. Virtual tube, denoted by TV .
3. The boundary of virtual tube, denoted by ∂TV .
4. Unit tangent vector, denoted by tc, represents the unit

tangent vector along the path γ.
5. The radius of virtual tube, denoted by rt (l), represents

the distance from the generator curve to the boundary.
6. The generator curve projection, denoted by m. For any

given point p ∈ TV , the generator curve projection is
defined as m (p) = p̃, where p̃ ∈ γ.

Fig. 3. The left car on the center is safe to accelerate and the right car
near the boundary needs to decelerate to ensure safety.

There is a relationship shown as

tTc (m (p)) (p−m (p)) = 0, (8)

where p ∈ TV . Besides, an assumption is made on the
proposed virtual tube.

Assumption 2. The drone can obtain the virtual tube
information through measurement or prior knowledge.

For a drone located at any position within a virtual tube,
there is a moving direction tc for it to race in the virtual
tube. Because of the limitation of the space, how to generate
a virtual tube is not presented here. A brief introduction will
be given in the simulations.

B. Spatial ILC Design

1) Human Racer Strategy: By referring to the training
strategies of top human racing drivers in racing games, a
spatial ILC scheme is designed based on the virtual tube
established above. Racers are customarily required to know
the path information in advance to plan a reasonable velocity
distribution strategy for the actual racing scene. This speed
distribution is designed based on location, taking into account
factors such as curve radius, number of corners, and how the
curves in the track are made up.

As described in [23], as the corner radius increases, the
racer tends to take a faster forward speed, while when the
radius decreases, the racer tends to slow down through the
corner. If the car takes a large speed when cornering, it is
prone to deviate from the track [24], even failing the race.
As shown in Fig. 3, when the car is in the center of the road,
it is safe to accelerate. On the other hand, when the car is
close to the boundary, it is better to decelerate. Otherwise, it
may cause the car to run out of the track. According to the
principle above, the time-optimal spatial ILC is designed.

2) Spatial Iterative Learning Control: Based on the es-
tablished virtual tube, the controller is designed as

v′
c (l) = vh (l) + vp (l) , (9)

with two terms shown in Fig. 4. vh (l) is used for tangential
pace control, and vp (l) is used for path convergence, namely
helping the drone track the path γ.

(i) Path Convergence. Since the drone has a closet point
on the virtual tube center curve, the error between the drone
and the path is defined as

ep (l) = m (p (l))− p (l) , (10)



in which p (l) represents the current position of the drone.
Convergence control is based on the error. According to the
analysis about the human racer strategy, the path convergence
controller here is designed as

vp (l) = −k0(l)v (l)

(
∂m

∂p
− I2

)T

ep (l) , (11)

ensuring that the drone will not deviate from the virtual tube
when the curvature of the center path is large or the tube
is narrow. In (11), k0 (l) depends on the curvature and the
width of the virtual tube, which is shown as

k0 (l) = k2 + k3K(l) + k4
1

rt (l)
, (12)

where K(l) indicates the curvature, rt (l) indicates the width
of virtual tube and k2, k3, k4 > 0. The above design implies
that the path convergence control should be strengthened at
a narrower or more curved virtual tube section. There exists
a relatianship [1] (

∂m

∂p

)T

ep (l) ≡ 0, (13)

so (11) is equivalent to

vp (l) = k0(l)v (l) ep (l) . (14)
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Fig. 4. The control command is divided into path convergence control
and tangential pace control.

(ii) Pace Controlling. The pace controller is designed as

vh (l) = v (l) v∗ (l) tc (l) , (15)

where v∗ (l) is used for adjusting the tangential pace and
tc (l) indicates the unit tangent direction at the location l.

Consistent with the idea of ILC, from the slow start to
the continuous acceleration, each iteration will “summarize”
the previous experience and constantly make adjustment
dynamically at each location in the virtual tube to achieve
the best. According to the training strategy of the racer, when
∥ep (l) ∥ is large, it often implies that the race car is currently
in a dangerous zone, a deceleration strategy has to be adopted
to ensure safety. Otherwise, an acceleration strategy has to
be performed. Based on the ideas above, a PD-type learning
law for v∗ is designed in the form of the spatial ILC,

v∗k+1 (l) = v∗k (l)−χ (kp∥ep,k (l) ∥+ kd∇∥ep,k (l) ∥) , (16)

especially used for adjusting the contribution of vh in (9),
where ∥ep,k (0) ∥ = 0, kp, kd > 0, k indicates the iteration
number and χ is a nonlinear activation function shown in
Fig. 5 which satisfies

χ (x) = kχ (x) (x− xth) , 0 < α ≤ kχ (x) ≤ β. (17)

In Fig. 5, the threshold value xth > 0 represents the

Safety Zone Danger Zone

Acceleration
*v  Deceleration

*v 

 

Fig. 5. The form of function χ related to the error which divides the
danger and safety zone with threshold xth.

demarcation between the safety and the danger zone. When
the tracking error is large, the drone is more likely to fly
out of the boundary, corresponding to the right side of xth

in the function; on the contrary, it is safer, corresponding to
the left.

With the error (10) and controller designed as (9), (11),
(15) and (16), one has

eTp,k∇ep,k = eTp,k

(
∂m

∂p
− I2

)
∇p

= eTp,k

(
∂m

∂p
− I2

)
1

v
(vc +∆v)

= −eTp,k
κvm

v
(vp + vh +∆v)

= −κvmk0e
T
p,kep,k − κvm

v
eTp,k∆v.

(18)

So
∇∥ep,k∥ ≤ −γ1∥ep,k∥+ γ2 (19)

is obtained, where γ1 = κvm (v∗, ∥ep,k∥) k0, γ2 ≤ ε and (3),
(4), (6), (8), (13) are ultilized. It is easy to obtain

∂ (γ1∥ep,k∥)
∂∥ep,k∥

≥ γ3 > 0, γ4 ≥ ∂ (−γ1∥ep,k∥)
∂v∗

≥ 0, (20)

when v∗ and ∥ep,k∥ are bounded. So using the mean value
theorem, (19) is written as

∇∥ep,k (l) ∥ ≤ −γ3∥ep,k (l) ∥+ γ4v
∗
k(l) + γ5, (21)

where γ5 > 0 is bounded.
Theorem 1. Under Assumptions 1,2, suppose a drone

model satisfies (5), and the controller is designed as (9),
with (11), (15) and (16). If |1− kχkdγ4| < 1, then the term
v∗k is uniformly ultimately bounded, as k → ∞.

Proof. Since ∥ep,k(0)∥ = 0, (21) becomes

||ep,k (l) || ≤
∫ l

0

e−γ3(l−s)(γ4v
∗
k (s) + γ5)ds. (22)



Further, with (17) and (18), the learning law (16) becomes

v∗k+1 (l) ≤ (1− kχkdγ4) v
∗
k (l) + (kχkdγ3 − kχkp)∫ l

0

e−γ3(l−s) (γ4v
∗
k (s) + γ5) ds− kχkdγ5 + kχxth.

(23)

According to [25], if |1 − kχkdγ4| < 1, then the term v∗k
is uniformly ultimately bounded, as k → ∞. The proof of
Theorem 1 is completed. □

3) Optimality Analysis: In the following, optimality and
parameter insensitive analysis is made on an arc tracked line
with radius r > 0 without loss of generality. Because an
arc has the same curvature, ∥ep (l)∥ and v (l) converge to
constant after a sufficient number of learning trials, namely
∥ep (l)∥ = ep, v (l) = v, l ∈ [0, L] . This further implies
∇∥ep (l)∥ = 0, l ∈ [0, L]. In this case, ep = xth/kp accord-
ing to (16). The error is decomposed into two components

∇∥ep (l)∥ = ∇
∥∥e′p (l)∥∥+∇

∥∥e′′p (l)∥∥ , (24)

where the term ∇
∥∥e′p (l)∥∥ is determined by the pace speed

control and ∇
∥∥e′′p (l)∥∥ by the path convergence control.

Intuitively, the term ∇
∥∥e′p (l)∥∥ has the form ∇

∥∥e′p (l)∥∥ =
k′v(l)
r+ep

= k′v
r+xth/kp

, k′ > 0, which means a faster angle
speed leading to a larger error. On the other hand, the
term ∇

∥∥e′′p (l)∥∥ has the form ∇
∥∥e′′p (l)∥∥ = −k′′ep =

−k′′xth/kp, k
′′ > 0. The fact ∇∥ep (l)∥ = 0 further

0 50 100 150 200

1

1.1

1.2

Fig. 6. Insensitivity of T/Top to parameters.

implies k′v/ (r + xth/kp) = k′′xth/kp. In the time op-
timal control, control saturation is often required to sat-
isfy Pontryagin Maximum Principle [26]. Then, k′′ =

k′kpvmax

(
(k′)

2
+ (r + xth/kp)

2
)− 1

2

/xth and xth/kp ≥
λ > 0 are obtained with Assumption 1, (3) and (4). Therefore,
the lap time

T =
L

v
=

L (r + xth/kp)
(
(k′)

2
+ (r + xth/kp)

2
) 1

2

rvmax
.

(25)
In particular, the tracked line is a straight line, namely
r → ∞, one has T → L/vmax. Obviously, the lap time has
achieved the optimal time. In order to exame the optimality
of the obtained lap time, we set the optimal time is

Top =
L (r + λ)

(
(k′)

2
+ (r + λ)

2
) 1

2

rvmax
, (26)

when xth/kp is set to its minimum. As shown in Fig. 6,
T and Top are closer when r increases, and T/Top ≈ 1 is
insensitive to the parameters of the proposed spatial ILC,
namely xth, kp.

IV. SIMULATIONS AND EXPERIMENTS

In this section, simulations and experiments demonstrate
that the proposed spatial ILC is model-free and has character-
istics of online training, low computation, and optimization.
Video is available at https://youtu.be/qGTPGCLu2UQ and
https://rfly.buaa.edu.cn.

A. Comparison with an Optimization Method
For model (5), different values τ for drones indicate

different flight ability, which is unavailable to the proposed
spatial ILC during the following simulations. For example,
on the same virtual tube track shown in Fig. 7, the sequential
quadratic programming (SQP) algorithm, a common opti-
mization method, is used to solve the time-optimal problem,
and its training time and lap time are compared with those
obtained from the proposed spatial ILC.

As observed from Table 1, for different maneuvering
parameters τ , the lap time obtained from the proposed spatial
ILC is very close to those obtained using the optimization
method. But the training time of the proposed spatial ILC
is only about 0.5%∼1.1% of the SQP with 1500 path
points. The Optimality Tolerance is set to 1e−5 to judge the
terminates.
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Fig. 7. The detailed simulation results of Section V. A.

The final pace along the path by the two methods are
shown in Fig. 7 (a). As shown in Fig. 7 (b), the lap time
decreases rapidly and finally reaches convergence through
learning. The changing trend of the two methods is the same
at the same position. This implies that the search direction
of the proposed spatial ILC tends to be an optimal set.



TABLE I
LAP TIME AND TRAINING TIME OF DIFFERENT ALGORITHM

Lap Time Training Time

τ SQP Spatial
ILC

Spatial
ILC/
SQP

SQP Spatial
ILC

Spatial
ILC/
SQP

1 13.64s 13.88s 101.8% 15576.6s 131.1s 0.8%
5 11.26s 11.34s 100.7% 13166.1s 147.3s 1.1%
10 10.12s 10.14s 100.2% 15484.4s 135.7s 0.9%
30 9.82s 9.85s 100.3% 21159.5s 110.9s 0.5%

B. Comparison in Race Competition
The proposed spatial ILC is compared with [6] in the same

racing environment to verify the proposed approach’s model-
free and online fast iterative features. The racing environ-
ment, namely Soccer Field, is from [4] shown as Fig. 8. The
benchmark includes the official baseline [4] Move-On-Spline
API (MOS-ADRL) and the algorithms mentioned in [6],
Hamilton Jacobi Bellman (HJB), Hamilton Jacobi Bellman-
Reinforcement Learning (HJB-RL, the best algorithm in
this paper), Move-on-Spline (MOS, MOS-ADRL’s method
improvement), and Supervised Learning (SL).

Fig. 8. The racing scene is shown in AirSim. It is a soccer field with 12
gates in a whole race.

Before performing the spatial ILC, a virtual tube must
be established first. However, since the path optimization is
not within the scope of this paper, a simple path which is
generated by connecting several points is adopted. As shown
in Table. II, the spatial ILC performs better in both the
shortest lap time and the average lap time in the whole race.
Besides, unlike the offline training of the commonly-used
learning methods, the proposed spatial ILC can obtain the
results within only 20 iterations (the drone races a dozen
laps) through iterative online training. The advantage of
online training is that the controller is obtained directly
without modeling.

TABLE II
LAP TIME OF DIFFERENT ALGORITHM

Algorithm Shortest Average
HJB 39.67s 68.10s

HJB-RL(α = 5e−5) over 28.99s 30.36s
HJB-RL(α = 1e−5) 28.99s 34.89s

SL 30.13s 36.14s
MOS 47.10s 47.88s

MOS-ADRL over 50s 58.02s
Spatial ILC 24.02s 24.32s

C. Real-world Flight Experiment

The proposed scheme is implemented in a 30m*30m out-
door area on a real quadcopter without modeling. The online
training iteration number is set to 7; the initial speed is set to
2m/s and the saturation speed vmax = 8m/s to keep safe. As

drone

Fig. 9. Testing on a real quadcopter.

shown in Fig 10, the training path shows convergence path of
the proposed scheme. The lap time shown gradually reaches
convergence. Finally, the quadcopter reaches the minimum
20.19s only in 4 iterations from 50.35s in the 1st iteration.
The total online training time is 178.71s.

(a) The GPS log from iteration 1 to
7.
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(b) The lap time varied with
training iterations in real flight.

Fig. 10. The real flight log record.

V. CONCLUSIONS

This paper proposes a time-optimal spatial ILC approach
for drone racing competitions where the scene is modeled as
a virtual tube as a constraint. This method is iterative and
model-free, inspired by human racing drivers’ acceleration
and deceleration control. Comparison simulations and a
real experiment are performed to show the effectiveness of
the proposed method. Some conclusions are drawn: 1) the
proposed approach can achieve near-optimal results with
significantly lower computation, about 0.5%-1.1% of the
optimal control; 2) this approach surpasses some state-of-
the-art methods in the racing time with 17% improvement
on the shortest time and 20% on average time in a benchmark
drone racing platform; 3) the proposed approach can quickly
converge to a stable state in real flight without modeling. In
the future, more relationships between the proposed learning
method and optimal control, and drone racing in 3D space
are worth studying.
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