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Fig. 1: Our proposed FFHNet consists of the FFHGenerator and the FFHEvaluator. The FFHGenerator receives a BPS-encoded partial object point cloud
and generates a diverse set of grasp proposals. The FFHEvaluator ranks the generated proposals, such that the best proposal can be executed.

Abstract— Grasping unknown objects with multi-fingered
hands at high success rates and in real-time is an unsolved
problem. Existing methods are limited in the speed of grasp
synthesis or the ability to synthesize a variety of grasps from
the same observation. We introduce Five-finger Hand Net
(FFHNet), an ML model which can generate a wide variety
of high-quality multi-fingered grasps for unseen objects from
a single view. Generating and evaluating grasps with FFHNet
takes only 30ms on a commodity GPU. To the best of our
knowledge, FFHNet is the first ML-based real-time system
for multi-fingered grasping with the ability to perform grasp
inference at 30 frames per second (FPS). For training, we
synthetically generate 180k grasp samples for 129 objects. We
are able to achieve 91% grasping success for unknown objects
in simulation and we demonstrate the model’s capabilities of
synthesizing high-quality grasps also for real unseen objects.

I. INTRODUCTION

Grasping is a crucial skill for advanced robotic appli-
cations and has huge implications for fields like assistive
robotics, manufacturing, or logistics. Nevertheless, grasping
largely remains an open problem in robotics. In this work we
aim to equip the DLR-HIT Hand II, a 15 degrees of freedom
(DOF) anthropomorphic hand [1], with advanced grasping
capabilities. Multi-fingered hands like the DLR-HIT Hand II
can outperform two-jaw grippers in terms of dexterity and
universality. Various works have demonstrated the hands’
capabilities on complex grasping and manipulation tasks [2],
[3]. However, these works had a human in the loop making
the crucial decision of where to place the hand and fingers in
relation to the object. Recent years have seen rapid advances
in autonomous grasping (i.e. no human in the loop) with two-
jaw grippers [4]-[7], but much less in terms of multi-fingered
grasping.

Analytical methods for robotic grasping formulate a con-
strained optimization problem over grasp quality metrics.
These methods rely on strong assumptions like accurate
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object models and simplified contact interactions [8]. In real-
world settings, they tend to synthesize fragile grasps and
handle partial data and sensing inaccuracies insufficiently
[9]-[11]. Data-driven methods can alleviate some of these
assumptions. They rely on a pre-calculated database of object
models and corresponding grasps. Online object grasping
is reduced to object detection, pose estimation, and finding
the closest match in the grasp database [12], [13]. Match-
ing against a database tends to work well for known or
familiar objects but not partial data of unknown objects.
To handle unknown objects and partial data, researchers
have capitalized on learning-based methods, especially deep
learning. Most state-of-the-art learning methods follow either
a grasp sampling and evaluation [14]-[19] or end-to-end
framework [20]-[24]. They largely differ in which aspects
of the pipelines are learned. One line of work combines
heuristics-based grasp sampling with a learning-based grasp
evaluation function [4], [15]. The learned function is used
to optimize the sampled grasps. This procedure is time-
consuming and limited in the variety of sampled grasps.
Some end-to-end methods directly predict a grasp from the
observed data [20], [25]. These approaches are inherently
limited by the one-to-one mapping assumption between
object observations and grasps.

In this work, we follow the grasp sampling and evalua-
tion framework (Fig. 1) and present Five-finger Hand Net
(FFHNet), a generative and discriminative model capable of
synthesizing a variety of multi-fingered grasps from a single
partial point cloud in real-time. FFHNet is inspired by [7] and
[26] with some key distinctions. In contrast to both [7] and
[26] we use no time-consuming post-processing steps, which
makes our model 7x faster. Further, we train the model for
multi-fingered grasping when [7] uses a two-jaw gripper and
[26] generates human-hand meshes for realistic hand-object
interactions. Our contributions can be summarized as:

o We introduce a generative model called FFHGenerator,
a conditional Variational Autoencoder (cVAE) capable
of sampling diverse distributions of grasps for unseen
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objects in roughly 10 ms, and a discriminative model
called FFHEvaluator able to successfully predict suc-
cess for the generated grasps in roughly 20 ms.

o We evaluate the proposed system with unknown objects
in simulation and achieve up to 91% success. We also
provide insights on the model’s performance for real
noisy point clouds of YCB [27] objects.

o We generate a new synthetic grasp dataset contain-
ing 180k grasps for 129 household objects from the
BIGBIRD [28] and KIT [29] datasets, along with the
automatic data generation and labeling pipeline.

II. RELATED WORK
A. Grasp Sampling

Geometry-based sampling methods require hand-crafted
geometric constraints and heuristics to generate grasp pro-
posals. Grasp poses for two-jaw grippers are sampled from a
depth image in [4] and directly from a point cloud in [5], [6].
These sampling schemes do not scale to the extra dimensions
required for multi-fingered hands. Lei et al. [30] propose
a fast geometry-based sampler by representing their three-
finger hand as a C-shape and fitting it to the object point
cloud. Lu et al. [15], [16] use a heuristic sampler based on the
normals of a fitted 3D bounding box to generate initial grasp
configurations, which are later optimized. The mentioned
methods tend to generate less diverse grasp proposals. To
overcome this, Avigal et al. [31] use 3D reconstruction to
render depth images from multiple viewpoints and extend
the work from [4] to 6D grasps for two-jaw-grippers. In
[32], reconstructed meshes are fed into Grasplt! [33] for
sampling grasp poses. Reconstruction can enable more di-
verse grasp samples but increases computational complexity
significantly. Overall, geometry-based sampling methods can
perform well but require hand-crafted constraints and are less
applicable to unknown objects.

Learning-based sampling methods mainly utilize one of
three models: Gaussian Mixture Models (GMMs), cVAEs,
or Generative Adversarial Networks (GANs). The methods
from [17], [19] both use GMMs. The mixture components
are predicted by a neural network based on RGB-D or 3D
voxel data, an architecture called Mixture Density Network
(MDN) [34]. MDNs suffer from a linear mapping between
components and grasp configuration. We represent the map-
ping from latent space to grasp configuration by a neural
network, which can be arbitrarily complex.

The work in [35] trains a GAN to predict a three-fingered
grasp given RGB-D data. They predict only a coarse grasp
type and require iterative refinement steps. The refinement
depends on a slow (8 s) shape completion algorithm. Our
model predicts full grasps in real-time. A grasp type and 6D
palm pose are also predicted by the GAN in [36], a method
that allows only one of four fixed grasps. Both [35] and [36]
manually label the grasp type of hundreds of grasps, which
is inefficient and not scalable. Our data labeling is automatic.

The model presented by [7] is conceptually similar to ours
with some key distinctions: 1.) they use a two-jaw gripper
and only predict end-effector poses, our model additionally
predicts the full 15 DOF, 2.) they use PointNet++ [37] to
process the point cloud which needs multiple days of training
while we use a multilayer perceptron (MLP) architecture
which can be trained on a low-cost GPU in just 3 h, and 3.)

they perform multiple incremental refinement steps taking
up to 2 s, while our model takes 30 ms in total. Veres et al.
[38] also use a cVAE, but predict contact points and normals.
Their method can not rank generated grasps and relies on a
subsequent inverse kinematics solver.

B. Grasp Evaluation

Not all grasps generated by grasp sampling methods are
equally successful. Therefore, a grasp evaluation model is
used to rank or refine generated grasps. Many of the relevant
works focus on two-jaw grippers [4], [5], [18], [39]. For
multi-fingered hands, the authors in [15] learn a function of
grasping success given a grasp and 3D object voxelization.
Iterative maximization of the learned success function is used
to refine an initial grasp. Such gradient-based optimization
is time-consuming (2-3 s). The grasp evaluator model is
extended further with a novel reconstruction network in [16].
This increases runtime to more than 30 s. In [19] the grasps
sampled from a GMM-based sampler are evaluated through
a network that predicts force-closure. However, such grasp
metrics have limitations for predicting real-world success [9],
[10]. Our evaluator directly predicts the success of lifting an
object given a grasp and object point cloud.

C. End-to-end

Direct Regression. A novel model introduced in [22]
takes object and end-effector properties as input and directly
predicts grasping contact points in 200ms. Their method only
works for end-effectors with three or fewer fingers and the
predicted contact points might not be kinematically possible.
Schmidt et al. in [25] directly output the 6D wrist pose
given an RGB-D image. They only predict one grasp per
observation and the joint configurations are not predicted.
The work from [21] predicts both the palm pose and joint
configurations from multi-view depth images. Obtaining
multi-view observations is however costly. In general, direct
regression methods can achieve fast run time with a direct
mapping from observation to a single grasp pose, but the
inherent one-to-one mapping assumption severely limits their
applicability.

Heatmap. Heatmap approaches output predictions per
pixel or voxel that each represents a grasp pose for one
observation. Pixel-wise predictions of individual finger con-
tact points from an RGB-D image are presented in [40].
It achieved good performance but relies on Grasplt! from
[33] as an external planner. In general, pixel- or voxel-wise
ground truth training labels are difficult to obtain.

Reinforcement Learning (RL). is used by [23] and [24]
to solve the multi-fingered grasping problem. RL methods
require careful hyperparameter-tuning, are difficult to train,
and do not scale well to the high-dimensional action spaces.

D. 3D Deep Learning

Typical deep learning architectures for learning on 3D
point clouds are PointNet [41] and PointNet++ [37]. Lots
of works utilize these architectures for grasp generation
or evaluation [7], [42]-[45], but so far only for two-jaw
grippers. The main drawback of the PointNet architecture is
the high computational demand. Alternatively, there are 3D
CNN-based methods for voxelized point cloud data, which
suffer from the conflict between accuracy and efficiency.
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Fig. 2: Given an encoded object observation xp € R*096, joint configu-
ration 8 € R15, palm rotation R € R3%3 and translation t € R3, the
encoder maps the distribution of grasps for an object observation into a
latent space following a univariate Gaussian distribution. During inference,
samples from the latent space can be decoded into grasps.

A method is proposed in [46] to encode 3D point clouds
as distances to a fixed set of randomly sampled 3D basis
points (Basis Point Set or BPS). The BPS is shown in green
in Fig.1. The BPS encoding achieves similar performance
to PointNet++ while using three orders of magnitude less
computation. We employ the BPS method to encode the input
point clouds of FFHNet.

III. METHOD
A. Problem Statement

The goal of this work is to generate a wide variety of
successful multi-fingered grasps g from a partial point cloud
observation {PP}Y € RN*3 of an object. We assume a
successful segmentation of the object’s point cloud from the
depth data. Grasping success is defined as the ability for the
DLR-HIT Hand II to lift the object 20 cm above its resting
position without slippage. A grasp g is represented by the
15-DOF hand joint configuration @ € RS and the 6D pose
(R,t) € SE(3) of the palm. In the following subsections,
we present our generative and discriminative model Five-
finger Hand Net (FFHNet) inspired by the work in [26] on
generating realistically-looking hand-object interactions.

B. Grasp Generation

Our grasp generation model, the FFHGenerator shown in
Fig. 2, follows the computational framework of a cVAE [47].
The model is trained to maximize the likelihood p(g|xp,) of
a successful grasp g conditioned on a BPS-encoded object
point cloud observation xj. The generative probabilistic
model can be expressed as:

plglxp) = / p(2)p(glxp, 2)dz ()

Given a set of latent samples z, the model in Eq.1 allows
associating the same object observation with a variety of
grasps. This variety of grasps can be subsequently exploited
to fulfill environmental or reachability constraints. Grasping
is inherently a one-to-many mapping between observation
and grasp as objects can be grasped in many different,
equally valid ways. Solving Eq. 1, however, requires inte-
grating over all possible values of the latent variable z which
is intractable.
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Fig. 3: The FFHEvaluator predicts the probability that a candidate grasp g
for a given observation of an object xy, will result in success s.

The encoder substitutes the intractable posterior
p(z|xpb,g) with a tractable distribution ¢y (z|xp,8)
mapping different grasps for the same observation into
different regions of the latent space. For the probability
density of the latent space p(z) we assume a zero-mean,
univariate Gaussian N (0, I). The encoder receives as inputs
the encoded object observation x, <€ R*%% the hand
joint configuration & € R!°, the rotation R € R3*? and
translation t € R? of the palm relative to the object centroid
frame. The encoder outputs the mean p and variance o for
each latent dimension’s univariate Gaussian. Through the
reparameterization trick introduced in [48] a latent variable
sample z can be obtained from the encoder’s output via:

z=p+0o o€ €~N(0,I) )

The decoder receives a latent sample z and the encoded
point cloud xp as input and maps these to three outputs:
the reconstructed joint configuration 8 € R'°, two 3D
vectors v € RS representing the palm rotation and the
reconstructed palm translation t € R3. The continuous,
sufficiently compact representation v is used instead of the
full rotation matrix R because rotation matrices, as well as
other representations such as Euler angles and quaternions,
suffer from discontinuities or redundancies detrimental to
neural network-based learning [49]. The method introduced
in [49] is similar to the well-known Gram-Schmidt procedure
for orthogonalization and used to construct the full rotation
matrix R. The optimization objective of the FFHGenerator
is as follows:

EGen = Z

z~qy, g~G*

L(g,8) — @Dk r[q(z[xb, g), N(0,I)]

3)
During training the model learns to minimize the distance
between a given grasp g from the data and the reconstructed
grasp ¢. This is represented by the first part of Eq. 3 £(g, g).
We use the L2-distance between reconstructed and ground
truth grasp as follows:

L(g,g) = %Z(wRIIR*RIIQ+Wt\|t*tll2+well9*9||2)

“)
Setting wp = 1, wy = 100 and wy = 10 results in equal
magnitudes of all components of the reconstruction loss. The
second part of Eq. 3, the KL-divergence, weighted by «,
conceptually ensures that different grasps for the same object
observation are encoded into different regions of the latent
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space while ensuring that the latent space encoding follows
a univariate Gaussian distribution.

C. Grasp evaluation

A high-capacity cVAE like the FFHGenerator with a
continuous latent space however interpolates between these
modes generating unsuccessful grasps. This raises the ne-
cessity for our grasp evaluation model, the FFHEvaluator
depicted in Fig. 3, which is able to distinguish between suc-
cessful and unsuccessful grasps. In contrast to the FFHGen-
erator, the FFHEvaluator sees successful and unsuccessful
pairs of object observation and grasp during training.

The FFHEvaluator takes a grasp g and an encoded par-
tial point cloud xjp as input and predicts the probability
p(s|xpb, g) that a given grasp for a given object point cloud
results in a successful lifting motion of the object. The goal
of the FFHEvaluator is to approximate the binary classifica-
tion problem of grasping success by correctly predicting the
probability of success for a given grasp candidate:

Lpva = — (ylog(s) + (1 —y)log(1 - s)) (5)

In Eq. 5, s represents the success probability as predicted by
the FFHEvaluator, while y is a binary variable indicating the
true success label.

D. Model Training

For both networks, we use a learning rate of 1x10™* and
the Adam optimizer [50]. Each batch contains 5012 different
encoded point cloud observations of a random object in
a random position. The object position is constrained to
be reachable by the robot and observable by the camera
(compare Fig. 4). For the FFHGenerator, each observation
is associated with one random successful grasp from the
ground truth distribution of grasps for the object. Each batch
for the FFHEvaluator consists of 30% successful grasps,
30% unsuccessful grasps and 40% hard negative grasps. The
successful and unsuccessful grasping examples are part of the
generated dataset. The hard-negative examples are generated
by sufficiently perturbing positive examples. For this, we
draw inspiration from [7] and add £3cm to the position of
the palm pose and £0.6rad to its Euler-angle orientation. The
coefficient of the KL-loss term in Eq. 3 is set to O for the first
2 epochs to prevent early posterior collapse and afterwards
set to 5x1073. The evaluator is trained for a total of 40 epochs
and the generator for 30 epochs.

E. Implementation Details

The purely fully-connected architecture of FFHNet is
significantly faster to train than PointNet++ [37] while being
proven equally capable when used with the BPS encod-
ing [46]. We use skip connections [51] from each input
to each fully-connected residual block (FC ResBlock) or
fully-connected (FC) layer. The connections are detailed in
Figure 2. The core building block of both models is the FC
ResBlock, which consists of two parallel paths from input
to output. One path consists of a single FC layer, the other
path has two FC layers. Each is followed by a layer of batch
norm (BN). The inputs of the encoder (xp, 6, R,t) and the
conditional input xy, are also pre-processed by BN.

Py
]

(a) Simulation setup

(b) Segmentation

(c) Pose sampling

Fig. 4: We show the simulation setup in (a) with a Realsense camera on
the left, a Panda robot arm equipped with a DLR-HIT Hand II. (b) shows
point cloud segmentation via RANSAC. In (c¢) a sampled 6D grasp pose is
visualized as a coordinate frame.

The leaky rectified linear unit (LeakyRELU) is used as
an activation function for each layer. We found two FC
Resblocks for the FFHGenerator and three FC Resblocks for
the FFHEvaluator achieved the best performance. The output
of the FFHEvaluator’s final layer is fed through a sigmoid
activation function.

IV. GRASP DATA GENERATION

For generating automatically labeled high-quality syn-
thetic data, we use Gazebo9 with the DART engine.

A. Object datasets

We combine the BIGBIRD [28], KIT [29] and YCB
[27] object datasets. Since the YCB objects are physically
available, we do not use them for synthetic data generation
but experiments on real objects. The BIGBIRD and KIT
datasets span around 280 objects. These objects are filtered
for their graspability and object type leaving 129 graspable
objects.

B. Data generation pipeline

In total, we execute around 180k grasps of which 30k
resulted in success. Fig. 4(a) shows our simulation setup.
We use a Panda robot model with the DLR-HIT Hand II as
end-effector. The data generation pipeline works as follows.
First, an object is spawned in front of the robot, and the
simulated camera records a point cloud. Fig. 4(b) shows
the subsequent segmentation step where the object (grey)
is segmented from the ground (red) via RANSAC [52].
The normals for the object point cloud are computed and
then used in order to uniformly sample one palm 6D pose
(R, t) per object point. Each 6D pose is associated with one
uniformly sampled finger joint configuration 6. The grasps
are filtered for reachability and non-collision. The robot and
hand are moved to the desired configuration and then a
closing primitive is executed. After that, a lifting attempt of
the object is made. These steps are repeated for all objects
in multiple poses.

The result is a grasping database where each object is
associated with a set of successful and failed grasps.

1) Sampling palm poses: In order to sample palm poses,
we first choose one point from the object point cloud and
its normal as indicated in Fig. 4(c). Then we add between
4.5 and 11.5 cm to the point in its normal direction and
random 3D noise with a magnitude of 1 cm. We align the y-
axis of the palm pose the longer object side and if necessary
flip it such that the thumb points up. We sample uniformly
around the obtained position between £0.7 rad around the
z-direction and £0.35 rad around y- and z- directions.
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(b) p(s) > 0.75 (c) Ground truth

(a) Generated grasps

Fig. 5: The first column shows all grasps generated by the FFHGenerator
and the second column only grasps for which the FFHEvaluator predicts a
success probability of more than 75% (green point clouds). The third column
shows the ground truth distribution from the dataset (red object mesh).

2) Sampling joint configurations: Randomly sampling
joint angles in the 15-dimensional configuration space is
inefficient. Instead, we build upon the idea from Ciocarlie
[53] to sample in a meaningful subspace spanned by the
so-called eigengrasps. We manually define four eigengrasps
e1,e2,e3,e4 € R, The full joint configuration:

0= Z ;€ (6)
i=1

is obtained through sampling the coefficients «; € [0, 1].

V. EXPERIMENTS

This section aims to answer the following four questions:

1) Can the FFHGenerator approximate the distribution of
successful grasps and generate high-quality grasps?

2) How much can the FFHEvaluator increase grasping
success and how does this influence the generated
grasp distribution?

3) Does FFHNet generate good grasps for real inputs?

4) How does FFHNet compare to other multi-fingered
grasping methods in terms of speed and success?

A. Experiment Setup

We choose the 12 test objects listed in Table I from the
KIT dataset for the experiments in simulation.

Each object is placed in simulation three times in random
positions and random yaw-angle orientations. After recording
each point cloud we segment the object from the ground
plane via RANSAC [52]. We combine the segmented object
point cloud with 400 random samples from a univariate
Gaussian {z}*%° ~ N(0,1) to generate 400 different grasps
per object. Then we run one forward pass of the FFHE-
valuator to obtain the predicted success probability of the
grasps for each object. For the experiment in Sec. V-D with
real data, we follow a similar procedure but instead use four
objects from the YCB dataset.

B. Qualitative Evaluation in Simulation

The qualitative evaluation aims to provide insights into
how well the FFHGenerator learns to approximate the distri-
bution of successful grasps for different objects. Fig. 5 shows

TABLE I: FFHEVALUATOR INFLUENCE ON GRASPING SUCCESS

Object Th=0.0 | Th=0.5 | Th=0.7 | Th=0.9 | Th=0.95
BakingSoda 75% 86% 88% 97% -
BathDetergent 51% 57% 70% 86% 83%

BroccoliSoup 82% 82% 90% 82% -
CoughDrops 73% 72% 77% 89% 99%
Curry 56% 73% 80% 90% 94%
FizzyTablets 43% 63% 77% 89% 85%
InstantSauce 64% 72% 74% 72% 92%
NutCandy 56% 65% 70% 74% -
PotatoeDump. 70% 77% 93% 80% 90%
Sprayflask 52% 53% 80% 91% 92%
TomatoSoup 63% 64% 66% 70% 99%
YellowCube 48% 60% 64% 69% 85%
Avg. Success 61% 70% 75% 82% 91%
Coverage 99% 87% 83% 28% 5%
TABLE II: PERFORMANCE COMPARISON
Heuristics-based FFHGenerator +
Method | " (gec, Tv.p) | FFHGenerator | “prppcalyator
Success 15% 61% 91%

the raw generated distribution, the filtered distribution where
grasps with less than 75% predicted success probability
was removed, and the ground truth. We see that the raw
distribution nearly covers the entire object surface. Note
that FFHNet only observes partial object geometries (green
point clouds) but generates grasps also in the occluded
regions of the object. Fig. 5(a) reveals that the FFHGenerator
interpolates between the top and side modes of the ground
truth distribution and generates likely unsuccessful grasps in
the region between.

This demonstrates the need for the FFHEvaluator to reject
these interpolated grasps. The filtered distribution in Fig.
5(b) follows the ground truth much more closely. We show
that the FFHGenerator can approximate the ground truth
distribution well and achieves good coverage of the object
surface, while the FFHEvaluator is able to correctly reject
interpolated grasps.

C. Quantitative Evaluation in Simulation

This experiment aims to answer quantitatively if the gen-
erated grasps from FFHNet result in a successful lifting of
the object when the robot reaches the predicted pose (R, t)
and finger configuration 6.

Table I shows the grasping results for the 12 test objects.
The columns correspond to different grasping success thresh-
olds (Th=x.y). The set of grasps for which the evaluator
predicted a success probability lower than the threshold
are removed and only the remaining grasps are executed.
Consequently, ”(Th=0.0)" means that all grasps generated
by the FFHGenerator were executed. We see that on average
61% of the generated grasps are successful. The geometry-
based sampling described in Sec. IV could only generate
around 15% grasping success. Since no grasps are filtered
and the FFHGenerator covers the object geometry dense, we
define coverage for this case as 99%. The last column shows
that a yet higher threshold of 95% can increase the average
success to 91%. But on average only 5% of generated grasps
fall above this threshold. For some objects, no grasps lie
above the 95% mark, which is indicated by a ”-”. For these
objects, success rates of 74% up to 97% could be achieved
while leaving about 30% of the grasps for execution. The
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Fig. 6: The successful grasp poses generated from FFHNet for eight test objects in simulation. Each column represents one unknown test object. For each
object, our FFHNet model is able to predict both top (first row) and side grasps (bottom row).

(c) Mustard

(a) Cracker

(b) Mug

(d) Bleach

Fig. 7: Side grasps (top row) and top grasps (bottom row) with the highest
predicted success probability. The grasps are generated based on real point
clouds of four different YCB [27] objects.

results show a tension between grasping success and the
variety of poses. We were able to show that average grasping
success rates of 70-90% can be achieved while still leaving
an acceptable amount of grasps to choose from. To further
demonstrate the performance of FFHNet, we compare with
other pipelines in TABLE II. Some successful grasp poses
from the experiments are also visualized in Fig. 6.

D. Sim-to-real grasping

To gain insights into the performance on real data we
capture point clouds of four YCB objects with the Realsense
D415. Then, we sample 400 latent vectors from a univariate
Gaussian z ~ A (0, I) and combine them with each observa-
tion to generate 400 grasps per object. Afterwards, we rank
the generated grasps with the FFHEvaluator. The first and
second rows of Fig. 7 show the highest ranking side and top
grasp for each object. All grasps look natural and incorporate
large contact areas between the fingertips and object surface.

For the cracker, only a small part of the geometry can be
observed, and yet FFHNet is able to generate good grasps.
In the region of the mug handle, no grasps were generated.
We suspect that this is caused by the BPS representation not
being able to capture small and complex geometric details,
and our dataset not containing enough grasps in such regions.

E. Comparison

We compare FFHNet to other state-of-the-art methods
for multi-fingered grasping in Table III. Our success rate
is higher, but direct comparison is not fair because of the
differences in objects and environments. Reproduction of
other works for our hand was not possible due to the differ-
ences in hardware and datasets. We can, however, directly

TABLE III: RUNTIME COMPARISON WITH OTHER METHODS

Authors Methods Success Rate Time

Liu et al. [20] direct regression 80.0% 3-5s
Lu et al. [17] gradient-based opt. 75.0% 5-10s
Lundell et al. [35] GAN-based 60.0% 9.1s
Kiatos et al. [14] shape completion 86.3% 4.25s
Ours FFHNet (cVAE) 91.0% 30ms

compare the runtime, where FFHNet clearly outperforms
other methods, which use time-consuming shape completion
methods [14], [35] or gradient-based optimization [17].

VI. CONCLUSION & FUTURE WORK

We present FFHNet, a generative and discriminative model
based on the cVAE framework, for synthesizing varied and
successful multi-fingered grasps from a single view. Our
system is able to perform grasp synthesis at 30 FPS, which,
to the best of our knowledge, has not been achieved for multi-
fingered grasping before. We showed in the simulation that
our method is able to achieve up to 91% grasping success for
12 unseen objects in a table-top grasping scenario. Evaluation
of FFHNet on real sensory data from a Realsense D415
showed the high fidelity of generated grasps on real point
clouds. This is an indication of successful sim-to-real transfer
capabilities. The training data of 180k grasps was collected
purely in simulation. For this, we propose a flexible self-
supervised data generation pipeline in Gazebo along with
a grasp sampling strategy that makes only a few limiting
assumptions.

We see as the main drawback of our method the seeming
lack of diversity in finger configuration and bias towards
pinch grasps. We attribute this to a lack in diversity of
the dataset resulting from our grasp sampling method and
shortcomings of simulation. One possible solution would be
to employ complex grasp planning during data generation.

In future work, we will show the performance on real
hardware, which was not available to us during the time of
writing. Further, the speed of the system allows closing the
loop from visual sensing to actuation. This enables different
avenues towards reactive grasping or dynamic human-robot
handover scenarios.
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