
Design and Formal Verification of a Safe Stop Supervisor for an Automated
Vehicle

Downloaded from: https://research.chalmers.se, 2025-01-27 02:01 UTC

Citation for the original published paper (version of record):
Krook, J., Svensson, L., Li, Y. et al (2019). Design and Formal Verification of a Safe Stop Supervisor
for an Automated Vehicle. Proceedings - IEEE International Conference on Robotics and
Automation, 2019-May: 5607-5613. http://dx.doi.org/10.1109/ICRA.2019.8793636

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

Design and Formal Verification of a Safe Stop Supervisor for an
Automated Vehicle*

Jonas Krook1,3 Lars Svensson2 Yuchao Li2 Lei Feng2 Martin Fabian3

Abstract— Autonomous vehicles apply pertinent planning
and control algorithms under different driving conditions.
The mode switch between these algorithms should also be
autonomous. On top of the nominal planners, a safe fallback
routine is needed to stop the vehicle at a safe position if nominal
operational conditions are violated, such as for a system failure.
This paper describes the design and formal verification of
a supervisor to manage all requirements for mode switching
between nominal planners, and additional requirements for
switching to a safe stop trajectory planner that acts as the
fallback routine. The supervisor is designed via a model-based
approach and its abstraction is formally verified by model
checking. The supervisor is implemented and integrated with
the Research Concept Vehicle, an experimental research and
demonstration vehicle developed at the KTH Royal Institute of
Technology. Simulations and experiments show that the vehicle
is able to autonomously drive in a safe manner between two
parking lots and can successfully come to a safe stop upon GPS
sensor failure.

I. INTRODUCTION

The past three decades have witnessed a joint effort
between academia and industry to realize driverless vehicles.
The SAE design guideline J3016 [1] classifies automated
road vehicles into six different categories ranging from
“No Driving Automation” to “Full Driving Automation”. At
present, the automotive industry is aiming toward deploying
level 4 functionality (“High Driving Automation”) [2], [3]
i.e., full automation on selected parts of the traffic network.
Since level 4 automation allows operation of a vehicle with-
out a human operator being present, this is where automation
can really impact society in terms of how people and goods
are transported. For a level 4 automated vehicle, the control
system is required to fulfill the driving task during nominal
operational conditions, as well as automatically reach a
so called minimal risk condition when nominal operational
conditions are violated. For example, if an event occurs
that prevents completion of the current mission, the vehicle
should automatically stop, preferably outside of active traffic
lanes. Since there is no human operator, the safety and
correctness of the vehicles’ on-board systems are of utmost
importance. State of the art in the field [2], [3] suggests that
redundancy and fallback routines should be applied such that
a safe stop, i.e., a maneuver that realizes the minimal risk

*This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by Knut and Al-
ice Wallenberg Foundation; and Integrated Transport Research Lab (ITRL).

1Zenuity, Gothenburg, Sweden jonas.krook@zenuity.com
2KTH, Stockholm, Sweden

{larsvens,yuchao,lfeng}@kth.se
3Chalmers, Göteborg, Sweden

{krookj,fabian}@chalmers.se

condition, can be executed at all times, and at high level of
integrity.

To reach such a high level of integrity, there is a need
to alleviate the risk of faults occurring in the implemented
software. Moreover, there is a need to provide convincing
evidence that the probability of fault occurrences is low.
The ISO 26262 standard [4], dedicated to automotive safety,
points to several methods that are available to this end.
For instance, research has shown that model-driven software
engineering can improve the product reliability [5]. Since the
safe stop routine must be highly dependable, the correctness
of the supervisor must be supported by convincing and
rigorous evidence. Such evidence is not attained by model-
driven software development alone. The research fields of
supervisory control theory [6] and model checking [7], have
developed tools for proving properties of such a supervi-
sor [8]. Since these tools either prove the correctness of
software or identify counterexamples, they provide very
convincing evidence.

Model-based design, model checking, and safe stop rou-
tines have been considered for automotive applications in
earlier research. For instance [9] successfully applies model-
based design and formal methods in order to synthesize
and prove the correctness of the switching logic between
manual drive, cruise-control, and adaptive cruise-control. The
usefulness of formal verification of manually developed code
for vehicles has also been shown [10]–[12]. Within trajectory
planning, [13] and [14] have made contributions in the area
of safe stop routines. In [15], an emergency maneuver routine
is introduced that is similar to the approach in this paper,
but the maneuver is not required to stop the vehicle, and
in-lane stopping is not actively avoided. The aforementioned
research does not, however, consider the combination of a
formally verified supervisor and a safe stop routine.

This paper extends previous research by introducing a
safe stop routine and evaluating a systematic approach to
guarantee correctness of the supervisor by formal verifica-
tion. Model-based techniques are used to design and test the
supervisor that coordinates the operation of nominal planning
algorithms and the safe stop routine. The supervisor and a
model of the test vehicle system are implemented and for-
mally verified. Compared to [9], this paper manually designs
the supervisory controller and verifies it by model checking,
whereas [9] automatically synthesizes the supervisor from
the specifications modeled by finite state automata. The ad-
vantage of our method is that more expressive specifications
formalized in linear temporal logic are considered.

Our test vehicle is required to drive autonomously between

978-1-5386-6026-3/19/$31.00 c©2019 IEEE

two parking lots via a road network. It is demonstrated
through simulations and real experiments that the safe stop
routine can safely guide the vehicle to a stop by the side
of the road during the mission. The supervisor correctly
enables the mode switching actions so that the correct control
functions are applied. In particular, the safe stop command
is issued if and only if it is needed.

The outline of this paper is as follows. Section II presents
an overview of the system architecture for which the su-
pervisor is designed and integrated. Also, relevant trajectory
planning and control functions are briefly presented. Then,
Section III is dedicated to the design and implementation of
the proposed supervisor. Section IV presents, interprets and
discusses the results of the case study. Finally, conclusions
and future work are presented in Section V.

II. SYSTEM ARCHITECTURE

The KTH Research Concept Vehicle (RCV) is a custom-
built, fully electric and drive-by-wire concept vehicle, hosted
by the Integrated Transport Research Lab at KTH, for
validating and demonstrating research results [16]–[18]. The
vehicle is equipped with cameras, lidars and GPS for per-
ception and localization. In addition to the physical vehicle,
a Gazebo model of the RCV, extended from [19], is part of
the development environment.

The software system of the RCV is split into different
components, which are specialized and responsible for dis-
tinct sub-functionalities. The components are implemented
as separate software nodes in the Robot Operating System
(ROS) [20] and communicate with each other. Figure 1
shows the system architecture. Boxes indicate the software
nodes, and arrows indicate signal flow. The system is built
in a hierarchical way, where the Supervisor is the top-most
and central software node.

The task of the Supervisor component is to issue com-
mands to the components of the system such that the vehicle
fulfills its mission, in this case to safely bring the RCV
from a starting position in a parking lot to a goal position
in another parking lot, via the road network. When the goal
position is safely reached and the RCV is stationary, then the
mission successfully terminates and a new mission may be
issued. Extensions of this (e.g. starting in the road network,
or receiving new goals while driving) might be desired in
the future, but are not considered in this paper.

The Localization component provides the Supervisor with
current position information. It also communicates the goal
position, and detects and reports GPS sensor failures.

The Structured Area Path Planner (SPP) generates a path
through the road network by searching for the shortest route
through an efficient map representation [21]. The center of
the lane in the selected route is extracted and transformed
to the path format, taking nonholonomic constraints into
account. A path is a spatial reference line for the RCV to
follow. Two transition points are associated with the path,
Tp1 and Tp2, which are the positions on the boundary
between the road and the source and goal parking lot,
respectively. It is assumed that when a request to plan is

Fig. 1: ROS component architecture. Boxes indicate separate soft-
ware nodes, while arrows indicate signal flow.

Fig. 2: FSM for the Trajectory Planner component. pos is the
current position along the path. Tp# is either Tp1, Tp2, or Goal
position, initiated to Tp1 and updates to the next as thresholds are
passed. thd is an arbitrary threshold that prevents erroneous state
switching caused by sensor noise.

received from the Supervisor, SPP responds with success or
fail depending on whether a path could be found or not.

The Unstructured Area Path Planner (UPP) provides paths
in unstructured environments, e.g., parking lots. Other than
obstacle avoidance and the RCV’s nonholonomic constraints,
unstructured areas do not have any imposed restrictions on
how the vehicle may move within them. The implementa-
tion [22] is based on a Hybrid A∗ algorithm [23]. It is
assumed that when UPP receives from the Supervisor a
request to plan, the outcome of the planning results in success
or failure, which is communicated to the Supervisor.

The Trajectory Planner (TP) receives a path from the
Supervisor and generates trajectories of speeds and yaw
angles by considering the vehicle dynamics and physical
limits. The trajectory planner is implemented as a model
predictive controller that minimizes the deviation between
the planned vehicle position along the trajectory and the
planned path [17]. Figure 2 shows the assumed relation
between new path requests to the TP and how the RCV
moves through transition points. The RCV starts at position
0, and once the Supervisor sends a path to the TP the vehicle
starts moving. The RCV moves toward a transition point or
the goal position and then stops. It is not allowed to move
again until a new mission has been received.

The purpose of the Safe Stop Trajectory Planner (SSTP)
function is to provide a collision free trajectory from an
arbitrary initial state in the traffic scene, to a stopped state,
preferably outside active lanes. Svensson et al. [14] formu-
late the safe stop motion planning problem as an optimal

control problem where the safety of the stopping position
is considered in the cost function. Also, an algorithm is
provided to solve the problem in real time, which is used
for the simulations and experiments in this study.

The algorithm is based on selection from a pre-computed
set of stopping trajectories. Ahead of run-time, a grid of
initial states and candidate terminal states is defined in a
Cartesian coordinate system with the RCV at the origin.
The grid of candidate terminal states is selected to span
the reachable set of stopping positions given the dynamic
constraints of the vehicle, and the planning horizon. For each
pair of initial and terminal states, an optimal control problem
is formulated. If a feasible solution exists for the pair, it is
stored in the set of candidate stopping trajectories.

At run-time the library is loaded and the algorithm per-
forms the following steps:

1) A subset of trajectories is selected based on current
vehicle velocity.

2) Trajectories in the subset are checked for collisions
with respect to an occupancy grid defined in the vehicle
frame.

3) A cost based on the location of the final state and time
of arrival is evaluated for the collision-free trajectories,
and the lowest cost trajectory is selected.

The SSTP receives a request to plan from the Supervisor.
The outcome of the planning results in success or failure,
which is communicated to the Supervisor.

The Controller receives reference trajectories simultane-
ously from both the Trajectory Planner and the Safe Stop
Trajectory Planner. The Supervisor mandates which trajec-
tory is selected for controlling the RCV. It is assumed
that the Controller calculates required control commands for
the steering angle and acceleration based on the reference
trajectory, and that it guarantees a finite bound on deviations
from that trajectory. The control commands are passed on to
the Vehicle component, where the actuators are controlled.

The Controller may also be commanded by the Supervisor
to stop as quickly as possible. This mode will be referred to
as Automatic Emergency Brake (AEB).

III. SUPERVISOR DESIGN

To accomplish the transport mission, the Supervisor brings
together the two path planners SPP and UPP and makes sure
that the SSTP is activated by the Controller if and only if
necessary, given that the planners and controller guarantee
that the assumptions put upon them are fulfilled.

During a nominal parking-to-parking mission (no failure
occurs during the mission) the mission is completed as
follows. The Supervisor first acquires the current position
and the goal position from the Localization component. This
information is passed on to the SPP. The SPP responds with
the structured path and the two transition points Tp1 and
Tp2. The Supervisor requests the UPP to create a path from
the current position to Tp1. The path is then passed from the
Supervisor to the TP. The Controller is commanded by the
Supervisor to control according to the trajectory supplied by
the TP. When the RCV moves close to Tp1, the Supervisor

concatenates the unstructured path and the structured path.
The Supervisor discards the unstructured path and sends only
the structured path to the TP after Tp1 has been reached.
When the RCV moves close to Tp2, the UPP is requested
by the Supervisor to create a path between Tp2 and the
goal position. When the final unstructured path has been
created, the structured path and the unstructured path are
concatenated until Tp2 has been reached. The Supervisor
commands the RCV to remain stationary once it arrives and
stops at the goal position. This process is repeated once a
new mission is given.

If a failure occurs and the nominal operational conditions
are disrupted, then the Supervisor activates the SSTP to reach
a minimal risk condition. If the SSTP fails, the Supervisor
activates the AEB. Activation of the AEB does not in general
stop the RCV in a minimal risk condition, but it is considered
safer to stop than to continue moving with critical failures.

There are many possible sources of failures in vehicle
systems, and this paper considers only a few. The Lo-
calization component can detect GPS sensor failures, and
communicates the failure state to the Supervisor. Since the
planners and the controller require GPS for path tracking,
GPS sensor failures are violations of the nominal operational
conditions. SPP and UPP may also fail to find paths. If
that happens without Supervisor action, then the RCV gets
stuck at one of the transition points, which is again not
considered nominal operation. Hence, the Supervisor needs
to respond to GPS, SPP, and UPP failures and activate the
SSTP. Additionally, if the SSTP itself experiences failures,
then the AEB shall be activated.

A. Formal requirements

Based on the desired system behavior described above,
a number of design requirements are identified and then
expressed in natural language.

1) missionComplete: The supervisor and the four con-
current control functions shall never stop at invalid
end states. The state after a safe or emergency stop
is terminal.

2) stopInTheEnd: The RCV’s speed shall always eventu-
ally be zero.

3) allPathsKnown: If the vehicle stops safely at the goal
position, then all paths must be known. Otherwise the
vehicle has been running without a reference, or the
model is wrong.

4) driveOnlyOnPaths: If the vehicle drives past the end-
point of a path, then the next path must be known.
Similarly, the goal position shall never be passed.

5) safeStop: If the vehicle stops safely along the road,
then an error must have occurred and the SSTP must
have executed successfully.

6) unsafeStop: If the vehicle stops with emergency brak-
ing, then an error must have occurred and the SSTP
must have failed.

7) failure: If an error occurs, then the RCV must be
stopped safely beside the road by SSTP. If SSTP fails,
AEB must perform an emergency stop.

For the formal verification to result in either a correct-
ness proof or a counterexample, there has to be a formal
specification of the correct behavior. The specifications in
this paper are formalized as LTL [24]. The LTL formulas
are evaluated over an infinite run π of a finite automaton
V . Let πi represent the i-th state along the run and π[i]
represent the infinite run starting from state πi. Each state
πi of the run contains a set of atomic properties that are
true in that state. Apart from the logic operators used in
propositional logic, LTL formulas introduce the temporal
operators ♦ ‘eventually’ and � ‘always’. A run π satisfies a
formula ϕ:

• π � ϕ iff π[0] � ϕ
Let θ be an LTL formula, and ψ be an atomic property. The
definition of when a run π[i], i ≥ 0, satisfies a formula is
given inductively:

• π[i] � ψ iff ψ ∈ πi
• π[i] � ¬ϕ iff π[i] 2 ϕ
• π[i] � ϕ ∨ θ iff π[i] � ϕ or π[i] � θ
• π[i] � �ϕ iff π[k] � ϕ for all k ≥ i
• π[i] � ♦ϕ iff π[k] � ϕ for some k ≥ i

The automaton V satisfies a formula ϕ if every run satisfies
the formula. Any run not satisfying the formula is a coun-
terexample. V is a model of the system.

Below, a short comment is given for each design require-
ment together with its LTL formalization. Propositions in the
following LTL formulas are implemented through variables
and events to be defined in formal models and code. The
semantics of using variables and operators in LTL are found
in the documentation of SPIN [8], while specifics of the
implementation are found online1.

missionComplete: One of the desired states Goal,
SafeStop, or EmergencyStop as highlighted in Figure 3,
shall be reachable at all times. Note that SafeStop and
EmergencyStop are terminal states in the RCV software,
because repair and software reboot must be performed at
these states.

�♦Goal ∨ ♦�SafeStop ∨ ♦�EmergencyStop (1)

stopInTheEnd: This requirement relies on three assump-
tions: (1) the TP can always stop the vehicle at the end of a
path, (2) the SSTP can stop the vehicle if it has no failure,
and (3) the AEB can always stop the vehicle.

�♦speed = 0 (2)

allPathsKnown and driveOnlyOnPaths: The TP cannot
take any responsibility for its input; it has to assume that
the input is correct because it has no means of detecting
errors. Hence the Supervisor needs to take responsibility for
sending correct path information to the TP. The use of Upp1
and Upp2 is made to distinguish between the two different
planned paths in the source and goal parking lots.

�(Goal→
Upp1Success ∧ SppSuccess ∧ Upp2Success) (3)

1https://github.com/krooken/wasp-des-rcv

�((pos > 0→ Upp1Success)

∧ (pos > Tp1→ SppSuccess)

∧ (pos > Tp2→ Upp2Success)) (4)

safeStop, unsafeStop, and failure: The safe stop command
shall be issued if and only if it is needed. Additionally, the
AEB shall only be activated if the SSTP fails.

�(SafeStop→
(SensorFailure

∨ (¬SppSuccess ∧ SppRequest)
∨ (¬Upp1Success ∧ Upp1Request)
∨ (¬Upp2Success ∧ Upp2Request)

∧ (SstpSuccess ∧ SstpRequest))) (5)

�(EmergencyStop→
(SensorFailure

∨ (¬SppSuccess ∧ SppRequest)
∨ (¬Upp1Success ∧ Upp1Request)
∨ (¬Upp2Success ∧ Upp2Request)

∧ (¬SstpSuccess ∧ SstpRequest))) (6)

�(SensorFailure→
♦(SafeStop ∨ EmergencyStop)) (7)

B. Modeling in Stateflow

To solve the transport mission, an FSM which governs
the operation of the Supervisor component is proposed in
Figure 3. The first step in showing that the FSM fulfills
the requirements is using model-based design to implement
the Supervisor according to this FSM. Stateflow, which is a
toolbox for MATLAB [25], is used for this purpose. A state
consists of a name, an entry section, and an exit section. The
code in the entry/exit section is executed when the state is
entered/exited. When a state is active and the condition on
one of its outgoing transitions evaluates to true, then the state
may be exited and the next state activated. The semantics
are formally described in [25], [26]. In the implementation
of the Supervisor, only assignments are used in the states.
The Stateflow model is automatically translated to C++ code
by MATLAB code generation tools, where variables used as
conditions on transitions are regarded as inputs, and variables
used in assignments in states are regarded as outputs. A C++
node for ROS provides the generated code with input data,
and action is taken on the output to send appropriate actions
to the other components in the RCV system.

C. Model checking

A dynamical model of the RCV and its components is
created in Simulink, and connected to the Stateflow model
of the Supervisor. This setup allows for testing the Stateflow
model, subject to the requirements. However, testing can only
show presence of errors, not abscence, so regardless of how
exhaustively the Stateflow model is tested, only a statistical

Fig. 3: FSM modeling the Supervisor. Solid rectangles and circles
are states. The dashed rectangle is a superstate; all enclosed states
have a transition to the SSTP state on sensor failure.

argument can be made for the correctness of the design. To
prove absence of errors, the Stateflow model is translated
into Promela code and formally verified with the model
checker SPIN [8]. Prior research has described methods
for translating Stateflow models into Promela code [27],
[28], but to our knowledge there is no freely available tool
for automatic translation. Since the Stateflow model uses a
small and simple subset of the semantics, it is relatively
straightforward to do the translation manually.

In addition to a model of the Supervisor, SPIN also needs
models of the complete RCV system to prove or disprove
specifications. The different components of the RCV are
modelled according to the assumptions in Section II and Fig-
ure 3. For the verification to be valid for the implementation
of the total system, the components other than the Supervisor
need to guarantee that their implementations fulfill the as-

sumptions. There are in total six asynchronous software com-
ponents communicating via asynchronous message queues.
The RCV is simulated as a standard discrete-time vehicular
longitudinal dynamics model along the length of the path.
The Stateflow model and the Promela model are publicly
available online.1 The Promela model has, in addition to
the specifications from Section III-A, a specification called
failToReachGoal that does not allow the system to be in the
goal state (�¬Goal). SPIN should find a counterexample to
this specification, otherwise no transport mission can ever be
completed.

IV. RESULTS AND DISCUSSION

The results of the case study are presented, interpreted
and discussed in two parts. Part one presents the formal
verification results and part two presents the experimental
results of the system implementation.

A. Formal Verification

SPIN verifies that the Promela model satisfies all spec-
ifications except failToReachGoal, and the results of the
verification can be seen in Table I. The first column refers
to the name of the specification, while the third, fourth, and
fifth columns show the number of transitions that have been
explored during the search, the memory usage during the
search, and the time that was required to complete the search,
respectively. These numbers give an indication of the proof
effort.

The second column specifies what mode SPIN uses to
prove the requirement. The safety mode is faster, as can be
seen in the table, since SPIN can exploit the proof structure
when proving safety specifications, but this technique cannot
be used for proving liveness specifications. The first two
requirements are the most general, and seen in Table I they
are the most demanding ones to prove. In total, it took 247
seconds to prove absence of errors for all requirements. The
specification failToReachGoal is disproved in 0.6 seconds,
verifying that it is indeed possible to reach the Goal state.

TABLE I: Verifying the specifications.

Specification Type Transitions Mem [MB] Time [s]
missionComplete Liveness 1.27e+08 680.5 136.0
stopInTheEnd Liveness 3.50e+07 310.1 38.1
allPathsKnown Safety 8.02e+06 136.6 10.0
driveOnlyOnPaths Safety 8.02e+06 136.6 10.0
safeStop Safety 8.02e+06 136.6 10.0
unsafeStop Safety 8.02e+06 136.6 10.0
failure Liveness 2.90e+07 290.0 32.4
failToReachGoal Safety 5.15e+05 15.0 0.6

B. RCV Experiment

Although SPIN proves that the Promela model satisfies
the specifications, several sources might lead to inconsistency
between the physical system and the Promela model. To mit-
igate the risk of discrepancies, a set of scenarios may be run
in different verification environments (Promela, Simulink,
ROS, and RCV) to see that the same sequence of states are
traversed in all of them. A scenario was set up where:

1) The vehicle starts in a parking area, waiting for a
mission.

2) The vehicle receives a mission goal, e.g., a pickup
request, in the traffic system.

3) The vehicle plans and executes a path through the
unstructured area, entering the road network.

4) The vehicle drives along the route toward the goal.
5) A simulated failure is injected into the GPS sensor.
6) The vehicle executes a safe stop maneuver.

Figure 4 illustrates the path (a) and velocity (b) of the vehicle
during a Gazebo simulation of the scenario. The colors
represent the active state of the FSM. This experiment gives
an indication of the usefulness of the proposed method, as the
vehicle successfully stopped outside of active lanes promptly
after the GPS sensor failure was detected. Also, nominal
planner switching between UPP and SPP was handled seam-
lessly. Figure 5 shows the activation of SSTP during a real
world experiment with the RCV2. Formally proving absence
of deadlocks and reachability of the terminal states reduces
the extent to which the supervisor must be verified and is a
useful tool in fulfilling the combined requirements for level
4 autonomy from [1] and [4].

0 20 40 60 80 100 120 140 160 180 200 220

X-position [m]

300

320

340

360

380

400

420

Y
-p

os
iti

on
 [m

]

Initial position
Failure detected
Planned path
Road boundary
Parking lot
Safe stop area
FromParking
TransitionToSPP
WaitToLeaveTp1
RoadToRoad
SSTP

(a) A birds eye view of a drive.

0 10 20 30 40 50 60

Time [s]

0

1

2

3

4

5

6

7

8

9

S
p
e
e
d
 [

m
/s

]

WaitingForGoal
WaitForTransforms
CallForPlan
ParkingToRoad
SafeStop
Failure detected

(b) Vehicle speed during a drive.

Fig. 4: Results from the simulated scenario in Gazebo. The GPS
sensor fails before the RCV has reached the goal, so the SSTP
activates and stops the vehicle. Path sections are colored according
to current state at that position or time. The coloring reflects the
currently active state in Figure 3.

2Video source online: https://vimeo.com/319427372

180 190 200 210 220 230 240 250 260

X-position [m]

-285

-280

-275

-270

-265

-260

Y
-p

os
iti

on
 [m

]

Failure detected
Planned path
Road boundary
Safe stop area
RoadToRoad
SSTP

Fig. 5: Results from a real world experiment. SSTP is activated and
stops the vehicle in the safest reachable position beside the road.

V. CONCLUSION AND FUTURE WORK

This paper studies the problem of selecting an appropriate
action in case of hazardous situations during level 4 auto-
mated driving. We propose a method based on model-based
design, formal methods, and code generation to design a
supervisor that arbitrates between planner functions such that
a minimal risk condition may always be reached. The method
is validated through simulations and experiments. Detection
of hazardous internal or external states that should cause safe
stop is a non-trivial problem left for future research. Also,
the safe stop capability depends on the correctness of the
functionality of all other components in Figure 1, which are
typically less suitable for verification by formal methods.

The design of the Supervisor, the development of require-
ments, and the implementation of the Promela model are all
manual, which is time consuming and prone to errors. In this
regard there is room for improvement. The requirements are
difficult to generate automatically, and so is the model of the
RCV. However, when the requirements have been developed
and the vehicle modeled, the method employed in [9], where
correct by construction software is synthesized automatically,
could be used to limit the risk of human error.

One weakness of the Supervisor presented in this paper
is that, although the correct activation of the Safe Stop
Trajectory Planner is guaranteed, the planner may fail to find
a suitable trajectory at that particular moment, and resort to
the Supervisor to activate the Automatic Emergency Brake,
which is likely to stop the vehicle in an active lane. This
constitutes an elevated risk level compared to completing
a safe stop that terminates by the side of the road. One
way to reduce this risk is to store emergency maneuvers,
one of which can be activated when the SSTP cannot find
new ones [15]. To investigate how the nominal planning
behavior could be influenced by the availability of a safe
stop maneuver is an item of future work. Other questions
for further research include: What other tools are suitable
that reduce manual work, while still supporting the features
of SPIN? How can it be guaranteed that a safe stop can be
performed in the event of an actuator failure?

REFERENCES

[1] SAE, J3016 Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles, Sep 2016.

[2] Waymo. (2017) Waymo safety report - on the road to fully
self-driving. [Online]. Available: https://waymo.com/safetyreport/

[3] General Motors. (2018) General Motors self-driving safety report.
[Online]. Available: http://www.gm.com/mol/selfdriving.html

[4] ISO/TC 22/SC 32, “ISO 26262: Road vehicles – functional safety,”
International Organization for Standardization, Tech. Rep., 2012.

[5] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software
engineering in practice,” Synthesis Lectures on Software Engineering,
vol. 1, no. 1, pp. 1–182, 2012.

[6] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Springer Publishing Company, Incorporated, 2010.

[7] C. Baier and J.-P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[8] G. Holzmann, The SPIN Model Checker: Primer and Reference
Manual, 1st ed. Addison-Wesley Professional, 2003.

[9] T. Korssen, V. Dolk, J. van de Mortel-Fronczak, M. Reniers, and
M. Heemels, “Systematic model-based design and implementation of
supervisors for advanced driver assistance systems,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. PP, no. 99, pp. 1–12,
2017.

[10] S. Sims, R. Cleaveland, K. Butts, and S. Ranville, “Automated vali-
dation of software models,” in 16th Annual International Conference
on Automated Software Engineering (ASE), 2001, pp. 91–96.

[11] A. Zita, S. Mohajerani, and M. Fabian, “Application of formal verifi-
cation to the lane change module of an autonomous vehicle,” in 13th
IEEE Conference on Automation Science and Engineering (CASE),
Aug 2017, pp. 932–937.

[12] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control:
Hybrid, distributed, and now formally verified,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6664 LNCS.
Springer, Berlin, Heidelberg, 2011, pp. 42–56. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-21437-0_6

[13] J. Salvado, L. M. M. Custódio, and D. Hess, “Contingency planning
for automated vehicles,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct 2016, pp. 2853–2858.

[14] L. Svensson, L. Masson, N. Mohan, E. Ward, A. P. Brenden, L. Feng,
and M. Törngren, “Safe stop trajectory planning for highly automated
vehicles,” 29th IEEE Intelligent Vehicles Symposium (IV), 2018.

[15] S. Magdici and M. Althoff, “Fail-safe motion planning of autonomous
vehicles,” in IEEE 19th International Conference on Intelligent Trans-
portation Systems (ITSC), Nov 2016, pp. 452–458.

[16] O. Wallmark, M. Nybacka, D. Malmquist, M. Burman, P. Wennhage,
and P. Georen, “Design and implementation of an experimental
research and concept demonstration vehicle,” in IEEE Vehicle Power
and Propulsion Conference (VPPC), Oct 2014, pp. 1–6.

[17] S. Kokogias, L. Svensson, G. C. Pereira, R. Oliveira, X. Zhang,
X. Song, and J. Mårtensson, “Development of platform-independent
system for cooperative automated driving evaluated in GCDC 2016,”
IEEE Transactions on Intelligent Transportation Systems, vol. PP,
no. 99, pp. 1–13, 2017.

[18] G. C. Pereira, L. Svensson, P. F. Lima, and J. Mårtensson, “Lateral
model predictive control for over-actuated autonomous vehicle,” in
IEEE Intelligent Vehicles Symposium (IV), June 2017, pp. 310–316.

[19] (2017) Open Source Robotics Foundation cardemo. [Online].
Available: https://github.com/osrf/cardemo

[20] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[21] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map rep-
resentation for autonomous driving,” in IEEE Intelligent Vehicles
Symposium Proceedings (IV), June 2014, pp. 420–425.

[22] K. Kutzer, “Path planning in unstructured environments: A real-time
Hybrid A∗ implementation for fast and deterministic path generation
for the KTH Research Concept Vehicle,” Master’s thesis, KTH, Royal
Institute of Technology, 2016.

[23] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical
search techniques in path planning for autonomous driving,” Stanford
University, Tech. Rep., 01 2008.

[24] M. Huth and M. Ryan, Logic in Computer Science: Modelling and
Reasoning About Systems. New York, NY, USA: Cambridge Univer-
sity Press, 2004.

[25] MathWorks, https://www.mathworks.com/products/matlab.html, 2017.
[26] A. Tiwari, “Formal semantics and analysis methods for Simulink

Stateflow models,” SRI International, Tech. Rep., 2002. [Online].
Available: http://www.csl.sri.com/~tiwari/stateflow.html

[27] L. Feng, D. Chen, H. Lönn, and M. Törngren, “Verifying system
behaviors in EAST-ADL2 with the SPIN model checker,” in IEEE
International Conference on Mechatronics and Automation (ICMA),
Aug 2010, pp. 144–149.

[28] C. Yamada and D. M. Miller, “Using SPIN to check Simulink
Stateflow models,” in IEEE/ACIS 14th International Conference on
Computer and Information Science (ICIS), June 2015, pp. 161–166.

