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Abstract—Images represent a commonly used form of visual
communication among people. Nevertheless, image classification
may be a challenging task when dealing with unclear or non-
common images needing more context to be correctly annotated.
Metadata accompanying images on social-media represent an
ideal source of additional information for retrieving proper neigh-
borhoods easing image annotation task. To this end, we blend
visual features extracted from neighbors and their metadata to
jointly leverage context and visual cues. Our models use multiple
semantic embeddings to achieve the dual objective of being robust
to vocabulary changes between train and test sets and decoupling
the architecture from the low-level metadata representation.
Convolutional and recurrent neural networks (CNNs-RNNs) are
jointly adopted to infer similarity among neighbors and query
images. We perform comprehensive experiments on the NUS-
WIDE dataset showing that our models outperform state-of-the-
art architectures based on images and metadata, and decrease
both sensory and semantic gaps to better annotate images.

I. INTRODUCTION

Images represent an effective and immediate form of ex-
pression commonly used to share events and moments of
our daily lives. This is particularly true nowadays with the
rising popularity of social networks such as Facebook, Twitter
and Instagram. Additional information like similar images and
social network metadata, are often employed to provide exter-
nal context and to emphasize moods and messages. Dealing
with such contextual data could advantage visual recognition
tasks, such as image tagging and retrieval [1], in ambiguous
cases where main parts are occluded or unrecognizable (as
in Figure 1). In this paper we build on the intuition that a
context of additional weakly-annotated images can help in
disambiguating the visual classification task, as shown in the
seminal work by Johnson et al. [2].

The idea of using contextual data to improve visual recog-
nition is not new [3], [4]. Even humans usually benefit from
the context in object detection and scene recognition [5].
In particular, in this work we exploit the (noisy) contextual
information given by metadata embedded in images shared
on social-networks. Metadata could be very useful to classify
examples that occur very rarely or showing visual elements
in non-prototypical views. Here image and network metadata
can be considerably effective in bridging the sensory and the
semantic gap [6], [7].

Various types of metadata are shared on social-networks.
For example, digital photos normally provide information like
ISO, exposure, location or timestamp. Users may also add

Fig. 1: Some images might be hard to recognize without
additional context. However, related images on a social net-
work typically share similar metadata. Based on this intuition,
given an image, we retrieve a neighborhood of images sharing
similar metadata (e.g. tags) to assist the image annotation task.
Our approach builds on [2] and introduces more advanced
semantic mapping and CNN-RNN fusion schemes.

textual descriptions, or provide names of people which appear
in photos. Several works have exploited metadata to improve
image classification and retrieval, mostly using user-generated
tags [8], [9], [10], [11], GPS data [12], [13] or groups [14].
In [2], image metadata such as tags or Flickr groups are used
nonparametrically to generate a pool of related images, that
can be further exploited by a deep neural network to blend
visual information from a given image and its neighborhood.
The key contribution of the approach is a model that can deal
with different metadata and adapts over time with no (or very
limited) re-training. Thus the model reported state-of-the-art
results on multilabel image annotation by taking advantage
of strong visual models [15], [16] and flexible nonparametric
approaches [17], [18].

In this work we explore different architectures based on
both visual cues and external data (e.g., tags) to improve the
simple fusion scheme presented in [2]. More specifically, we
first focus on preserving distance between a test image x and
its neighbors to capture more relevant labels, as well as on
handling vocabulary changes when new terms are included. To
this end, our proposed architectures attempt to better encode
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the semantic meaning of tags through word embeddings [19],
[20]. Second, we investigate and design different architectures
for image-to-neighborhood features fusion. Here the main
source of inspiration is given by recent CNN-RNN models
for image classification and captioning [21], [22]. In these
works, a CNN is used to extract the image feature vector,
which is then fed into an RNN that either decodes it into a
list of labels (multilabel image classification) or a sequence
of words composing a sentence (captioning). In contrast, we
investigate different strategies in which an RNN is used to
sequentially blend the visual or multimodal information in a
joint feature space.

The remainder of the paper is organized as follows. In
Section II, we review related work in the area of image
classification in a (noisy) multimodal scenario. In Section III,
we present our deep network framework. We evaluate the
performance of our method on the NUS-WIDE dataset [23],
and Section IV shows that the approach improves previous
state-of-the-art models [2], [21].

II. RELATED WORK

A. Image Tagging and Retrieval

The idea of harvesting images from the web to train visual
classification models has been explored many times in the past
[24], [25], [26]. Despite its simplicity, a popular and quite
effective approach for automatic image annotation, that has
been often used in early works, is nearest-neighbors based
label transfer [27], [17]. More recently, deep networks have
been applied extensively also in this domain achieving state-
of-the-art results on many popular benchmarks [15], [16].

Among the vast literature on image tagging and retrieval
[1], our work is mostly related to multimodal representation
learning of images and labels. To this end, early works often
model the association between visual data and labels in a
generative way or rely on mapping images and labels to a
common semantic space using techniques such as CCA or
KCCA [28], [9], [29]. Hu et al. [30] observe that diverse levels
of visual categorization are possible depending on the level of
desired abstraction. Thus, they rely on structured inference to
capture relationships among concepts in neural networks. In
general, these approaches demonstrate the benefit of exploiting
side information and correlations between visual features and
labels, but they only rely on ground truth annotations.

B. Automatic Image Annotation with Metadata

Several previous works tackled the automatic image an-
notation task using social-network metadata [6], [12], [7],
[14]. User-generated tags are significantly the most commonly
used metadata for multilabel image classification. In [31],
Guillaumin et al. consider a scenario in which only visual
data is used at test time, but metadata from social media
websites (such as Flickr) are available at training time and can
be leveraged to improve classification using semi-supervised
learning. Moreover, a combination of simple nonparametric
models and metric learning is used in [8], while [18] focuses
on selecting a better set of training images to drive the label

transfer. Flickr groups are exploited in [14] to derive a measure
of image similarity which can encode broader correlations than
user-generated tags and labels. A graph over tags, groups or
common GPS location is used by Niu et al. [11] to define a
semi-supervised topic model for image classification.

Our work falls in this area. Inspired by the model presented
by Johnson et al. [2], we also use a deep network to blend the
visual information extracted from a neighborhood of images
sharing similar metadata. This idea has been also recently
followed in [32] where a co-attention mechanism is used to
construct a graph in which each node represents a relevant
neighbor and correlated images are connected by edges. Our
method differs from these works because we focus on defining
a more effective architecture to combine visual cues and
social-network metadata from both the test image and the
neighborhood.

III. OUR FRAMEWORK

Our goal is to annotate images using side information
carried by their neighbors. More specifically, we jointly exploit
visual features as well as tags which commonly accompany
images on social networks. Tags are embedded using different
semantic mappings. Our models are built upon the work
presented by Johnson et al. [2], where metadata are only used
to retrieve similar images and the annotation task mainly relies
on visual features. We propose two general architectures for
images annotation, both based on visual features and image
metadata (see Figure 2). Whereas visual models only exploit
visual cues, joint models handle metadata which are directly
fed to the neural network after a transformation step.

All the models generate nonparametrically a neighborhood
Zx for a query image x using metadata and then the net-
works are trained to classify x given its neighbors in Zx.
The neighborhood generation process is parametrized over a
neighborhood size m and a max rank M . More specifically, let
Zx be the M−nearest neighbors of x according to a distance
measure δ. The set of candidate neighborhoods for an image
x is the set:

Zx = {s ∈ P(X) : |s| = m}, (1)

where P(X) denotes the power set of X , that is the set of
considered images. The prediction s(x, θ) is the average of
f(x, ~z; θ) over all candidate neighborhoods:

s(x, θ) =
1

|Zx|
∑
z∈Zx

f(x, ~z; θ), (2)

where x is the image to be classified, ~z = (z1, z2, ..., zm) are
the neighbors and f(x, ~z; θ) is the output of the neural network
which takes into account their visual cues.

The model is trained by computing a loss function L and
minimizing:

θ∗ = arg min
θ

∑
(x,y)∈Dtrain

L(s(x, θ), y), (3)

where y represent a subset of all possible labels that appear in
D. Note that neighbors are ordered according to their distance
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Fig. 2: General architectures of the proposed models. K-NN is used to retrieve similar images using metadata, while a neural
network processes the retrieved information. (a) shows the architecture for visual models (as in [2]) where only visual features
for both query image and neighbors are used to predict labels. (b) shows the architecture for joint models where metadata are
also fed, possibly after a transformation step, to the final classification layer.

when fed to the neural network and thus the network may learn
to treat the closest ones differently.

Joint models differ from visual models in that they en-
rich image representation with additional information. More
specifically, such models use metadata which are directly
fed to the final layer of the network after a transformation
step π(·) involving a lookup in a dictionary of semantic
embeddings. In this case, the prediction s(x, θ) is the average
of f(x, π(ox), ~z, π(~oz); θ), where ox is the metadata vector
for image x while π(ox) is its transform. We shall use π(~oz)
as shorthand for map (π,~oz) = (π(oz1), π(oz2), ..., π(ozm)),
where ~oz are metadata vectors for the neighborhood.

A. Metadata Encoding

Metadata representation may affect network’s ability to
recover correct annotations. For this reason, we firstly encode
metadata without associating any meaningful representation to
each word, i.e., semantically close words could be associated
to distant vectors, and secondly consider more powerful word
encoding techniques.

1) One-hot Encoding: We focus on social-network tags
represented as binary vectors ox ∈ {0, 1}τ . More specifically,
let x the query image and (t(1), t(2), ..., t(n)) all relevant tags
for x chosen from a vocabulary of τ tags, the binary vector
ox is the sum of the one-hot vectors for each of its tags:

ox =
∑

i s.t. ti∈{t(1),t(2),...,t(n)}

eτi . (4)

Using id, i.e., raw binary vectors, neighborhoods are com-
puted using the Jaccard distance J between binary vectors. Bi-
nary vectors ox for each image x (or neighbor zi) are directly

handled by the neural network, without further processing. The
Jaccard distance is defined as follows:

J (x, x
′
) = 1− |tx ∩ tx

′ |
|tx ∪ tx′ |

(5)

with J (x, x) = 0.

2) Semantic-aware Encoding: We also explore more pow-
erful word embedding techniques in order to encode similar
word into similar vectors. We consider a transformation that
maps a vector ox to a semantic space π : {0, 1}τ → Rn. It
is clear that, unlike visual models, where metadata are used
implicitly, a neural network trained to make predictions as a
function of one or more binary vectors becomes useless if the
vocabulary changes. Semantic maps π can decouple the low-
level bit representation from the semantic meaning, making
models learned on a tag vocabulary applicable to a different
one, as long as an appropriate π̃ is available that maps the new
binary vectors onto the old semantic space. More specifically,
given a map or dictionary of embeddings β : TAGS → Rn for
some n, we define ρ(ox;β) as the sum of the vectors β(t(i))
for each tag t(i) relevant for image x, i.e.:

ρ(ox;β) =

τ∑
i=1

ox(i)
· β(t(i)). (6)

For π(x) = ρ(ox;β), we consider two semantic embed-
dings. Firstly, we use a dictionary of word2vec embed-
dings [19]; they are obtained by training on a 100-billion-
words subset of the Google News database and contain 300-
dimensional vectors for 3 million words and phrases. We
expect to recover some semantic information from the tags and
improve performance, as well as achieving decoupling from



the low-level binary representation for joint architectures. We
choose cosine distance for δ, defined as:

simcos(x1, x2) = 1− ~x1 · ~x2
| ~x1|| ~x2|

. (7)

Secondly, we use WordNet embeddings which works in
the same fashion as word2vec, except that β is extracted
from a dictionary where vector representations are optimized
to be similar if the words are close on the WordNet taxonomy.
Cosine distance is again our choice for δ. WordNet embed-
dings [20] comprise a dictionary of 650-dimensional vectors
obtained from Princeton WordNet 3.01 with 60, 000 words.

B. Visual Models

Visual models only rely on extracted visual features of
input images without considering additional information. We
consider three visual models based on fully-connected and
recurrent layers.

1) Visual-only: This architecture acts as baseline; it simply
amounts to a fully-connected layer over visual features φ(x)
output by a CNN for an image x. Therefore,

f(x, ~z; θ) = WyΦ(x) + by (8)

Note that ~z is not used.
2) LTN: This is the model proposed in [2]. The label scores

are computed as follows:

f(x, ~z; θ) = Wy

[
vx
vz

]
+ by (9)

where ~z = (z1, z2, ..., zm) is a vector of neighbors obtained
nonparametrically, x is the image to be classified, and

vx = σ(WxΦ(x) + bx), (10)

vz = max
i=1,...,m

(σ(WzΦ(zi) + bz)) (11)

where σ is a ReLU activation function. The model is depicted
in Figure 3a. Note that the weights Wz and bz are shared
among all (z1, z2, ..., zm) and vx, vz ∈ Rh.

3) RTN: This architecture extends LTN by replacing the
max-pooling operation with a RNN in order to better dis-
criminate individual neighbors. Sequential image processing
may allow the network to retain only relevant features of the
neighborhood handling each image separately.

More specifically, the hidden state vz is defined as follows:

vz = RNN((z1, z2, ..., zm);WRNN ), (12)

where the notation RNN((i1, ..., in),W ) denotes a recurrent
neural network sequentially fed with inputs (i1, ..., in) while
W are the corresponding parameters. In this case, RNN
is a long short-term memory (LSTM) network with linear
activation function. The other parameters remain unchanged.
The model is depicted in Figure 3b.

1https://github.com/nlx-group/WordNetEmbeddings

C. Joint Models
Joint models are directly fed with metadata instead of

leveraging metadata only implicitly along with visual features.
Metadata improve the semantic level detected by extracted
visual features. In the following, we define several architec-
tures handling metadata (or their embeddings) using linear and
recurrent layers.

1) LTN+Vecs: This architecture makes use of metadata
ox, i.e., metadata of image to be classified, which are con-
catenated to the output of the CNN of image x.

The output of the network is defined as follows:

f(x, π(ox), ~z; θ) = Wy

[
vx
vz

]
+ by, (13)

where
vx = σ

(
Wx

[
Φ(x)
π(ox)

]
+ bx

)
. (14)

vz is defined as in LTN visual model. Note that such model
does not use neighbor metadata vectors and it only relies on
visual features of closest images. A transformation step is then
applied to map metadata onto a new space (see Figure 3c).

2) LTN+AllVecs: This architecture, unlike the previous
one, uses metadata vectors ox of the image to be classified
and metadata of its neighbors ~oz .

The output is defined as follows:

f(x, π(ox), ~z, π(~oz); θ) = Wy

[
vx
vz

]
+ by, (15)

where vx is defined as above and

vz = max
i=1,...,m

σ

(
Wz

[
Φ(zi)
π(ozi)

])
. (16)

In this case, σ is a ReLU activation function. The model is
depicted in Figure 3d.

3) LTwin: Unlike LTN+AllVecs, such architecture pro-
cesses features and metadata using two separate pipelines,
i.e., metadata are not concatenated with the images features.
The neighbors are blended with a max-pooling layer, so the
model is not able to discriminate between nearest and farthest
neighbors.

The output of the network is defined as follows:

f(x, π(ox), ~z, π(~oz); θ) = Wy


vx
vz
ux
uz

+ by, (17)

where vx and vz are defined as in the LTN model, while ux =
σ(Wxuπ(ox) + bxu) and uz = maxi=1,...,m σ(Wzuπ(ozi) +
bzu). Max-pooling is applied on both neighbors’ features and
their metadata. The model is depicted in Figure 3e.

4) LTwin+RNN: Unlike the previous architecture, such
model replaces max-pooling layers with RNN networks to
handle the neighbors. Once again, RNN is an LSTM with
linear activation. The output is equal to LTwin architecture
with vz = RNN((FCz1 , ..., FCzm);WRNN ) and uz =
RNN((FCoz1 , ..., FCozm );WoRNN

), where FC(·) are out-
puts of fully-connected layers applied to image features and
metadata, respectively. The model is depicted in Figure 3f.

https://github.com/nlx-group/WordNetEmbeddings
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Fig. 3: Our architectures which leverage image features along with metadata. (a),(b) represent two visual models where metadata
are not employed. (c)–(h) are different ways to fuse image features and metadata. In this work, as metadata we only use tags
and we exploit recurrent layers and semantic embeddings in order to leverage contextual information.

5) LTwin+2RNN: This architecture differs from the previ-
ous one in that the final fully connected layer is also replaced
with a RNN. The output is defined as follows:

f(x, π(ox), ~z, π(~oz); θ) = RNN((vx, vz, ux, uz);WfRNN
),

(18)
where vx, vz, ux and uz are defined as in LTwin+RNN. The
model is depicted in Figure 3g.

6) LZip: Finally, this architecture uses just one RNN to
combine features and metadata which are separately processed
by FC layers. The output is defined as follows:

f(x, π(ox), ~z, π(~oz); θ) =

RNN((vx, ux, vz1 , uz1 , ..., vzm , uzm);WRNN ). (19)

The model is depicted in Figure 3h.

D. Implementation Details

We use RMSProp algorithm with He-Zhang initializa-
tion [33] and apply dropout with p = 0.5. We also set batch
size dimension to 64 (in lieu of 50, as found in [2]) and
h = 500. We apply L2 regularization with λ = 3 × 10−4

and use a learning rate of 1× 10−4. λ was chosen with grid
search. We use early stopping with a maximum of 10 and
a minimum of 3 epochs, incremented to 15 and 5 for joint
models, respectively. We run experiments with (3, 6), (6, 12)
and (12, 24) as choices of (m,M). Our CNN is the ImageNet
pre-trained AlexNet [15] model available on Caffe, as in [2].

IV. EXPERIMENTS

1) Dataset: We use the NUS-WIDE dataset [23] which
comprises 269, 648 images uploaded on the photo sharing
website Flickr, annotated with 81 ground truth labels for

evaluation. NUS-WIDE is highly unbalanced over classes,
whereas the tag sky is relevant for around 53, 000 images,
many classes have less than a thousand images. We restrict
ourselves to the fixed subset of 190, 253 images used in [2],
[32] for ease of comparison. The dataset comprises 422, 364
unique Flickr tags, which we narrow down to the τ = 5000
most frequent tags. The dataset is randomly partitioned to
form training, validation and test sets of 110, 000, 40, 000 and
40, 253 images, respectively. We average the results over 5 of
such splits.

2) Metrics: We report per-label and per-image mean Aver-
age Precision (mAP), as well as precision and recall. Note that,
in this area, the most common evaluation protocol assumes that
an algorithm should assign a fixed number k of labels to each
image. To this end, following prior work [16], [2], [21], we
report results for k = 3. Since on NUS-WIDE the average
number of labels per image is approx. 2.4, by assigning
exactly 3 labels, no classifier can achieve unit precision and
recall (thus we report on Table I the real upper bound for
each metric). However, as also highlighted in [8], [2], [1],
mAP directly measures ranking quality, so it naturally handles
multiple labels and does not require to set a fixed number k.
Therefore, mAP is the primary evaluation metric used further
on in our evaluation.

A. Experimental Results

Table I shows our best results in comparison to several
baselines and state-of-the-art models. Firs of all, the LTwin
model outperforms the other methods on both mAP metrics. It
is also important to note that for the corresponding models pro-
posed in [2], our implementation of LTN achieves comparable
results while LTN+Vecs has worse performance. Therefore,



Fig. 4: mAPlab and mAPimg for visual models varying the
neighborhood size and semantic mapping to retrieve the neigh-
bors. Black color refers to LTN model while the red one
to RTN model. All the models outperform the visual-only
baseline.

Fig. 5: mAPlab and mAPimg for joint models varying the
neighborhood size considering π =id both for neighbors
retrieval and metadata embedding.

the LTwin model achieves best results showing a 10 and 2
percentage performance increase on both mAP metrics w.r.t.
the corresponding LTN+Vecs baseline.

More detailed results about all the different architectures
presented in Section III are reported in Table II and Table III
(all the results refer to a neighborhood size of (12, 24), high-
lighting a vast range of different combinations of architectures
and encodings. We choose to focus our attention on mAPlab
and mAPimg since they better summarize classification perfor-
mances. In general, we note that mAPlab is the metric that is
affected the most, whereas mAPimg remains more stationary.

1) Visual Models: As shown in Figure 4, for the same
neighborhood, RTN leads to an improvement of mAPlab of
around 0.7 to 1.2 percentage points over LTN, in exchange
for a drop of 0.2 to 0.4 percentage points of mAPimg . More
interestingly, the gap between π = id and word2vec is
larger for RTN at low values of m. Notice how RTN with
word2vec embeddings and a (3, 6) neighborhood outper-
forms vanilla LTN with (6, 12) neighborhood in terms of
mAPlab, with negligible impact on mAPimg . The performance
of RTN begins to decline faster than LTN with π = WordNet.
This leads to hypothesize that RTN is particularly sensitive
to the quality of neighborhoods it is trained on. All models
improve monotonically with m.

2) Joint Models: We firstly analyze the naive case, i.e.,
π = id (Figure 5) and then introduce semantic mapping
(Figure 6). The simplest and worst-performing model is
LTN+Vecs fed with raw binary vectors; it shows quasi-

Fig. 6: mAPlab and mAPimg for joint models varying the
neighborhood size and considering π =w2v (1st row) and
π =wnet (2nd row). Only relevant models and embedding
combinations are reported. n refers to the embedding used for
neighbors retrieval while f to embedding used to metadata
representation.

linear improvement w.r.t. neighborhood. LZIP, which uses
a RNN, improves uniformly upon it and achieves very good
mAPlab and mAPimg from the start but tends to exhibit a mild
decrease in performance with neighborhood size, along with
LTwin+2RNN. In turn, LTwin achieves good mAPimg but
comparatively poor mAPlab; LTwin+RNN achieves roughly
comparable performance, but shows linear improvement with
m. LZIP, at small (m,M), and LTwin+2RNN are the best-
performing models showing that early fusion and RNNs are
beneficial to increase network performance, with LTwin com-
fortably in the middle for mAPimg . Unfortunately, LZIP and
LTwin+2RNN are also by far the longest to train by an order
of magnitude (we just need to consider the breadth of the
unrolled graph for non-trivial neighborhood sizes).

The addition of semantic metadata transforms can give a
significant boost to performance, in addition to the benefits
w.r.t. robustness of the model to vocabulary changes and appli-
cability to a different database than the one used for training.
The performance of all architectures is boosted when they
are fed transformations computed from word2vec vectors
through Eq. 6 instead of plain binary vectors. All models
tend to saturate around (mAPlab, mAPimg) = (.63, .83). This
appears to be the case for LZIP, even without any sort of
π. It may be the case that the simpler LTwin can match the
performance of the more complex models once provided with
word2vec mappings. LTwin (f: word2vec) performs as
well as LTwin (n: word2vec, f: word2vec), or even better;
the same goes for its LZip siblings (by a considerably minor
margin). We speculate that the ability of the network to learn
to take maximal advantage of semantic embeddings overshad-
ows the effect of their use in neighborhood generation and



Method mAPlab mAPimg reclab preclab recimg precimg

Tag-only Model + linear SVM [7] 46.67 - - - - -
Graphical Model (all metadata) [7] 49.00 - - - - -
CNN + WARP [16] - - 35.60 31.65 60.49 48.59
CNN-RNN [21] - - 30.40 40.50 61.70 49.90
SR-RNN [22] - - 50.17 ? 55.65 ? 71.35 ? 70.57 ?
SR-RNN + Vecs [22] † - - 58.52 ? 63.51 ? 77.33 ? 76.21 ?
SRN [34] 60.00 80.60 41.50 ? 70.40 ? 58.70 ? 81.10 ?
MangoNet [32] 62.80 80.80 41.00 ? 73.90 ? 59.90 ? 80.60 ?
LTN [2] 52.78 ±0.34 80.34 ±0.07 43.61 ±0.47 46.98 ±1.01 74.72 ±0.16 53.69 ±0.13

LTN + Vecs [2] † 61.88 ±0.36 80.27 ±0.08 57.30 ±0.44 54.74 ±0.63 75.10 ±0.20 53.46 ±0.09

Upper bound 100.00 ±0.00 100.00 ±0.00 65.82 ±0.35 60.68 ±1.32 92.09 ±0.10 66.83 ±0.12

Our baseline: v-only 45.05 ±0.11 76.88 ±0.11 42.31 ±0.59 43.74 ±1.07 71.41 ±0.13 51.36 ±0.13

Our baseline: LTNn:id 53.17 ±0.12 79.82 ±0.16 45.67 ±1.75 47.64 ±2.18 74.29 ±0.13 53.34 ±0.17

Our baseline: LTN + Vecsn:id,f:id † 54.86 ±0.20 81.34 ±0.15 46.56 ±1.39 50.10 ±1.70 75.67 ±0.17 54.37 ±0.14

Our model: RTNn:w2v 55.36 ±0.34 79.77 ±0.27 48.73 ±2.77 51.21 ±2.61 74.35 ±0.29 53.28 ±0.24

Our model: LTwinn:w2v,f:w2v † 63.13 ±0.31 83.77 ±0.06 54.40 ±1.33 51.86 ±1.58 78.06 ±0.05 55.78 ±0.13

TABLE I: Results on NUS-WIDE. We run on 5 splits and report mean and standard deviation. Models that also use metadata
are marked with †. In our models n refers to the encoding used to build the neighborhood, while f to the encoding used to
represent image metadata. Models such as [22] can decide their own prediction length and are not limited by the parameter k.
In these cases (marked with ?) the upper bound does not apply and results are no directly comparable with other approaches.

Arch n mAPlab mAPimg

LTN id 53.17 ±0.12 79.82 ±0.16

LTN w2v 54.54 ±0.13 80.32 ±0.16

LTN wnet 53.07 ±0.17 79.95 ±0.24

RTN id 53.97 ±0.27 79.23 ±0.27

RTN w2v 55.36 ±0.34 79.77 ±0.27

RTN wnet 53.76 ±0.33 79.45 ±0.30

TABLE II: Visual Models results for neighborhood size
(m,M) = (12, 24). Column n refers to the metadata encoding
used to build the neighborhood.

using word2vec vectors in the neighborhood generation pro-
cess might therefore be unnecessary. LTwin (f: word2vec)
emerges as the superior model. As expected, WordNet re-
sults in poor performance. Notice also how LTwin (feed:
WordNet) is particularly sensitive to neighborhood size.

V. CONCLUSION

We have shown that common visual models to classify
images, based on metadata to retrieve neighbors, can be
improved considering semantic mappings and recurrent neural
networks. We have characterized the performance of a variety
of visual and joint models and their variability. Our models
outperform for several metrics state-of-the-art approaches. We
have also shown that semantic mappings can be highly effec-
tive in improving performance, besides achieving robustness to
changes in metadata vocabulary and quality of neighborhoods.
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