
Modeling the Locality in Graph Traversals

Liang Yuan∗†‡, Chen Ding§, Daniel Štefankovič§ and Yunquan Zhang∗†

∗Lab. of Parallel Software and Computational Science, Institute of Software, Chinese Academy of Sciences
†State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

‡Graduate University of Chinese Academy of Sciences
§Computer Science Department, University of Rochester

yl.iscas@gmail.com zyq@mail.rdcps.ac.cn {cding,stefanko}@cs.rochester.edu

Abstract—An increasing number of applications in physical
and social sciences require the analysis of large graphs. The
efficiency of these programs strongly depends on their memory
usage especially the locality of graph data access. Intuitively,
the locality in computation should reflect the locality in graph
topology. Existing locality models, however, operate either at
program level for regular loops and arrays or at trace level for
arbitrary access streams. They are not sufficient to characterize
the relation between locality and connectivity.

This paper presents a new metrics called the vertex distance
and uses it to model the locality in breadth-first graph traversal
(BFS). It shows three models that use the average node degree
and the edge distribution to predict the number of BFS levels
and the reuse distance distribution of BFS. Finally, it evaluates
the new models using random and non-random graphs.

Keywords-locality; graph traversals; vertex distance; reuse
distance;

I. INTRODUCTION

Graphs are widely used in many fields such as n-body
simulation, molecular biology, and Internet and social net-
works. Many problems in computer science can be formulated
as graph problems. Among the graph algorithms, Breadth-
First Search (BFS) is a basic routine. To represent irregular
computation, Breadth-First Search has been proposed as a
kernel in the Graph500 benchmark for evaluating parallel
computing system.

BFS and other algorithms have many variants designed
to improve their performance on different platforms includ-
ing shared-memory systems [1]–[7], distributed memory sys-
tems [8]–[11], GPU [12]–[14] and external-memory [15], [16].
All these methods try to improve the locality of data access.
The effect, however, depends highly on the input graph, not
just on the size but also its topology. For the same size, a graph
may have a different structure and different locality. To select
the right algorithm and its parameters, it would help if we
can model the locality of an input graph based on high-level
characteristics of the graph.

A machine-independent metric of locality is reuse distance.
For each memory access in a program execution, the reuse dis-
tance is the number of distinct data elements accessed between
this and the previous access to the same data. The distribution
of all reuse distances is called the locality signature. It shows
the average locality of the execution. The relation between the
locality signature and the miss rate has been well established,
both for direct mapped and set-associative cache [17]–[19].

In this paper, we propose a new concept called vertex
distance. It counts the number of times other graph nodes are
accessed between two consecutive visits of the same graph
node. Unlike reuse distance, vertex distance is a measure of
time rather than data volume. It is more amenable to traditional
analysis of time and space complexity and can lead to an
estimate of locality, which is a measure of active data usage.

We show that vertex distance can be used to infer reuse
distance in BFS for two types of graphs. The first is a random
graph. The second is a R-MAT (Recursive MATrix) graph [20].
R-MAT is a recursive graph generator capable of producing
both uniform and non-uniform graphs.

Based on the vertex distance, we describe three models.
The first is a probabilistic model for the random graph. It can
predict the locality very precisely because there is no small-
world property in random graphs [21]. The second model
extends the first by considering the graph topology. We use
the two models to predict the BFS tree, i.e. the number of
levels in the BFS tree and the number of vertices in each
level, and the locality of BFS, i.e. the reuse-distance signature.
Finally, the last model predicts the distribution of vertex
distances in random graphs, removing the need of profiling
in locality analysis. These models reveal the effect of graph
characteristics on the locality of BFS graph traversal. We
believe that a similar approach can be used to model the
locality in other types of graph traversal.

Previous locality models are general rather than graph
specific. They use abstractions such as data access traces [19],
loops and arrays [22], or data access probabilities [23]. Vertex
distance builds on access trace based models but over a graph-
specific abstraction. This paper shows the relation between
vertex distance and reuse distance and how the relation is
affected by the graph topology. These problems cannot be
addressed directly using the general models.

The rest of this paper is structured as follows. Section 2
provides the background on BFS and locality analysis. Section
3 describes the vertex distance and the three locality models.
Section 4 presents experimental results. Finally, Section 5
summarizes the strength and the limitations and points to
future work.

Algorithm 1 Record Vertex Distance

Input: Graph G with n nodes, BFS root
Output: V DCnt[1 . . . n], Level[1 . . . n]

1: Level[1 . . . n] ← ∞, V DCnt[1 . . . n] ← 0
2: Level[root] ← 0, CurV ertex ← 0
3: LastV ertex[root] ← CurV ertex
4: Enqueue(BFSQueue, root)
5: while !Empty(BFSQueue) do
6: i ← Dequeue(BFSQueue)
7: for j ∈ Neighbor(i) do
8: if Level[j] == ∞ then
9: Level[j] ← Level[i] + 1

10: Enqueue(BFSQueue, j)
11: else
12: V D ← CurV ertex− LastV ertex[j]
13: V DCnt[V D] ← V DCnt[V D] + 1
14: end if
15: LastV ertex[j] ← CurV ertex
16: end for
17: CurV ertex ← CurV ertex+ 1
18: end while

II. BACKGROUND

A. Breadth-first Search

Breadth-First Search (BFS) is one of the basic methods to
traversal a graph. Given a graph G = (V,E) (n = |V |,m =
|E|) and a vertex root, BFS traverses all the nodes by the
order of distance (or Level) which is the number of edges
in the shortest path from the root. Thus, each vertex will be
labeled with a Level number. The BFS algorithm will process
nodes of a smaller level number before those of a larger level
number. A simple queue-based implementation is shown in
Algorithm 1 (for now ignore line 12-16 which will be used
for the model).

In BFS, only the BFS tree (implemented by the BFS Level

array in Algorithm 1) is reused. To measure locality, we record
the reuse distance of the accesses of the BFS array. The total
number of accesses equals to the number of edges m.

B. Graph Generation

There are two main random graph generators: G(n,p) [24]
and G(n,m) [25]. In G(n,p), n is the number of nodes in the
graph, and p the probability that a pair of nodes are connected.
In G(n,m), m is the number of edges in the graph. If m =
p · n · (n− 1)/2, the two models have similar expectations in
graph topology. We consider only the G(n,p) model. Random
graphs are uniform in how they are generated.

To study non-uniform graphs, we use R-MAT [20] from
the Graph500 package. The input to R-MAT is the size of a
graph n, the average number of edges per node r, and a tuple
of four parameters a, b, c, d, representing a 2 × 2 matrix. R-
MAT first creates n graph nodes. The edges are given by the
n× n adjacency matrix. An edge is generated by recursively

TABLE I
R-MAT GRAPH PARAMETERS AND SIZES

a b c d input ef n e real ef

1 1 1 1 13 16384 425656 25.9
4 1 1 4 14 16384 423024 25.8
7 1 1 7 17 16384 411046 25.0

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

degree

#
 n

o
d

e
s

1111
4114
7117

Fig. 1. The edge degree distributions of the three R-MAT graphs

using the parameter matrix to choose among the four quadrants
of the adjacency matrix and eventually activating a single
cell. For undirected graphs, both the parameter matrix and
the adjacency matrix are symmetrical.

C. The Locality of Basic BFS

We use an example to show the effect of graph topology on
locality. Prior work, e.g. a model built by Zhong et al. [19],
used the input size to predict locality. For graphs, however,
graphs of the same size may exhibit different locality.

As described in Section II-B, we use R-MAT to generate
three graphs of different structures. Table I lists the parameters
and the structure information of the three graphs, one in each
row. The four input parameters are given in the first four
columns.

We refer to the three graphs by these four parameters,
namely, 1111, 4114 and 7117. 1111 is a uniform random graph
where every two vertices in the graph has the same probability
to be connected by an edge. 4114 and 7117 are uneven in that
in every sub-graph, half of the graph has 4 and 7 times as
many edges as the other half, respectively.

The next four columns of Table I show the input and
real edge factors and the number of nodes and edges. An
edge factor, represented as ef in the table, shows how many
neighbors each node has. In R-MAT generation, more than one
edge may be generated between two vertices. These duplicates
are then removed. Uneven graphs contain more duplicates. To
equalize the size of the three graphs, we use a larger input edge
factor for the uneven graphs so the real edge factor is roughly
the same in the generated graphs. The three graphs have the
same number of vertices and an almost identical number of

5

10

15

20

4k 8k 12k 16k 20k 24k 28k 32k

%
 r

e
fe

re
n

ce
s

Reuse Distance

minimum
average

maximum

(a) 1111

5

10

15

20

4k 8k 12k 16k 20k 24k 28k 32k

%
 r

e
fe

re
n

ce
s

Reuse Distance

minimum
average

maximum

(b) 4114

5

10

15

20

4k 8k 12k 16k 20k 24k 28k 32k

%
 r

e
fe

re
n

ce
s

Reuse Distance

minimum
average

maximum

(c) 7117

Fig. 2. Measured BFS Reuse Distance for R-MAT (n = 16, 384, ef = 16). The range in each bin reflects the difference when using different root nodes
in BFS.

edges.
Intuitively we can expect that the two non-uniform graphs,

4114 and 7117, have better locality than the uniform graph,
1111. This is confirmed by the reuse distance measurement
shown in Figure 2. BFS on 1111 has more long-distance
reuses than on 4114 and 7117. Thus the graph structure is
an important factor in determining the locality of BFS. We
expect the same conclusion for other graph algorithms. Merely
the size of a graph—the number of nodes and the number of
edges—will not be sufficient to characterize locality.

Three more issues are worth noting. The first is the effect
of topology on the number of neighbors. Figure 1 shows
the degree distribution of the three graphs. The most uneven
graph, 7117, has fewer nodes that have too many or too few
neighbors, compared to the even graph, 1111. The second is
the starting point in BFS. Any node can be chosen as the root
for a BFS traversal. We have randomly selected the starting
points and tested a number of executions. The range of results
is shown in Figure 2 by the minimum and maximum in each
bar of the reuse-distance signature. The small difference shows
that the starting point has little or no impact on locality. The
reuse distance of BFS started from any root is similar to
each other. The last issue is the numbering of graph nodes.
By conducting experiments similar to those testing the effect
of the starting point, we found that the numbering does not
affect locality. The reuse distance of BFS with different vertex
numbering is similar to each other.

D. Improved BFS Algorithms

BFS and other graph algorithms are the subject of many
studies that focus on improving performance, especially mem-
ory and communication performance. We next classify these
algorithms based on the target platform.

BFS on Shared Memory System. Bader and Madduri [1]
presented fast multithreaded algorithms for BFS and st-
connectivity on the MTA system. Zhang and Hansen [2]
used a layer synchronization method for parallelizing BFS.
This method is also used by many improved algorithms. Xia
and Prasanna [3] proposed a topologically adaptive parallel
algorithm which estimates the scalability of each BFS level

and adjusts the number of threads according to the estimated
value of scalability. You et al. [4] explored alternatives to
atomics in creating the stack of newly-visited vertices. The
new algorithm aggregates all the edges out of the current level,
sorts them by the destination vertex and then performs the
visited check. This will incur a much higher computational
cost for sorting.

Leiserson and Schardl [6] replaced the shared BFS queue
with a new bag data structure which is an unordered set
supporting O(log n) time union and split. Agarwal et al. [5]
designed a parallel BFS algorithm minimizing the negative
effects of the cache-coherency protocol between processor
sockets. Their algorithm utilizes the intra-level parallelism. In
each BFS level, every core processes the vertices which belong
to it in the current queue, updates the adjacent vertices which
belong to itself, and sends accessed adjacent vertices to their
owners who are in charge of updating the receive vertices.
They use a bitmap array to mark the visited vertices, which
reduces the working set size, and check the bitmap before
locking it, which reduces the frequency of the potentially
expensive atomic operation.

Pearce et al. [7] studied graph processing in a semi-
external memory scenario, which has enough main memory to
store the vertices but not edges. They proposed multithreaded
asynchronous algorithms for SSSP, BFS and connected com-
ponents. The idea is in the middle point between ordered
algorithm and unordered algorithms [26]. It can provide more
parallelism but requires more work.

Distributed Memory System. Because checking whether a
remote node has been visitied needs inter-process communi-
cation, which incurs longer latency, the common approach is
to gather all edges corresponding to remote nodes and send
them to their owner processors at the end of each level. This
requires an all-to-all communication.

Yoo et al. [11] proposed a distributed level-synchronized
BFS algorithm using 1D partitioning and 2D partitioning. The
2D partitioning BFS algorithm replaces the expensive all-
to-all communication step by a process-row and a process-
column communication at each level. Buluc and Madduri [9]
used SpMV to compute the BFS level and improved the 2D

partition method [11] by using 2D vector distribution, which
improves the load balance by reducing the next level queue. To
reduce the storage of the row ptr array, they used the doubly-
compressed sparse column (DCSC) introduced for hypersparse
matrices designed by Buluc and Gilbert [27].

BFS on External Memory. Munagala and Ranade [16]
improved the I/O complexity of BFS (MR BFS) to O(n +
sort(n+m)) by generating the multiset of neighbor vertices
of nodes in the current level, sorting and scanning it, delet-
ing duplicates elements which are in the two most recently
completed BFS levels. Mehlhorn and Meyer [15] proposed
an improved algorithm (MM BFS) based on MR BFS by
splitting the graph into subgraphs of a low diameter. The
complexity is O(

√

n · scan(n+m) + sort(n +m)). Ajwani
et al. [28] experimentally studied MR BFS and MM BFS
and showed that MR BFS performs better on small-diameter
random graphs but MM BFS outperforms MR BFS for large
diameter sparse graphs.

Graph Topology Aware. Idwan and Etaiwi [10] use hMETIS
to partition a graph into subgraphs which can be stored in
memory. The algorithm processes BFS inside each subgraphs
to reduce the number of I/O operations.

Muntes-Mulero et al. [8] proposed two graph partitioning
methods to reduce the inter-node communication of the dis-
tributed BFS algorithm. In their BFS algorithm each node
keeps information about the vertices in other partitions con-
nected to vertices in the current partition and sends these
vertcies to their owners only once. They proposed two graph
partitioning strategies for BFS in distributed memory system.
Their methods reduce the number of boundary vertices which
have at least one cut edge. The improved ϕ-aware DBFS
algorithm based on [11] doesn’t send a message for each cut
edge, but for distinct nodes connected to a cut edge.

Cong and Sbaraglia [29] studied the locality of three
Minimum Spanning Tree algorithms. For the Prim algorithm,
the heap operations are the main analysis target. Their ex-
perimental results show the Prim algorithm has the best
locality (measured by reuse distance) and a consistent locality
curve over different sparse graphs, and Kruskal has the worst
locality.

III. MODELING GRAPH LOCALITY WITH VERTEX

DISTANCE

In this section, we define vertex distance and use it to
analyze random graphs in the first and third models and R-
MAT graphs in the second model. The first two models rely on
directly measuring the vertex distance, while the third model
derives the vertex distance.

A. The Vertex Distance

Graph data is accessed differently than array data. Al-
gorithms such as BFS, Dijkstra shortest path, and Prim’s
minimum spanning tree share a common scheme: The access
expands from the set of already accessed nodes outward into
the rest of the graph. The expansion is done by following edges
of each node. Since more than one node may be expanded

at a given moment, the ready nodes are ordered linearly. An
example of the ordering is the queue used in BFS. As nodes
are queued, v1, v2, . . . , vn, the edges of v1 are processed first,
followed by the edges of v2 and so on. We call the linear
order in which graph nodes are first reached by an algorithm
the spanning sequence of the algorithm.

The spanning sequence can be viewed as an array. Each
node is added to the sequence once and only once. We use
the array index of the nodes to compute a distance metric for
their access. We define the vertex distance for each access
as follows: In BFS, if a node x has r neighbors, it will be
accessed r times, each time from a different neighbor. Sort
the r neighbors by their index in the spanning seqence. Let
neighbors ri, ri+1 be adjacent in the sorted neighbor sequence.
The difference in their indices is the vertex distance of the x
access due to neighbor ri+1.

The vertex distance is defined for each access. BFS follows
every edge and accesses the end node at each edge. The vertex
distance is effectively defined for each edge. For a node with r
edges connecting to r neighbors, the vertex distance is infinite
when x is accessed through the first neighbor in the spanning
sequence. The set of remaining r − 1 vertex distances show
the distribution of the neighbors in the spanning sequence.

The histogram of vertex distances is the vertex distance

signature, which we denote as V D(n) as we use RD(n) to
denote the reuse-distance signature. For a graph with n nodes
and e edges, there are e− n finite vertex and reuse distances.

Algorithm 1 shows how to record the vertex distances in
BFS, specifically, the reuse of the Level array in Line 8-
9. It keeps a record called LastVertex to store the index to
the spanning sequence, BFSQueue. When a vertex v is taken
from BFSQueue, all neighbor vertices are accessed and the
LastVertex array is updated to the index of v for each neighbor.

For example, when a vertex v is first accessed (line 9-10)
from neighbor s1, its Level is assigned, and v is added to the
BFS queue. LastVertex is assigned the index of s1. When v is
accessed again from neighbor s2, it is a temporal reuse. The
vertex distance is the index of s2 minus the index of s1 stored
in LastVertex. The vertex distance is recorded (line 12-13) and
the value in LastVertex updated.

A vertex distance is a period of time, that is, the number
of computation steps before a node is accessed again. The
metric helps to connect the complexity analysis, where the
time cost is the output, with the locality analysis, where the
time distance is the input.

B. The Percolation Model for Random Graphs

In this first model, we show the propagation of BFS access
in G(n, p) random graphs. Heath and Lavinus [21] proved
that if the degree of a random graph is slightly greater than the
logarithm of n, the number of cut edges in an optimal partition
is almost the same as the number of cut edges in a random
partition. In a G(n, p) graph, an edge has the same probability
of connecting any pair of nodes, so in this model we can ignore
the edge distribution, a problem we will consider in the second
model.

1) Throwing Balls into Bins: Consider the analogy in which
nodes are bins, and accessing r neighbors is equivalent to
throwing r balls into r bins. Given a vertex distance m, we
derive the corresponding reuse distance as follows.

Starting with n empty bins, we throw r balls into r bins at
each step, and repeat for m steps. The reuse distance is the
number of bins that have at least one ball after the m steps.

There are (Cr
n)

m different cases. Let T (m, k) denote the
number of different cases where there are k bins with at least
one ball after the mth step. We have

T (m, k) =
r

∑

i=0

T (m− 1, k − i) · Cr−i
k−i · C

i
n−k+i

The probability of having k nonempty bins is

P(m, k) =
T (m, k)

(Ce
n)

m

T (m, k) is a recursive series. In the base case when r = 1,
we have

T (m, k) = T (m− 1, k − 1) · (n− k + 1) + T (m− 1, k) · k

T (m, k) = Ck
n · Skm · k!

where Skm = Sk−1
m−1 + Skm−1 · k is the Stirling number of

the second type, which is the number of ways to partition
m elements into k non-empty sets.

2) Predicting Reuse Distance: In the percolation model, m
is the vertex distance, r is the average degree of the graph, and
k is the reuse distance. We compute P(m, k) for each vertex
distance m and reuse distance k and transform the vertex
distance histogram to reuse distance histogram by multiplying
the former with the P(m, k) matrix. Let RD(d) is the number
of accesses with reuse distance d. We compute it by

RD(d) =
n
∑

i=1

V D(i) · P(i, d)

The solution is similar to the one used by Shen et al. [30].
Although there is no closed-form solution to T (m, k), the
recursive equation may be computed with a low cost as shown
in the previous work.

3) Predicting BFS Level: In BFS, nodes are visited in the
order of the spanning sequence. They are divided level by level
in the BFS hierarchy. Let sl be the number of nodes in level
l: sl = |{v : Level(v) = l, v ∈ V }|. Naturally we have the
size of level 0 s0 = 1 (the root node) and the total size of all
levels

∑

l sl = n.

For a G(n, p) graph, the size of the next level sl+1 can
be computed from the size of this and previous levels. Let
Al =

∑l
i=0

si be the number of nodes that have been assigned
a level, and n−Al the number of remaining nodes. A member
of the remaining nodes will enter level l+1 if it has an edge
to a node in level l but no edge to the earlier levels. Otherwise

it would either be unreachable from level i or already have a
level assigned. A node x has a probability p to have an edge
to another node. The probability is (1− p)k to have no edge
to a group of k nodes, and 1− (1− p)k to have at least one
edge to k nodes. The size sl+1 can be calculated by adding
the probability of each of the remaining n − Al nodes being
in level l + 1:

sl+1 =
n−Al∑

k=0

k · Ck
n−Al

(

1− (1− p)sl
)k

·
(

(1− p)sl
)n−Al−k

Through some mathematical manipulations elided here, we
derive a closed form for the summation:

sl =

{

1 if l = 0
(n−Al−1) · (1− (1− p)sl−1) otherwise

The input for the level prediction model includes only n, p.
It does not need to measure or estimate the vertex distance. As
we will see in evaluation, this percolation model is accurate
in predicting the reuse distance and the BFS level for random
graphs but not for non-uniform R-MAT graphs.

C. The Distribution Model for R-MAT

In this section, we describe a model that considers the edge
and node distribution in order to convert vertex distance into
reuse distance for non-uniform graphs.

1) Modeling the Edge Distribution: The percolation model
assumes uniformity, that is, a node has an equal probability
connecting to any other node. A single parameter, the number
of neighbors r, is used for deciding how many nodes are
reached at each step. R-MAT graphs may or may not be
uniform depending on the input parameter matrix. A sub-graph
may contain more edges than the rest of the graph. In other
words, an edge may have a higher probability connecting to
one group of nodes than to another group.

To model the edge distribution, we use a graph partitioning
package, METIS, to partition a graph into sub-parts. METIS
uses heuristics to minimize the number of cross-partition edges
(min-cut). The edge distribution manifests by the different
connection probability within each part and between sibling
parts.

For a first-order approximation of the edge distribution,
we partition a graph into two equal-size sub-parts (by using
METIS with parameter 2). Let N1 and N2 denote the two
node sets. Let e1 be the percentage of edges connecting two
nodes in N1, e2 be the percentage of edges connecting two
nodes in N2, and e12 = e21 be the half of the percentage of
the remaining edges (1 − e1 − e2) connecting a node in N1

and a node in N2. Hence, the four parameters characterize the
top-level edge distribution. Figure 3 illustrates the extended
model.

Figure 4 shows the edge distribution for the three R-MAT
graphs. In graph 1111, if we choose a vertex in N1, it has
probability 31.8/(31.8 + 18.1) = 64% connecting to a node
in N1 and the remaining 36% to a node in N2. In the other

e mN

N

−→
e21

e1

e2

e12

m2

m1

N2

N1

N2N1

Fig. 3. Illustration of the edge distribution

18.1

31.8

32

18.1

10.2

40.6

38.9

10.2

7.6

42.3

42.3

7.6

Fig. 4. The edge distribution of the three R-MAT graphs

1
N1

‖ (e1N1

e12
N2

)‖

e1
︷ ︸︸ ︷

(e1N1

e12
N2

) . . . (e1N1

e12
N2

)

e12
︷ ︸︸ ︷

(e21N1

e2
N2

) . . . (e21N1

e2
N2

) ‖ . . .

Fig. 5. Illustration of the vertex distribution

two graphs, the probability of an intra-N1 connection is 81%
and 85% respectively for graphs 4114 and 7117.

2) Modeling the Vertex Distribution: The second problem
not considered in the percolation model is that the vertices
within a vertex distance may not belong to each sub-graph with
an equal probability. This is a result of the edge distribution.

For example, suppose that a BFS tree is rooted in N1. The
BFS spanning sequence is depicted in Figure 5. The sequence
is divided by ‖ between different BFS levels. In the first level
(BFS level=0), there is only one vertex in N1. In the second
level (BFS level=1), there are more nodes from N1 than from
N2 since e1 > e12. In the third level, all four parameters of
the edge distribution, e1, e2, e12, e21, affect the composition
of nodes.

To consider the vertex distribution, we extend the percola-
tion model. For each vertex distance, we conduct the m steps
in two phases. The first has m1 steps, and the second m2

steps (m = m1 +m2). We use the edge distribution to derive
the vertex distribution. From Figure 5, we use the proportion
m1/m2 = e1/e12 when computing the distribution in N1

nodes and m1/m2 = e21/e2 among the N2 nodes.

In each step in the m1 phase, e1 bins are chosen from N1,
and e12 bins are chosen from N2. Then e = e1 + e12 balls
are put into these bins. Similarly, in each step of the second
phase, e21 bins are chosen from N1 and e2 bins are chosen
from N2, and these bins are filled by e = e2 + e21 balls.

3) Put It Together: The distribution model answers the
question how many bins that have at least one ball after m
steps. There are (Ce1

n/2)
m1 · (Ce12

n/2)
m2 different cases for the

N1 set and (Ce2
n/2)

m2 ·(Ce21
n/2)

m1 different cases for the N2 set.

Let T1(j, k) denotes the different cases that N1 has k bins with
at least one ball after j steps, we have a revised recurrence
equation.

T1(j, k) =

{∑e1
i=0

T1(j − 1, k − i) · Ce1−i
k−i · Ci

n

2
−k+i j ≤ m1

∑e12
i=0

T1(j − 1, k − i) · Ce12−i
k−i · Ci

n

2
−k+i j > m1

Let P1(m, i) denotes the probability that N1 has i non-
empty bins after m steps. Then we have

P1(m, i) =
T1(m, i)

(Ce1
n/2)

m1 · (Ce12
n/2)

m2

P2(m, i) can be computed similarly. The probability that k
bins have at least one ball after m steps is

P(m, k) =
k

∑

i=0

P1(m, i) · P2(m, k − i)

4) Prediction of BFS Levels and Reuse Distance: The dis-
tribution model can predict the size of the BFS tree hierarchy,
namely, the number of BFS levels and the number of vertices
at each level. We can predict the number (Level[LevelCnt])
of vertices in each BFS level from Algorithm 1. It is obvious
that Level[0] = 1 and Level[1] = Degree[root]. The
experiment results show that the BFS levels are similar when
the degrees of roots are close. Next we predict BFS hierarchy
parameterized by the degree of the chosen root.

If the nodes of the previous level access t nodes and there
are a nodes that has already been accessed, there will be t(n−
a)/n nodes in the next level. Let Al denotes the number of
accessed nodes before the (l+1)th level. We choose Level[l]
such that the probability of P(Level[l − 1], Level[l] · n/(n−
A[l])) is the largest.

D. The Vertex Distance in Random Graphs

In the third model, we show the relation between the vertex
distance and the high-level graph parameters. A random graph
has two parameters: size n and connection probability p. The
following theoretical analysis shows that the vertex distance
in BFS follows the geometric distribution, that is, the portion
of vertex distances of length k is (1− p)k−1p.

Lemma 1: Let G be a random graph from the Erdős-
Rényi random graph model Gn,p. Assume p = ω(1/n) as
n → ∞. With probability 1 − o(1) the distribution of the
vertex distances of the Level array in the BFS algorithm is, up
to o(1) #1-error, geometric distribution with parameter p.
Proof : For v ∈ V let Tv = i if the i-th Dequeue operation
returns v (thus, for example, for the root r we have Tr = 1).
Let Xk be the number of vertices that are marked visited (that
is, have Level[v] < ∞) just before k-th Dequeue operation
is executed. Thus

X1 = 1.

Let Zk be the number of vertices that are discovered from
the vertex v that is returned by the k-th Dequeue operation
(that is, the vertex with Tv = k). There are n−Xk vertices that
can be potentially discovered (that is, have Level[w] = ∞) and
each is discovered with probability p. Thus

Zk ∼ Binomial(n−Xk, p).

We then have

Xk+1 = Xk + Zk.

The process ends when XF+1 = F , that is, all discovered
vertices were already popped from the queue (here F is the
number of vertices discovered by the BFS algorithm—it is
not necessarily equal to n, since the random graph can be
disconnected1).

Let v ∈ V be a vertex (discovered by the BFS algorithm).
Assume that v is not the root (we can ignore the case when
v is the root r, since with probability 1 − o(1) the accesses
to Level[r] form an o(1) fraction of the accesses to the
Level array). Let w be the vertex from which we discovered
v. Note that

• there is no edge between u and v if Tu < Tw (otherwise
v would be discovered from u),

• each vertex with Tu value in {Tw + 1, . . . , XTv
} \ {Tv}

is a neighbor of v, with probability p (these events are
independent), and

• there are ZTv
additional neighbors of v (these are the

vertices discovered from v).

We are going to ignore all the accesses arising from the
vertices discovered from v (since aggregated over all v there
are only O(n) such accesses—a drop in the bucket compared
to the ω(n) other accesses (more precisely, we have ω(n) of
them with probability 1− o(1))).

Now we are going to add O(n) “made-up accesses” to
make the distribution of the vertex distances equal to the
geometric distribution (note that this is again just a drop in
the bucket). After the sequence of potential vertices with Tu

value in Tw+1, . . . , XTv
add more “virtual vertices” until we

obtain one that is connected to v. Now the vertex distances
are exactly geometrically distributed, and since we obtained
this by o(1) change in the distribution it must be that the
true distribution of vertex distances is distance o(1) from the
geometric distribution. !

Figure 6 shows the distribution of vertex distances for a
random-graph BFS traversal. When n is large (1000 in this
case), the prediction, given by the geometric distribution,
closely matches with the measurement.

5 10 15 20
Vertex distance

0.02

0.04

0.06

0.08

0.10

Fraction of accesses

Fig. 6. The vertex distance distribution for a random G ∼ Gn,p compared
to the geometric distribution (n = 1000, p = 0.1).

IV. EVALUATION

In evaluation, we first measure the reuse distance histogram
(MRD). We then apply the first two models to use the vertex

1In fact, the threshold for connectedness is p = (logn)/n, see, e. g., [31],
p. 164.

TABLE II
G(n, p) MATRICES,n = 16384, ln 16384 ≈ 10

p ef m a b c d

0.001 32 268156 0.19 0.25 0.25 0.31
0.002 65 537076 0.21 0.25 0.25 0.29
0.005 164 1342400 0.22 0.25 0.25 0.28
0.010 328 2685853 0.23 0.25 0.25 0.27
0.015 492 4027896 0.23 0.25 0.25 0.27
0.020 656 5370210 0.24 0.25 0.25 0.26

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.001 0.002 0.005 0.01 0.015 0.02
n

u
m

b
e

r
o

f
ve

rt
ic

e
s

level 2
level 3

level 4
level 5

Fig. 7. Measured and Predicted BFS Levels for G(16384,p)

distance histogram to obtain the predicted reuse distance
histogram (PRD). We use the formula proposed by Shen et
al. [30] to calculate the prediction accuracy as follows:

accuracy = 1−

∑

i |MRDi − PRDi|

2

where MRDi is the percentage of references in the ith bin in
MRD and PRDi is the percentage in the ith bin of PRD.

Through experimental results we found that the reuse dis-
tance histograms and BFS levels are similar for BFS starting
from different roots in the input graph. The difference is very
small so we do not show it in the figures (as we did in
Figure 2).

A. Random Graph Results

We use the GTgraph designed by Madduri and Bader [32]
to generate random graphs with varying p parameters. Table
II lists six graphs with number of nodes n = 16384. We use
METIS to partition, each of these graphs into two parts. Then
the adjacency matrix is split into four parts each of which has
a percentage of all edges. The four parameters a, b, c and d like
the ones used in the extended model for RMAT graphs. From
Table II we can see that the four parts become equal as the
parameter p increases, showing the property proved by Heath
and Lavinus [21]. Since the edge distribution is uniform, we
can expect the percolation model to predict well (even though
it does not consider the edge distribution).

The six graphs in Figure 8 show the measured and predicted
reuse distance results for graphs generated by the G(n, p)

5

10

15

20

2k 4k 6k 8k 10k 12k 14k 16k

%
 r

e
fe

re
n

ce
s

Reuse Distance

measured
predicted

(a) p=0.001

m=268156

5

10

15

20

2k 4k 6k 8k 10k 12k 14k 16k

%
 r

e
fe

re
n

ce
s

Reuse Distance

measured
predicted

(b) p=0.002

m=537076

5

10

15

20

2k 4k 6k 8k 10k 12k 14k 16k

%
 r

e
fe

re
n

ce
s

Reuse Distance

measured
predicted

(c) p=0.005

m=1611474

5

10

15

20

2k 4k 6k 8k 10k 12k 14k 16k

%
 r

e
fe

re
n

ce
s

Reuse Distance

measured
predicted

(d) p=0.01

m=2685853

5

10

15

20

2k 4k 6k 8k 10k 12k 14k 16k

%
 r

e
fe

re
n

ce
s

Reuse Distance

measured
predicted

(e) p=0.015

m=4027896

5

10

15

20

2k 4k 6k 8k 10k 12k 14k 16k

%
 r

e
fe

re
n

ce
s

Reuse Distance

measured
predicted

(f) p=0.02

m=5370210

Fig. 8. Measured and Predicted BFS Reuse Distance for G(16384,p)

model, with n = 16384 and six values of p ranging from
0.001 to 0.02. The prediction accuracy is over 97% for every
graph. The average accuracy of the six graphs is 98%.

We consider an extreme case. If the graph is a complete
graph, namely p = 1 and m = (n2−n)/2 (we ignore the self
edges), all the m accesses will have reuse distance of n. There
will be m−n accesses with vertex distance 1 and n accesses
with vertex distance 2. We can see the trend from Figure 8 that
the shape of the reuse distance histogram approaches uniform
distribution, which is that of the extreme case.

Figure 7 shows the the measured and predicted BFS levels
results for graphs generated by G(n, p) model. The accuracy
is even higher, with the average of the six graphs at 99%.

B. R-MAT Graph Results

Random graphs are uniform in that there are no unevenly
connected sub-graphs (i.e. small-world communities) [21]. The
percolation model, although accurate for random graphs, does
not provide an accurate prediction for R-MAT graphs. For
these non-uniform graphs, we need the distribution model.

The three histograms in Figure 9 show the measured and
predicted reuse distance of the three R-MAT graphs. As we
analyzed, the reuse distance predicted from vertex distance is
larger than the measured distance especially when the vertex
distance increases. The three graphs are predicted with an
accuracy of 96%, 95%, and 94%.

Figure 10 shows the measured and predicted BFS hierarchy
in the three graphs. We sample 10% of vertices in each graph
and record the BFS level for each vertex. After analyzing the
results we found that BFS levels are similar when the degrees
of roots are closer. So we plot the average number of vertices

for levels larger than 1 and use the degree of the root as the
x axis. The average prediction accuracy of the three graphs is
96%.

C. The Effect of Graph Topology

The three R-MAT graphs have the same size but different
topologies in terms of how nodes are connected. In 1111,
edges are evenly distributed. In 4114 and 7117, edges are more
concentrated in some sub-graphs than in others.

The topology matters, as shown by Figure 9 for the reuse
distance distribution and by Figure 10 for the BFS hierarchy.
The uniform edge distribution has the least locality. The reuse
distance has a nearly uniform distribution. Interestingly and
perhaps not surprisingly, this result is similar to the reuse
distance distribution of random data access [33]. As edges
are more concentrated in sub-graphs, the locality improves.

The effect of edge concentration also changes the shape
of the BFS hierarchy, in particular, the number of levels and
the size of each level. A uniform edge distribution yields
the shallowest hierarchy. As edges are more concentrated, the
number of levels increases. Generally speaking, randomness
means flatness, and locality means hierarchy.

It is clear from the presented results that the edge and
the node distributions affect locality and BFS hierarchy. The
predictions for the 1111 graph would be quite inaccurate for
the 4114 and especially the 7117 graph. The benefit and
the effect of the distribution model are also clear from these
figures.

5

10

15

4k 8k 12k 16k 20k 24k 28k 32k

%
 r

e
fe

re
n

ce
s

Reuse Distance

measured
predicted

(a) 1111

5

10

15

4k 8k 12k 16k 20k 24k 28k 32k

%
 r

e
fe

re
n

ce
s

Reuse Distance

measured
predicted

(b) 4114

5

10

15

4k 8k 12k 16k 20k 24k 28k 32k

%
 r

e
fe

re
n

ce
s

Reuse Distance

measured
predicted

(c) 7117

Fig. 9. Measured and Predicted BFS Reuse Distance for R-MAT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

13 17 22 27 32 37 42

n
u

m
b

e
r

o
f

ve
rt

ic
e

s

degree of the root

level 2
level 3

level 4
level 5

(a) Measured Results of 1111

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

12 16 21 26 31 36 41 44

n
u

m
b

e
r

o
f

ve
rt

ic
e

s

degree of the root

level 2
level 3

level 4
level 5

(b) Measured Results of 4114

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

14 18 23 28 33 39

n
u

m
b

e
r

o
f

ve
rt

ic
e

s

degree of the root

level 2
level 3

level 4
level 5

(c) Measured Results of 7117

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

13 17 22 27 32 37 42

n
u

m
b

e
r

o
f

ve
rt

ic
e

s

degree of the root

level 2
level 3

level 4
level 5

(d) Predicted Results of 1111

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

12 16 21 26 31 36 41 44

n
u

m
b

e
r

o
f

ve
rt

ic
e

s

degree of the root

level 2
level 3

level 4
level 5

(e) Predicted Results of 4114

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

14 18 23 28 33 39

n
u

m
b

e
r

o
f

ve
rt

ic
e

s

degree of the root

level 2
level 3

level 4
level 5

(f) Predicted Results of 7117

Fig. 10. Measured and Predicted BFS Levels of R-MAT graphs. The level partition is sensitive to the root degree.

V. SUMMARY AND FUTURE WORK

In this paper we have defined a concept called the vertex
distance and described three models. The percolation model
shows how time in vertex distance maps to locality in reuse
distance in uniformly random graphs. In non-uniform graphs,
the edge distribution has a strong impact to locality and the
BFS hierarchy in addition to the effect of graph size. The
distribution model approximates the imbalance in an equal
partition of a graph. Finally, we have proved that the vertex
distance in random graphs follows a geometric distribution.
The evaluation results with random and R-MAT graphs show
accurate prediction by the three models.

For random graphs, the new models can predict the locality
given just two parameters, n and p. For R-MAT graphs, the
distribution model requires a profiling run to measure the
vertex distance and a METIS run to partition the input graph
into two parts. While the overhead is not much less than

measuring reuse distance directly, the analysis provides an
explanation which the observation itself does not provide. We
are extending the third model to predict the vertex distance
without profiling. Currently the edge distribution is obtained
by dividing a graph once. It works well for the R-MAT graphs
used in this paper but may not be precise enough in general.
The formula of the distribution model can be extended to
include finer partitions, but the cost of its evaluation increases
rapidly. We are studying simpler formulations and approximate
solutions. In addition, we are considering techniques to remove
the need for running METIS, for example by sampling instead
of running the analysis on the full graph.

Finally, the concept of vertex distance is based on a span-
ning sequence in BFS. The same type of sequences exist
in other graph traversal algorithms. We are studying vertex-
distance based models in other algorithms. The result may
allow us to compare and explain the difference in locality for
example between breadth-first and depth-first graph traversals.

In science and engineering computing, two common classes
of problems are n-body simulation and sparse-matrix solvers.
Prior work has shown significant benefits from run-time com-
putation and data reorganization [34]–[39]. One direction of
this work is to study efficient locality probes to help a run-time
system choose when and how to apply these transformations.

ACKNOWLEDGMENTS

The authors would like to thank Xiaoya Xiang, Jacob Brock,
Bin Bao, Tongxin Bai and the anonymous reviewers for their
helpful comments. This work is partially supported by Na-
tional S&T Major Projects: Core Electronic Devices, High-end
General Chips and Fundamental Software (No.2009ZX01036-
001-002), National Natural Science Foundation of China
(No.61133005), the National 863 Plan of China (No.
2009AA01A129, No. 2009AA01A134), the National High-
tech R&D Program of China (No. 2012AA010903, No.
2012AA010902), the US National Science Foundation (Con-
tract No. CCF-1116104, CCF-0963759, CCF-0910415), the
IBM Center for Advanced Studies, and Huawei Corporation.

REFERENCES

[1] D. A. Bader and K. Madduri, “Designing multithreaded algorithms for
breadth-first search and st-connectivity on the cray mta-2,” in ICPP
’06: Proceedings of the 2006 International Conference on Parallel
Processing. IEEE Computer Society, 2006, pp. 523–530.

[2] Y. Zhang and E. A. Hansen, “Parallel breadth-first heuristic search on a
shared-memory architecture,” in AAAI-06 Workshop on Heuristic Search,
Memory-Based Heuristics and Their Applications, 2006.

[3] Y. Xia and V. K. Prasanna, “Topologically adaptive parallel breadth-first
search on multicore processors,” in PDCS ’09: the 21st International
Conference on Parallel and Distributed Computing and Systems, 2009.

[4] K. You, J. Chong, Y. Yi, E. Gonina, C. Hughes, Y.-K. Chen, W. Sung,
and K. Keutzer, “Parallel scalability in speech recognition,” Signal
Processing Magazine, IEEE, vol. 26, no. 6, pp. 124 –135, 2009.

[5] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in SC ’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, 2010, pp. 1–11.

[6] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers),”
in SPAA ’10: Proceedings of the 22nd ACM symposium on Parallelism
in algorithms and architectures. ACM, 2010, pp. 303–314.

[7] R. Pearce, M. Gokhale, and N. M. Amato, “Multithreaded asynchronous
graph traversal for in-memory and semi-external memory,” in SC ’10:
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society, 2010.

[8] V. Muntés-Mulero, N. Martı́nez-Bazán, J.-L. Larriba-Pey, E. Pacitti,
and P. Valduriez, “Graph partitioning strategies for efficient bfs in
shared-nothing parallel systems,” in WAIM ’10: Proceedings of the
2010 international conference on Web-age information management.
Springer-Verlag, 2010, pp. 13–24.

[9] A. Buluc and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” arXiv ’11.

[10] S. Idwan and W. Etaiwi, “Computing breadth first search in large graph
using hmetis partitioning,” European J. of Scientific Research, pp. 215–
221, 2009.

[11] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first search
algorithm on bluegene/l,” in SC ’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. IEEE Computer Society, 2005, p. 25.

[12] L. Luo, M. Wong, and W.-m. Hwu, “An effective gpu implementation
of breadth-first search,” in DAC ’10: Proceedings of the 47th Design
Automation Conference. ACM, 2010, pp. 52–55.

[13] Y. S. Deng, B. D. Wang, and S. Mu, “Taming irregular eda applica-
tions on gpus,” in ICCAD ’09: Proceedings of the 2009 International
Conference on Computer-Aided Design. ACM, 2009, pp. 539–546.

[14] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on
the gpu using cuda,” in HiPC’07: Proceedings of the 14th conference
on High performance computing. Springer-Verlag, 2007, pp. 197–208.

[15] K. Mehlhorn and U. Meyer, “External-Memory Breadth-First Search
with Sublinear I/O,” in ESA ’02: Proceedings of the 10th Annual
European Symposium on Algorithms. Springer-Verlag, 2002, pp. 723–
735.

[16] K. Munagala and A. Ranade, “I/O-complexity of graph algorithms,” in
SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium on
Discrete algorithms. SIAM, 1999, pp. 687–694.

[17] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, pp. 78–117,
June 1970.

[18] M. D. Hill and A. J. Smith, “Evaluating associativity in cpu caches,”
IEEE Trans. Comput., vol. 38, no. 12, pp. 1612–1630, 1989.

[19] Y. Zhong, X. Shen, and C. Ding, “Program locality analysis using reuse
distance,” ACM Trans. Program. Lang. Syst., vol. 31, no. 6, pp. 1–39,
2009.

[20] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in SDM ’04: SIAM Data Mining, 2004.

[21] J. L. Ganley and L. S. Heath, “Optimal and random partitions of random
graphs,” The Computer Journal, vol. 37, pp. 641–643, 1994.

[22] C. Cascaval and D. A. Padua, “Estimating cache misses and locality
using stack distances,” in ICS ’03: Proceedings of the 17th annual
international conference on Supercomputing, 2003, pp. 150–159.

[23] A. Dan and D. Towsley, “An approximate analysis of the lru and
fifo buffer replacement schemes,” in Proceedings of the 1990 ACM
SIGMETRICS conference on Measurement and modeling of computer
systems, In SIGMETRICS ’90. ACM, 1990, pp. 143–152.

[24] E. N. Gilbert, “Random graphs,” Annals of Mathematical Statistics,
vol. 30, pp. 1141–1144, 1959.

[25] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, pp. 17–61, 1960.

[26] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs. unordered: a
comparison of parallelism and work-efficiency in irregular algorithms,”
in PPoPP ’11: Proceedings of the 16th ACM symposium on Principles
and practice of parallel programming. ACM, 2011, pp. 3–12.

[27] A. Buluc and J. Gilbert, “On the representation and multiplication of
hypersparse matrices,” in IPDPS ’08: IEEE International Symposium on
Parallel and Distributed Processing, april 2008, pp. 1–11.

[28] D. Ajwani, R. Dementiev, and U. Meyer, “A computational study
of external-memory bfs algorithms,” in SODA ’06: Proceedings of
the seventeenth annual ACM-SIAM symposium on Discrete algorithm.
ACM, 2006, pp. 601–610.

[29] G. Cong and S. Sbaraglia, “A study on the locality behavior of minimum
spanning tree algorithms,” in HiPC ’06: International Conference on
High Performance Computing, 2006, pp. 583–594.

[30] X. Shen, J. Shaw, B. Meeker, and C. Ding, “Locality approximation
using time,” in POPL ’07: Proceedings of the ACM symposium on
Principles of programming languages. ACM, 2007, pp. 55–61.

[31] B. Bollobás, Random graphs, In Cambridge studies in advanced math-
ematics. Cambridge University Press, 2001.

[32] K. Madduri and D. A. Bader, “Gtgraph: A suite of synthetic random
graph generators,” http://sdm.lbl.gov/ kamesh/software/GTgraph/.

[33] X. Gu and C. Ding, “Reuse distance distribution in random access,”
TR930, Computer Science Dept., U. Rochester, 2008.

[34] M. M. Strout, L. Carter, and J. Ferrante, “Compile-time composition of
run-time data and iteration reorderings,” in PLDI ’03: Proceedings of
the ACM SIGPLAN 2003 conference on Programming language design
and implementation. ACM, 2003, pp. 91–102.

[35] C. Ding and K. Kennedy, “Improving cache performance in dynamic
applications through data and computation reorganization at run time,”
in PLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference on
Programming language design and implementation, 1999, pp. 229–241.

[36] N. Mitchell, L. Carter, and J. Ferrante, “Localizing non-affine array ref-
erences,” in PACT ’99: Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, Oct. 1999.

[37] H. Han and C. W. Tseng, “Improving locality for adaptive irregular
scientific codes,” in LCPC’00, Aug. 2000.

[38] H. Han and C. Tseng, “Exploiting locality for irregular scientific codes,”
IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 7, pp. 606–618, 2006.

[39] J. Mellor-Crummey, D. Whalley, and K. Kennedy, “Improving memory
hierarchy performance for irregular applications,” International Journal
of Parallel Programming, vol. 29, no. 3, Jun. 2001.

