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ABSTRACT
We propose FRASA, Feedback Retransmission Approxcima-
tion for Slotted ALOHA, to study the stability region of
finite-user slotted ALOHA under collision channel. With
FRASA, we derive in closed form the boundary of the sta-
bility region for any number of users in the system, which is
shown to be accurate via simulations. We use convex hulls
and supporting hyperplanes to construct convex and piece-
wise linear outer and inner bounds on the stability region
of FRASA respectively to facilitate network optimization.
We hope the analytical findings with FRASA can provide
more insights on the characterization of the capacity region
of other types of wireless random access networks, and en-
able traffic engineering with linear constraints in the design
of wireless mesh networks.

1. INTRODUCTION / MOTIVATION
The study of the stability region of slotted ALOHA has

attracted many researchers [1-6]. Despite the simplicity of
slotted ALOHA, this problem is extremely difficult when M,
the number of users in the system, exceeds two, even on the
collision channel assumption. Under this assumption, suc-
cessful transmissions occur if and only if there is one active
transmitter, because of the interference among the stations.
The inherent difficulty in the analysis is due to the effect of
queueing in each transmitter. More specifically, the proba-
bility of successful transmission depends on the number of
active transmitters, which in turn depends on whether the
queues in the transmitters are empty or not. However, it is
still an open problem to obtain the stationary joint queue
statistics in closed form.

Instead of finding the exact stability region, previous re-
searchers have attempted to bound the stability region [5,6].
However, they did not require the bounds to be convex or
piecewise linear, which are important in traffic engineer-
ing. Requiring such properties reduces the traffic engineer-
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Figure 1: FRASA - Feedback Retransmission Ap-
proximation for Slotted ALOHA.

ing problem into convex or linear programming, which are

relatively more tractable. Therefore, we are motivated to
derive convex and piecewise linear bounds on the stability
region. We hope this work can serve as a basis and can be
extended to consider multi-hop networks and interference
models other than collision channel.

In this paper, we propose FRASA, Feedback Retransmis-
sion Approxcimation for Slotted ALOHA, as a surrogate to
approximate finite-user slotted ALOHA. We obtain in closed
form the boundary of the stability region of FRASA under
collision channel for any number of users. This approxi-
mation gives the exact stability region when there are two
users, and is shown to be accurate in other cases via simula-
tions. We also provide convex and piecewise linear bounds
on the stability region of FRASA by using convex hulls and
supporting hyperplanes.

2. THE FRASA MODEL
In FRASA, the buffer in each transmitter can hold one

packet only. Whenever there is a packet in the buffer, if
the transmitter decides not to transmit the packet, or the
transmitter cannot successfully transmit the packet due to
collision, the packet will be removed and put back in the
buffer again after a random delay which is geometrically dis-
tributed. Therefore, the aggregate arrival of packets to the
buffer, which is defined as the sum of the new arrivals and
the retransmissions, is assumed to be Bernoulli or memory-

less. Similar approximation was introduced by [7]. FRASA
is shown in Fig. 1.
Assume there are M links in the network, and the set of

links is denoted by M = {r}nl Let p (Pn)nEM be the
transmission probability vector. Let Pn 1= Pn, Vn C M.
We first consider a reduced FRASA system Sf, in which we

let link n have infinite backlog and for n 7? n, link n has
a fixed aggregate arrival rate Xn C [0,1]. Therefore, link
n is active with probability Pn, while for n 7? n, link n is
active with probability XnPn. Hence, A = (An)nEGM is the
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Table 1: Comparison for AM for M = 3 and pi = P2 =

p3 = 0.5 (upper and lower bounds from [5]).
A1 A2 Upper FRASA(Exact Sim.) Lower
0 0 0.5 0.5(0.4996) 0.5
0 0.12 0.38 0.38(0.3831) 0.38

0.06 0.06 0.38 0.3703(0.3652) 0.3405
0.12 0.123 0.257 0.1704(0.1585) 0.1402
0.12 0.13 0.25 0.13(0.1315) 0.13

successful transmission probability vector, where

[XnPn(-P) r (1 XPn), n 7
A - nn'ME {n,n}

An PnP 7J (1 -Xn'Pn')7 n 12
n'EMEt{n}

with Af, > 0. Then we obtain the following result.

THEOREM 1. From FRASA, R = UnGM4/Zn is the sta-
bility region, where Ri, is represented by:

Pi(-pn) > A\(1 pn) > 0,Vrn C M \ {r}, (1)
Pn Pn

17 [Af,(I -Pn) +A0n/Pn] <p [A (I Pn)]-p . (2)
n' EM

REMARK 1. With some algebraic manipulations, it can be
shown that the stability region of FRASA in Theorem 1 coin-
cides exactly with that of slotted ALOHA when M = 2 given
by [1- 3. For M > 2, our simulation results, e.g., Table 1,
show that FRASA provides an excellent approxcimation.

3. CONVEX BOUNDS ON THE STABILITY
REGION OF FRASA

Though Theorem 1 gives the closed-form solution for the
stability region of FRASA, it can be proved that such region
cannot be convex and piecewise linear for M > 2. Therefore,
we develop bounds on the stability region of FRASA that
are convex and piecewise linear to facilitate the application
of FRASA to routing optimization of wireless random access
networks.

First we use corner points of the stability region of FRASA
to construct outer bounds. For each M' C M, we obtain a

corner point rIP (M') r(Iln ,())lnM where

fi pc, n2MrlpM~~~~~~~ ~~~~~Pnfl

Hn (M') n'M'\{n}
0, n CM \M'

We observe that for all 12 C M, the boundary of the stability
region of Sf, i.e., equality form of (2), is contained in the
convex hull HK generated by the corner points PiM(MU{rt})
for all M' C M \ {n}. This helps us obtain the following
two outer bounds on the stability region of FRASA.

THEOREM 2. (Bound of Convex-Hull Union). Nt,, the
convex hull generated by HP' (u{n}) for all M' C M \ {1}
together with 0, i.e., the origin, is a piecewise linear outer
bound on Rf,. Therefore, the union of 1tn for all 1 C M,
i.e., N = UAGM1tnn is a piecewise linear outer bound on
the stability region of FRASA.
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Figure 2: Illustrations of (a) the stability region of
FRASA (Theorem 1) and (b) the corresponding con-
vex and piecewise linear outer bound (Theorem 3)
with M = 3 and p1 = p2 = P3 = 0.3.

THEOREM 3. (Convex Hull Bound). NH, the convex hull
generated by HPAA (M') for all M' C M, is a convex and
piecewise linear outer bound on the stability region of FRASA.

REMARK 2. While both bounds are piecewise linear, only
the convex hull bound is guaranteed to be convex. In general,
the bound of convex-hull union is tighter than the convex hull
bound. However, it can be proved that the two bounds are
identical if and only if ZnGM Pn <

Next, we give a convex and piecewise linear inner bound
on the stability region of FRASA by using supporting hyper-
planes. This inner bound is derived based on the observation
about the convex hull H, for all 12 C M stated previously.

THEOREM 4. (Supporting Hyperplane Bound). For each
1 C M, we construct a supporting hyperplane Pn which sup-
ports the convex hull Hn at HP(P ) such that

1. it lies below Hn; and
2. it has positive intercepts on all coordinate axes.

We let S, be the closed half space below Pn. Then the in-
tersection of all these half spaces in the positive orthant,
i. e., S = nO .MSn n {A:A:n > 0,Vn C M}, is a convex
and piecewise linear inner bound on the stability region of
FRASA.

For more information, refer to http: //mobitec. ie. cuhk.
edu.hk/doc/frasa.pdf.
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